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Enriching iron (Fe) and zinc (Zn) content in rice grains, while minimizing cadmium (Cd)
levels, is important for human health and nutrition. Natural genetic variation in rice grain Zn
enables Zn-biofortification through conventional breeding, but limited natural Fe variation
has led to a need for genetic modification approaches, including over-expressing genes
responsible for Fe storage, chelators, and transporters. Generally, Cd uptake and allocation
is associated with divalent metal cations (including Fe and Zn) transporters, but the details
of this process are still unknown in rice. In addition to genetic variation, metal uptake is
sometimes limited by its bioavailability in the soil.The availability of Fe, Zn, and Cd for plant
uptake varies widely depending on soil redox potential. The typical practice of flooding rice
increases Fe while decreasing Zn and Cd availability. On the other hand, moderate soil
drying improves Zn uptake but also increases Cd and decreases Fe uptake. Use of Zn- or
Fe-containing fertilizers complements breeding efforts by providing sufficient metals for
plant uptake. In addition, the timing of nitrogen fertilization has also been shown to affect
metal accumulation in grains.The purpose of this mini-review is to identify knowledge gaps
and prioritize strategies for improving the nutritional value and safety of rice.

Keywords: rice, Cd contamination, genetic biofortification, risk mitigation, Zn enriched rice, Fe enriched rice,

agronomic biofortification

INTRODUCTION
Iron (Fe) and zinc (Zn) deficiencies affect more than two billion
people globally (McLean et al., 2009; Wessells and Brown, 2012).
Fe-deficiency anemia can cause impaired cognitive and physical
development in children and reduction of daily productivity in
adults (Black et al., 2013; Stevens et al., 2013). Recently, low mater-
nal Fe intake has been linked to autism spectrum disorder in their
offspring (Schmidt et al., 2014). Adequate Zn nutrition is also
important for child growth, immune function, and neurobehav-
ioral development (Wessells and Brown, 2012). Biofortification,
defined as increasing the micronutrient content in staple food
(Bouis et al., 2011), has the potential to combat Fe and Zn deficien-
cies, but it is important to ensure low presence of undesirable toxic
metals. Because cadmium (Cd) tends to accumulate in kidneys
throughout a person’s life, there is concern that regular consump-
tion of rice with even moderate Cd concentration may result in
health problems, especially for people who consume rice as a sta-
ple food (Meharg et al., 2013). Here we review the genetics and
nutrient management approaches to increasing Fe and Zn and
minimizing possible Cd contamination.

CONVENTIONAL, MARKER ASSISTED AND TRANSGENIC
BREEDING APPROACHES FOR BIOFORTIFICATION TO
ENHANCE Fe AND Zn CONCENTRATIONS IN RICE
Nutritional studies suggested that 24–28 mg kg−1 Zn and 13 mg
kg−1 Fe concentration in polished grain is essential to reach the
30% of human estimated average requirement (Bouis et al., 2011).
Based on this, rice germplasm diversity has been exploited to breed
Zn-dense varieties conventionally (Graham et al., 1999). Two Zn-
enriched varieties, reaching up to 19 and 24 mg kg−1 Zn in rice

grains, have been released by Bangladesh Rice Research Institute
(BRRI) in collaboration with the International Rice Research
Institute (IRRI) under the HarvestPlus project. Identification of
quantitative trait loci (QTLs) for low to moderate Zn enhance-
ment in the existing rice germplasm were reported (Stangoulis
et al., 2006; Anuradha et al., 2012; Neelamraju et al., 2012). In
addition, genome wide association mapping revealed several loci
associated with Zn levels in grains (Norton et al., 2014). How-
ever, large effect Zn QTLs (≥30% phenotypic variation) have not
been identified yet. Conventional breeding efforts for developing
Fe-enriched polished rice have not progressed effectively due to
limited variation of Fe concentration in polished rice. Evaluation
of more than 20,000 rice accessions from Asia, Latin America,
and the Caribbean for Fe and Zn concentration revealed a maxi-
mum of only 8 mg kg−1 in polished grains (Gregorio et al., 2000;
Graham, 2003; Martínez et al., 2010). Most Fe and Zn are con-
centrated in the aleurone layers of rice bran. There are between 1
and 5 aleurone layers in different rice accessions (del Rosario et al.,
1968); therefore, the high Fe levels in unpolished grains can be
due to thickness of the bran layers. Conventional breeding has so
far been unsuccessful in the development of Fe-enriched polished
rice (Bashir et al., 2013a).

