
MINI REVIEW ARTICLE
published: 25 February 2015

doi: 10.3389/fpls.2015.00081

PGPRs and nitrogen-fixing legumes: a perfect team for
efficient Cd phytoremediation?
María T. Gómez-Sagasti 1* and Daniel Marino1,2

1 Laboratory of Plant Physiology, Department of Plant Biology and Ecology, University of the Basque Country, Bilbao, Spain
2 Ikerbasque, Basque Foundation for Science, Bilbao, Spain

Edited by:

David W. M. Leung, University of
Canterbury, New Zealand

Reviewed by:

Peter Gresshoff, The University of
Queensland, Australia
Manoj K. Sharma, Jawaharlal Nehru
University, India
Sandra Citterio, University of
Milano-Bicocca, Italy

*Correspondence:

María T. Gómez-Sagasti, Laboratory of
Plant Physiology, Department of Plant
Biology and Ecology, University of the
Basque Country, P.O. Box 644,
E-48080 Bilbao, Spain
e-mail: mariateresa.gomez@ehu.es

Cadmium (Cd) is a toxic, biologically non-essential and highly mobile metal that has
become an increasingly important environmental hazard to both wildlife and humans. In
contrast to conventional remediation technologies, phytoremediation based on legume–
rhizobia symbiosis has emerged as an inexpensive decontamination alternative which also
revitalize contaminated soils due to the role of legumes in nitrogen cycling. In recent years,
there is a growing interest in understanding symbiotic legume–rhizobia relationship and its
interactions with Cd. The aim of the present review is to provide a comprehensive picture
of the main effects of Cd in N2-fixing leguminous plants and the benefits of exploiting
this symbiosis together with plant growth promoting rhizobacteria to boost an efficient
reclamation of Cd-contaminated soils.
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LEGUMES, A PROMISING TOOL FOR CD PHYTOREMEDIATION
An increasingly industrialized global economy over the last cen-
tury has led to a dramatic increase in production and release
of hazardous metals to the environment (Gerhardt et al., 2009).
Among all the non-essential metals, cadmium (Cd) has received
great attention in soil science and plant nutrition mainly due to
(1) its phytotoxic impact ranging from growth reduction, wilting,
and chlorosis to cell death (Gallego et al., 2012); (2) its relative high
mobility in the soil–plant system, which implies Cd dissemination
throughout the food chain, even becoming a serious threat to
ecosystem and human health (Burger, 2008) and; (3) its long half-
life in soil system varying between 100 and 1,000 years (Central
Pollution Control Board [CPCB], 2007). The resulting detrimen-
tal effects derived from excess of Cd on environment and human
health are well documented (Clemens et al., 2013).

Today, environmental managers are increasingly becoming
aware of the importance to remediate Cd-contaminated areas
using biological systems (microorganisms and/or plants), which
are more ecologically sound, less labor-intensive, safe, and eco-
nomically advantageous than conventional methods based on
physico-chemical processes (e.g., land filling, chemical fixation,
and leaching). Concerning bioremediation, plant-assisted reme-
diation or phytoremediation has been highlighted for its potential
for in situ removal of Cd from soils (Salt et al., 1995). Phytore-
mediation of Cd-contaminated soils encompasses three different
strategies: (1) phytoextraction (uptake and accumulation of metal
from soils into the plant’s harvestable parts); (2) phytostabiliza-
tion (complexation of metal in the rhizosediment decreasing its
solubility/bioavailability) and; (3) rhizofiltration (absorption of
metal by roots).

Although phytoremediation is a promising technology, its fea-
sibility depends on site conditions, soil properties, and plants

sensitivity to the toxic metal. In particular, the poor soil struc-
ture, low water-holding capacity, lack of organic matter (OM)
and its associated nutrients such as nitrogen (N) and phospho-
rous (P) are some of the distinctive features of metal-polluted
soils that are a matter of importance in the early stages of phyre-
mediation (i.e., in the establishment of plant cover; Wong, 2003).
In this regard, the exploitation of symbiotic relationship between
leguminous plants and rhizobia is presented as an attractive and
cost-effective alternative to improve the nitrogen input into the
plant–soil system compared with the use of expensive synthetic
N-fertilizers (United States Department of Agriculture, Economic
Research Service [USDA-ERS], 2013). Moreover, the contribu-
tion of soil bacteria, other than rhizobia, to improve the metal
remediation capacity of symbiotic legumes represents a growing
area of research. These bacteria are known as plant growth-
promoting rhizobacteria (PGPRs). This review summarizes some
of the recent advances in this field and highlights the potential
of this three partner relationship legume–rhizobia–PGPRs for Cd
detoxification.

Legumes (Fabaceae or Leguminosae) is the third largest
angiosperm family, with more than 700 genera and 18,000 species
with an exceptionally wide range of habitats (Lewis et al., 2005).
One of the outstanding characteristics of this family is that most
legumes have the ability to establish a symbiotic relationship with
soil nitrogen-fixing (N2-fixing) rhizobacteria, known collectively
as rhizobia, e.g., Rhizobium, Mesorhizobium, Bradyrhizobium,
Azorhizobium, Allorhizobium, or Sinorhizobium (Velázquez et al.,
2010).

The symbiotic process is initiated with the production of Nod
Factors (NFs) by rhizobia in response to plant root exudates
containing (iso)flavonoids. The perception of NFs by the plant
will then launch the bacterial infection (Oldroyd, 2013). This
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molecular dialog culminates in the formation of a new organ,
the nodules, which are formed in the roots and in rare cases in the
stems. Inside the nodules, the symbiotic nitrogen fixation (SNF)
process takes places. Plants provide a carbon source to the bacteria
to fuel the energy demand of the SNF and also a microaerophilic
environment inside the nodules, which is compatible with nitro-
genase (Nase) complex functioning. The enzyme Nase reduces the
atmospheric dinitrogen to ammonia, which will be incorporated
into organic forms and then exported from the nodules to sustain
plant growth (Oldroyd, 2013).

Thus, SNF also makes legumes ideal pioneers to colonize and
restore the quality and health of N-limited environments, a com-
mon feature of metal-contaminated soils (Zaidi et al., 2012). This
capacity together with legumes deep-reaching root system and
high biomass are ideal traits for efficient phytoremediation of Cd.

LEGUME–RHIZOBIA SYMBIOSIS IS SENSITIVE TO CD
Cadmium is a very toxic element even at low concentrations, being
ranked number 7 by the Agency for Toxic Substances and Disease
Registry (ATSDR, 2013). The exposure to Cd can affect consider-
ably the symbiosis establishment, nodule formation and SNF. Cd
inhibitory effects on nodulation and SNF depend on the Cd con-
centration, its bioavailability in the plant growth conditions (agar
plates, hydroponics, soil, etc.), the length of the exposure (grad-
ual exposure to low concentrations or a severe shock), and the

specific sensibility of species. Main Cd effects on legume nodules
are summarized in Table 1.

The harmful outcome of Cd on nitrogen fixation is in part due
to a direct effect of Cd in the survival of free-living rhizobia in
the soil (Smith, 1997; Giller et al., 1998), which results even in
their gradual extinction (Broos et al., 2005). For instance, effective
Rhizobium leguminosarum bv. trifolii population did not survive
after long-term incubation of soils containing 7.1 mg Cd kg−1

(Chaudri et al., 1992) and soils amended with metal-enriched liq-
uid sludge and metal salts began to show impacts on rhizobia over
time (11 year time-lapse; Chaudri et al., 2008).