Transgenic approaches to enhance Fe in the starchy
endosperm were first explored more than a decade ago
(Goto et al., 1999). Since then, researchers have attempted
to increase Fe content in rice endosperm by overexpressing
genes involved in Fe uptake from the soil and transloca-
tion from roots, shoot, flag leaf to grains, and by increas-
ing the efficiency of Fe storage proteins (Table 1; Kobayashi
and Nishizawa, 2012; Lee et al., 2012; Bashir et al., 2013a;
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Masuda et al., 2013a). Among these studies, the concomitant
increase in Fe and Zn content in rice grains was obtained by the
overexpression or activation of the NAS (nicotianamine synthase)
genes, either in solo or in combination with other transporters
or Fe storage genes (Table 1). NAS catalyzes the synthesis of
the divalent metal chelator nicotianamine acid (NA) from the
precursor molecule 2’-deoxymugeneic acid (MA). Constitutive
expression of OsNAS2 resulted in increased Fe concentration as
high as 19 mg kg−1and Zn concentration to as high as 76 mg
kg−1 within the endosperm of polished rice grains (Johnson et al.,
2011). On the other hand, the baseline of O. japonica cv. Nip-
ponbare in this study is 4 mg kg−1 Fe, which is higher than other
studies employing japonica accessions (Table 1), possibly due to
a favorable micro-environment. Combinations of genes involved
in chelating, transporting or storing Fe significantly enhanced Fe
concentration to reach polished grain concentration as high as 8–
9 mg kg−1 (Masuda et al., 2012, 2013b; Aung et al., 2013). These
studies also demonstrated the stability of the trait over multiple
plant generations; nevertheless, reaching the recommended tar-
get level still remains a challenge. Furthermore, to accelerate the
farmers’ adoption and consumers’ acceptance, Oliva et al. (2014)
generated phytoferritin over-expressor events in popular indica
variety without selectable marker genes; however, the level of Fe
was not sufficient to reach the target.

The average of 2 mg kg−1 Fe in well-polished rice g rains is the
general baseline in popular varieties (Bouis et al., 2011). However,
there was a marked variation in the baseline of Fe concentration
between genotypes used in the studies described in Table 1. Such
variation could be due to differences in the milling degree of rice
grains, the respective genotypes as such, or the growth conditions,
and fertilizer applications. In addition, Fe measurement is also
highly prone to contamination during seed processing, milling,
and analytical process.

Most Fe biofortification studies were conducted under favor-
able glasshouse conditions, with only limited studies performed
under field conditions (Masuda et al., 2008, 2012). In the first
study, moderate increases of 1.40-fold for Fe and 1.35-fold for Zn
concentrations of transgenic polished rice grains were observed
compared to the control (Masuda et al., 2008). In the second
study, a significant decrease (up to 50%) was observed in the
Fe concentration in polished grains in the subsequent generation
of T3 homozygous plants grown under paddy field conditions
(4 mg kg−1) compared to the earlier generation grown under
the glasshouse condition (Masuda et al., 2012) that reached up
to 7–8 mg kg−1 (six times the concentration of the wild type
control).

Among genetic improvement options for increasing rice grain
Fe and Zn, we recommend the prioritization of the sink and source
strategy (Wirth et al., 2009; Masuda et al., 2013a). However, despite
the fast progress, reaching the nutritionist recommended target
level of 13 mg kg−1 for Fe under field conditions (Bouis et al.,
2011) still remains a challenge (Bashir et al., 2013a). Therefore, to
enhance Fe and Zn content in polished rice grains, the expression
of most optimum orthologoues of chelator(s), transporter genes
and iron storage genes still needs to be evaluated. In addition,
for product development, data on the transgene copy number is
required.