Besides the potential deleterious effects of Cd on the growth
and survival of rhizobia, nodulation, and the morphology of the
nodules are also considerably affected. For instance, the addition
of 16 and 20 mg Cd kg−1 soil caused great inhibition of root
growth and nodulation in soybean (Glycine max; Chen et al., 2003;
Sheirdil et al., 2012). Manier et al. (2009) conducted a specialized
“rhizotron” experiment exposing white clover (Trifolium repens)
to fourteen topsoils from a strongly metal-contaminated (Cd, Zn,
and Pb) area and observed a significant decrease in nodulation
index (i.e., the number of nodules per gram of the total fresh
biomass) at about 2.64 mg Cd kg−1 in these soils. The structure
of the nodule was also negatively influenced by Cd exposure in
white lupin (Lupinus albus), resulting in an occluded intracellular
spaces of nodule cortex, alterations in symbiosomes, enrichment

Table 1 | Summary of the main deleterious cadmium effects reported in legume nodules.

Cadmium effects* Legume

Nodule formation and functioning

Nodule number/weight Arachis hypogaea (Bianucci et al., 2013); Cajanus cajan (Garg and Aggarwal, 2011); Glycine max (Chen

et al., 2003); Lupinus albus (Carpena et al., 2003); Medicago sativa (Neumann et al., 1998); Pisum sativum

(Hernández et al., 1995); Vigna radiata (Muneer et al., 2012)

Nodule ultrastructure alteration A. hypogaea (Bianucci et al., 2013); G. max (Chen et al., 2003); L. albus (Carpena et al., 2003); M. sativa

(Shvaleva et al., 2010)

Symbiotic nitrogen fixation (SNF) inhibition C. cajan (Garg and Aggarwal, 2011); G. max (Balestrasse et al., 2004); L. albus (Sánchez-Pardo et al.,

2013); M. sativa (Shvaleva et al., 2010); Medicago truncatula (Marino et al., 2013); P. sativum (Hernández

et al., 1995)

Oxygen control

Reactive oxygen species (ROS)

over-production

A. hypogaea (Bianucci et al., 2013); C. cajan (Garg and Bhandari, 2012)

Oxidative damage A. hypogaea (Bianucci et al., 2013); C. cajan (Garg and Aggarwal, 2011); G. max (Balestrasse et al., 2004);

L. albus (Sánchez-Pardo et al., 2013); Phaseolus vulgaris (Loscos et al., 2008)

Antioxidant system deregulation C. cajan (Garg and Aggarwal, 2011); G. max (Balestrasse et al., 2004); L. albus (Carpena et al., 2003); M.

sativa (Shvaleva et al., 2010); M. truncatula (Marino et al., 2013); P. vulgaris (Loscos et al., 2008); V. radiata

(Muneer et al., 2012)

Leghemoglobin (Lb) degradation C. cajan (Garg and Aggarwal, 2011); G. max (Balestrasse et al., 2004); L. albus (Carpena et al., 2003); M.

truncatula (Marino et al., 2013); P. vulgaris (Loscos et al., 2008); V. radiata (Muneer et al., 2012)

Primary metabolism

Nitrogen assimilation G. max (Balestrasse et al., 2006); L. albus (Sánchez-Pardo et al., 2013)

Carbon metabolism/balance alteration L. albus (Sánchez-Pardo et al., 2013)

*These effects are dependent on Cd concentration, exposure time, plant species, and growth conditions.
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in Cd of cell walls and, finally, reduction of effective N2-fixing area
(Carpena et al., 2003).

One of the most known effects related to Cd toxicity in legumes
nodules is the overproduction of reactive oxygen species (ROS).
In general, the mechanism underlying ROS generation upon Cd
exposure remains to be elucidated. Although Cd itself is not redox
active since it is not able to trigger the Fenton-type reactions (Salin,
1988), Cd-related ROS production can be indirectly linked to
impairment of the antioxidant machinery (Sandalio et al., 2001),
to disruption of the electron transport chain, and somehow to the
activation of NADPH oxidases in membranes (Romero-Puertas
et al., 2004; Cuypers et al., 2010).

Symbiotic nitrogen fixation inhibition related to ROS over-
production in legume nodules has been shown to be related
to three different motives; (1) a direct inactivation of Nase,
which is extremely sensitive to oxygen and to oxidation by ROS
(Naya et al., 2007); (2) leghemoglobin (Lb) degradation, a pro-
tein in charge of binding free O2 in the infected cells cytosol
to supply to the bacteroids for their respiration (Mathieu et al.,
1998; Marino et al., 2006); and (3) sucrose synthase down-
regulation, a key enzyme in nodule carbon metabolism that
hydrolyses the sucrose coming from the photosynthetic process
to load the bacteroids with carbon skeletons for energy obtaining
(Marino et al., 2009).

When legumes have been exposed to high Cd concentrations or
long exposure, the high mobility of Cd brought its translocation to
shoots and provoked photosynthesis impairment, leaves chlorosis,
and oxidative damage in nodules. So, it seems that the nitrogen
fixation inhibition related to a severe Cd exposure observed in dif-
ferent legumes like soybean (Balestrasse et al., 2006), white lupin
(Carpena et al., 2003), or mung bean (Vigna radiata; Muneer
et al., 2012) would be associated to a general plant breakdown
rather than to a specific effect of Cd in nodules affecting SNF.
However, in a recent work with nodulated Medicago truncatula
plants grown in split-root system, the differential application of
Cd to one part of the root led to a specific activation of nod-
ule antioxidant machinery and a concomitant inhibition of SNF
(Marino et al., 2013). In that work, SNF inhibition was related to
Lb and Nase down-regulation, whilst sucrose synthase did not vary
compared to controls (Marino et al., 2013). This is in agreement
with other works showing that Cd application provoked a rapid
decrease in Lb content, for instance in soybean (Balestrasse et al.,
2004) and common bean (Phaseolus vulgaris; Loscos et al., 2008).
Interestingly, the heterologous overexpression of a flavodoxin from
the filamentous cyanobacterium Anabaena variabilis in Sinorhi-
zobium meliloti partially prevented Cd toxicity effects on Nase
activity in alfalfa (Medicago sativa; Shvaleva et al., 2010). Flavo-
doxins are prokaryotic electron carrier proteins and have been
suggested to play a positive role in ROS detoxification (Redondo
et al., 2009). In general, among the different regulation pathways
that control SNF under abiotic stresses, initial Cd effects on Med-
icago sp. nodules nitrogen fixing capacity seem to be related to
Nase down-regulation. This inhibition could be a consequence
of the effect reported on Lb, resulting in intracellular free-O2

increase that could damage Nase. In contrast, although in other
legume species the effect of ROS-producing abiotic stresses has
been related to carbon limitation, this does not seem to be the

principal inductor of SNF inhibition in Medicago sp. (Larrainzar
et al., 2014).

Since legumes are sensitive to Cd, selecting legume species or
genotypes with increased tolerance to Cd is a must to promote
their use in remediation of Cd-contaminated soils (Ahmad et al.,
2012a). In this perspective, a number of legumes, especially
Anthyllis, Cytisus, Lotus, Lupinus, Genista, Glycine, Ononis,
Ornithopus, Pisum, several Trifolium species, Vicia, etc (Pajuelo
et al., 2007), have shown encouraging results and they have
been proposed as promising tools for reclamation of metal-
contaminated areas. As occurs with other plant species, the success
of legume-based phytoremediation depends mainly on three fac-
tors; (1) the metal disponibility for the plant; (2) the capacity of
the legumes to cope with metal toxicity; and (3) the ability of
legumes for immobilizing Cd in roots (ideal for the phytostabi-
lization purposes) and its uptake, translocation and accumulation
in shoots (key features for phytoextraction; Sessitsch et al., 2013).
Considering these bottlenecks, in recent years, researchers have
taken advantage of rhizosphere inhabitants/rhizobacteria asso-
ciated with legumes to maximize their capacity/effectiveness to
phytoremediate Cd-polluted soils (Figure 1A). In this context,
PGPRs deserve special attention because of their wide variety of
benefits that often enhance plant performance (Mehboob et al.,
2013; Figure 1).