GENETICS OF CADMIUM UPTAKE
In general, indica varieties accumulated higher Cd concentrations
compared to japonica in Cd-polluted soils or in hydroponic solu-
tion with high Cd (Arao and Ishikawa, 2006). The physiological
mechanisms for Cd uptake and its translocation to shoots in
rice have been associated with several chemically related metal
ions (Kim et al., 2002; Arao and Ishikawa, 2006; Uraguchi and
Fujiwara, 2012). Absorption of Cd in hydroponically grown
Fe-deficient plants was thought to be mediated through the Fe-
uptake system, particularly through the OsIRT1 and OsIRT2
genes (Nakanishi et al., 2006). OsNRAMP1 (Natural Resistance-
Associated Macrophage Protein 1) is another transporter protein
shown to be related to the absorption of Cd in rice roots (Taka-
hashi et al., 2011). Functional analysis of the gene confirmed its
expression in roots, whilst the protein was localized in the plasma
membrane, indicating its role in Cd absorbance and transport
(Takahashi et al., 2011).

Recently, it has been demonstrated that the OsNRAMP5 gene
in rice acts as a major transporter of Cd and Mn in the roots
(Ishikawa et al., 2012; Sasaki et al., 2012). Expression analysis
showed that its presence was restricted to roots, as well as in tis-
sues around the xylem (Ishimaru et al., 2012; Sasaki et al., 2012).
In addition, extensive analysis of silencing, insertion knock-out
plants, and ion-beam irradiation mutants confirmed the role
of OsNRAMP5 in reducing the Cd accumulation both in straw
and in grains to negligible levels, even when grown in Cd-
contaminated paddy fields (Ishikawa et al., 2012; Ishimaru et al.,
2012; Sasaki et al., 2012). Using a different approach, hydro-
ponic and soil culture experiments suggested root-to-shoot Cd
translocation via the xylem as the major physiological process
for determining grain Cd accumulation in rice (Uraguchi et al.,
2009). Analysis of mapping populations for identification of QTLs
related to Cd accumulation in rice grains indicated the pres-
ence of a genetic locus in chromosome 7 (qGCd7 ; Ishikawa
et al., 2005, 2010). This QTL was shown to be specific to Cd
since it was not related to the absorption/translocation of other
metal cations or to any agronomic characteristics. Fine map-
ping of the qGCd7 resulted in the identification of OsHMA3,
a gene responsible for limiting the root-to-shoot transloca-
tion of Cd by selectively sequestering it within the vacuoles
(Ueno et al., 2010; Miyadate et al., 2011). OsHMA2, a close
homolog of OsHMA3, has also been shown to be involved in
the root-to-shoot translocation of Cd in rice plants, through
the xylem network (Satoh-Nagasawa et al., 2012; Takahashi et al.,
2012).

Furthermore, Uraguchi et al. (2011) proposed a different route
for reducing Cd within the rice grains. The identification of
the low-affinity cation transporter (OsLCT1) reduced the Cd
accumulation within rice grains by significantly decreasing its
phloem-mediated transport. Suppression of OsLCT1 did not have
any negative effect on the content of other metal ions in the
grains, indicating its specificity for Cd (Uraguchi et al., 2011,2014).
Among genetic strategies for decreasing Cd concentration in rice,
we recommend prioritization of strategies reducing the seques-
tration of Cd in roots, such as down-regulation of OsNRAMP5.
This has been achieved recently by RNAi transgenic approach and
mutation technologies (Ishikawa et al., 2012; Ishimaru et al., 2012).
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HAS CADMIUM BEEN ACCUMULATED IN ENRICHED Fe/Zn
RICE?
Conventional breeding lines with enriched grain Zn have not
been reported to contain elevated Cd. The fact that Fe/Zn-
biofortification by transgenic approaches exploited different trans-
porter genes (Table 1) raises the possibility of Cd accumulation
because Zn-associated transporters often co-transport Zn-mimic
Cd (Olsen and Palmgren, 2014). The upper limit of Cd set by
FAO/WHO in rice grain is 0.4 mg kg−1 (Codex Alimentarius,
2010). The transgenic approaches that tended to simultaneously
increase grain Zn as well as Fe were the ones involving the
NAS family genes (Table 1). However, assessment of seedlings
of OsNAS3 activation tag lines and its wild counterpart in plant
growth medium with elevated Cd showed no difference in Cd level
amongst different germplasm and tissues (Lee and An, 2009; Lee
et al., 2009b, 2011), suggesting the specificity of NA to Zn over
Cd (Olsen and Palmgren, 2014). In addition, a 20% reduction in
the Cd accumulation was identified in T2 polished grains com-
pared to the non-transgenic counterparts expressing transporters
and phytoferritin genes (Aung et al., 2013). Another transporter
protein, OsIRT1, has been suggested to be involved in the Fe
and Cd uptake pathway earlier (Nakanishi et al., 2006). How-
ever, the translocation of excess Cd from the roots to shoots
was minimal. Recent studies in osvit1 and osvit2 T-DNA knock
out mutants reported some increase in Cd level in rice grains
(Zhang et al., 2012). To date only one report on transgenic biofor-
tified rice shows a slight increase in the Cd levels (Zhang et al.,
2012), whilst there have been no reports yet on the grain Cd
level on the Zn-enriched conventional breeding lines. In all the
reported approaches, the acquired Cd concentrations were signif-
icantly lower than the threshold toxic levels for the polished rice
grains.