THE “HELPER” ROLE OF PGPRs TO LEGUME–RHIZOBIA
SYMBIOSIS IN THE LIGHT OF PHYTOREMEDIATION
Broadly, PGPRs may live inside the plant or in the rhizo-
sphere. PGPRs include free-living N2-fixing bacteria that prompt
plant growth viz., Azospirillum, Azotobacter, Acetobacter Bacillus,
Burkholderia, Azoarcus, and several species of the family Enterobac-
teriaceae (Hayat et al., 2010). Plant fitness stimulation by PGPRs is
achieved by a set of traits which include: synthesis and providing
of growth precursors, enhancement of nutrient acquisition, and
their beneficial role as biocontrol agents against phytopathogens
(reviewed in Lichtfouse, 2009 and Mehboob et al., 2013). More
interestingly, PGPRs can interact synergistically, or function as
“helper” bacteria to improve the performance of SNF (Figure 1B).
Basically, PGPRs enhance SNF through promoting root develop-
ment in general and root hair formation in particular, resulting
in more potential colonization sites for rhizobia. In this regard,
numerous studies stand out the mechanisms of action of PGPRs
(Ahemad and Kibret, 2014). Also, SNF improvement has been
associated to a direct effect of PGPRs on nodule metabolism,
although how this is achieved is not still known.

Related to root development, PGPRs stimulate SNF through
four interrelated traits: (1) the systematic induction of sec-
ondary metabolites such as flavonoids in root exudates and
B-group vitamins and phytohormones like auxins, citokinins,
and gibberellins; (2) the control of low levels of ethylene by the
1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase. This
enzyme catalyzes the conversion of ACC, the immediate precursor
of ethylene synthesis in plants, to ammonia and α-ketobutyrate;
(3) the solubilisation and uptake of soil nutrients (particularly, N,
P, and K); and (4) the production and secretion of sideropheres
(i.e., low-molecular mass iron chelators that solubilize iron from
minerals or organic compounds).
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FIGURE 1 | Summary of the main processes that (A) influence metal bio/phytoremediation efficiency during PGPRs-plant interaction and (B) are

benefited from the interaction between PGPRs and N2-fixing legumes.

The combined inoculation of Rhizobium tropici CIAT899 and
Rhizobium etli ISP42 together with Azospirillum brasilense on
common bean, promoted seedlings root branching, and allowed
a longer and more persistent exudation of nod-gene-inducing
flavonoids that, ultimately, had positive effect on nodule organo-
genesis (Dardanelli et al., 2008). Moreover, indole acetic acid

(IAA) production and ACC-deaminase activity of Azospirillum
played an important role in common bean nodulation response,
particularly under low P conditions in field trial (Remans et al.,
2008). In this sense, Cassán et al. (2009) also observed that
IAA, gibberellic acid (G3), and zeatin (Z) synthesis was pro-
moted by the cooperative interaction between A. brasilense and
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Bradyrhizobium japonicum E109 in soybean. The authors sug-
gested that the over-production of these molecules was behind
the enhancement of legumes rhizobial infection, nodule forma-
tion, and SNF. Previous work using Bacillus sp. also underlined
the ability of these bacteria to enhance IAA, G3, and Z con-
tent together with nodule Lb concentration, Nase activity, and
N2-fixation efficiency in common bean (Figueiredo et al., 2008).
Additionally, in a field experiment also with common bean,
N2-fixing Bacillus subtilis (OSU-142) and P-solubilizing Bacil-
lus megaterium coinoculation with R. leguminosarum bv. phaseoli
increased N and P solubility and, as a result, plants experienced
an increase in nodulation and an improvement in growth and
yield parameters (Elkoca et al., 2010). Furthermore, some Bacil-
lus sp. prompted nodulation and SNF of pea (Pisum sativum) by
phosphate solubilisation (Mishra et al., 2009a) and IAA produc-
tion (Mishra et al., 2009b) and enhanced nodulation of pigeon pea

(Cajanus cajan) by the production and secretion of sideropheres
(Rajendran et al., 2008).

In addition to the above mentioned studies, it has been
found that pseudomonads in consortium with Bradyrhizobium
japonicum and R. phaseoli caused a significant increase of
ACC-deaminase activity resulting in decreased levels of ethylene,
which in turn was positively correlated with root elongation and
enhanced nodulation in mung bean (Shaharoona et al., 2006;
Ahmad et al., 2012b) and lentil plants (Lens culinaris; Zahir et al.,
2011; Iqbal et al., 2012). Mishra et al. (2011) also demonstrated
that the coinoculation of Pseudomonas sp. and R. leguminosarum
increased Lb content (46%) and the total iron (116%) of L.
culinaris compared to the inoculation with R. leguminosarum
alone, presumably due to microbial siderophore utilization. More-
over, the authors showed an increase in total N (52%) and P
(89%) uptake and suggested that it was the result of root growth

Table 2 | N2-fixing legumes and PGPRs assisted phytoremediation of Cd-contaminated soils.

Legume PGPR Benefits (under Cd threat) Potential use Reference

Phaseolus vulgaris Siderophore-producing bacterial strain

KNP9 (probably a strain of

Pseudomonas putida)

↑ Siderophore production

↑ Root and shoot growth (height and weight)

↑ Chlorophyll content

PS Tripathi et al. (2005)*

Pisum sativum Pseudomonas brassicacearum strain

Am3

↑ Cd accumulation in plants

↓ Shoot and seed biomass and P

accumulation

PX Engqvist et al. (2006)

Pisum sativum P. brassicacearum Am3, Pseudomonas

marginalis Dp1,

Rhodococcus sp. Fp2

↑ Root and shoot biomass

↑ ACC-deaminase activity protecting pea

plants from growth inhibition

↑ Mineral uptake (N, K, Ca, Fe)

- Safronova et al. (2006)

Vigna mungo Pseudomonas aeruginosa strains

(MKRh1, MKRh3 and MKRh4)

(rhizosphere/native)

↑ Height, fresh and dry weight of roots and

shoots

↑ Extensive rooting

↓ Cd accumulation

↑ ACC-deaminase activity, IAA production,

siderophore secretion and phosphate

solubilization

PS Ganesan (2008)

Lupinus luteus Heavy metal resistant PGPRs

(rhizosphere/native)

↑ Biomass production and N content

↓ Metals accumulation, especially in roots

↓ Metals translocated to the shoots

PS Dary et al. (2010)*

Glycine max Acidophilic P. putida 62BN and

alkalophilic Pseudomonas monteilli

97AN strains

↓ Cd concentration in plant and soil in their

respective soil types

PS Rani et al. (2009)

Glycine max Cd-tolerant bacteria isolates from

nodules of Glycine max grown in heavy

metal-contaminated soil

(rhizosphere/native)

↑ Plant growth via IAA and siderophore

production

↑ ACC-deaminase activity and solubilisation

of inorganic phosphate

↓ Cd accumulation by increasing Fe (and

other mineral nutrients) availability

(compared to Lolium multiflorum)

PS Guo and Chi (2014)

- Not mentioned. ↑ Increase; ↓ Decrease; PS, phytostabilization; PX, Phytoextraction. *Cd and other metal(s).
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stimulation due to IAA production. The importance of IAA
production in nodule formation enhancement by Pseudomonas
strains has also been evidenced in the symbiosis of Rhizobium
galegae-Galega orientalis (Egamberdieva et al., 2010), Bradyrhizo-
bium-mung bean (Malik and Sindhu, 2011) and Sinorhizobium
medicae-M. truncatula (Fox et al., 2011). After in vitro, glasshouse,
and field experiments, Verma et al. (2012) observed that the dual
inoculation of the helper PGPR Pseudomonas aeruginosa with
Mesorhizobium sp. favored the acquisition of P and Fe in chickpea
(Cicer arietinum) as a consequence of higher production of organic
acids and siderophores, respectively. Furthermore, P. aeruginosa
also increased significantly IAA production in chickpea, which
ultimately stimulated root growth and the performance of nodula-
tion and N2-fixation compared to inoculation with Mesorhizobium
sp. alone.

However, little field research has been done to confirm the satis-
factory results obtained under controlled experimental conditions
(Table 2) surely due to the survival disadvantage of inoculated
PGPRs in field trials as compared to well-adapted native strains
(Rajkumar et al., 2012). Recent advances in molecular biology
are contributing to overcome these experimental inconsistencies.
Considerable attention has been directed toward genetic engineer-
ing of PGPRs and rhizobia to construct significantly improved
strains, which express genes that confer adaptive characteristics
to site-specific conditions as well as traits associated with plant
growth promotion and metal tolerance (Zhuang et al., 2007).
Indeed, recombinant PGPRs and rhizobia are advantageous for
the expression of foreing genes coming from higher organisms
like those encoding metallothioneins including phytochelatins.
For instance, a recombinant Mesorrizobium huakuii carrying a
tetrameric metallothionein (MTL4) and a phytochelatin synthase
from Arabidopsis thaliana (AtPCS) favored Cd immobilization in
nodules instead of stimulating its translocation in Astragalus sini-
cus (Ike et al., 2007). This is likely to ensure the establishment and
survival of introduced PGPRs inoculants at the same time that
increase the efficiency of phytoremediation. Nevertheless, reg-
ulatory issues and public acceptance of genetically engineered
organisms may delay their commercialization and application
(Kumar, 2012).

Overall, together with the inherent bacterial characteristic to
biosorb metals, PGPRs are benefitial for the symbiotic interaction
thanks to the regulation of plant hormone balance, notably by
IAA production and through ethylene level control. In addition,
Lb control of nodule low O2 levels is essential to protect Nase upon
Cd exposure and PGPRs have been shown to somehow increase
Lb content which could be a key aspect to sustain SNF under
Cd stress. Besides, PGPRs-legume interaction also supports the
establishment of seedlings and improves the vitality of legumes
during metal phytoestabilization and phytoextraction strategies
(Shilev et al., 2012). In Table 2 we have summarized some of the
recent studies conducted with the aim of advancing in PGPRs-
legumes interaction in the interest of Cd-phytoremediation.

CONCLUSION AND PERSPECTIVES
Extensive research on the valuable cooperation of PGPRs and
N2-fixing legumes for phytoremediation purposes has been per-
formed and it is ongoing due to its enormous potential to renew

Cd-contaminated soils. However, there are several knowledge bar-
riers which need to be addressed. Prominent among them are
optimization of SNF under stressful conditions and a greater
understanding of the ecology and dynamics of PGPRs under field
conditions. In this respect, before inoculating soils with PGPRs,
it must be considered that some strains might be pathogenic to
some plant species and even allergenic for humans. Moreover, if
the strains inoculated have been genetically modified the potential
of horizontal gene transfer should be born in mind. It is also espe-
cially important the use and safe disposal of legume edible parts
after phytoremediation process (i.e., roots, shoots, and seeds),
since they could constitute an important route of Cd introduction
in the food chain. For this reason, legumes used as phytoremedia-
tion tools should not be considered as products for animal feed or
human consumption.

Finally, to boost the use of PGPRs–rhizobia–legume partner-
ship the use of metagenomic approaches are essential to identify
new bacterial strains with PGPR traits. Moreover, research should
be focused in understanding the molecular mechanisms under-
lying the benefits of PGPRs on nitrogen fixation. In this sense,
genetic engineering, a powerful tool that has still been poorly
exploited in this area, should lead to the generation of strains bet-
ter adapted to field conditions and with enhanced abilities to help
legume–rhizobia symbiosis for effective Cd phytoremediation.
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