MANAGEMENT AND ENVIRONMENT EFFECTS ON Fe, Zn, and
Cd UPTAKE IN RICE
The performance of biofortified genotypes is often restricted due
to low available pools of Zn or Fe in soil. Under these conditions,
enriching Fe or Zn concentration in grains through either fertil-
ization or water management, called agronomic biofortification,
is a short term strategy which would complement the breeding
programs. Some of these management and environment effects
have also been shown to change Cd uptake patterns.

WATER MANAGEMENT
Irrigation management in rice strongly influences soil redox
potential, which affects the availability of Fe, Zn, and Cd. Rice
was domesticated under flooded conditions, and it is still grown
with continuous soil submergence in many places. However,
for a variety of reasons, rice is now produced across the entire
range of irrigation management options, including fields which
are always aerobic, always anaerobic, and many variations along
the aerobic-anaerobic spectrum (Bouman et al., 2007). Because
socioeconomic drivers are so important in designing irrigation
systems, it seems unlikely that farmers would choose irrigation
options solely for the purpose of changing the soil availability
of Fe, Zn, or Cd. Therefore, we need to understand the effect
that water management has on the benefits and risks of enriching

grains with metals, even though the opportunities for managing
the risks this way are limited.

As a soil changes from aerobic to anaerobic conditions after
flooding, Fe- oxides are dissolved when the Fe3+ is reduced to
Fe2+ (Figure 1), which weakens the oxide stability and increases
its water-solubility (Kirk, 2004). This releases much more Fe into
the soil solution, so flooded soil nearly always has sufficient Fe for
plant uptake, and rice has therefore become somewhat adapted to
Fe toxicity. Most rice plants have mechanisms to prevent excessive
uptake of Fe. Anti-oxidative mechanisms, including induction of
ferritin gene, have been reported as one of the plant mechanisms
against excessive plant endogenous Fe2+ (Briat et al., 2010). In
contrast, in aerobic soils, Fe deficiency can occur (Zuo and Zhang,
2011), while Zn and Cd both tend to be more available in this soil.
Both elements are predominantly present in the+2 oxidation state,
regardless of soil redox potential, so the effect of flooding is indirect
(rather than direct as with Fe). The availability of Zn decreases with
flooding due to precipitation (Figure 1) as insoluble zinc sulphide
(after sulfate is reduced to sulphide, Bostick et al., 2001) or as
insoluble carbonate mixtures (after decomposing organic matter
causes an increase in the partial pressure of carbon dioxide in
soil solution, Kirk, 2004). Cadmium behaves similarly to Zn (Du
Laing et al., 2009). In summary, changing a soil from aerobic to
anaerobic conditions by flooding will increase Fe availability and
suppress Cd, but will also decrease Zn availability (Figure 1). The
possibility of managing irrigation to optimize the plant uptake of
Fe, Zn, and Cd simultaneously is negligible.

FERTILIZATION OPTIONS
Most evidence has shown that applying Fe or Zn fertilizers to
the soil is ineffective at increasing grain Fe or Zn in rice. Under
aerobic water management, the soil-applied Fe (usually in the
form of Fe2+, either chelated or as a sulfate salt) is rapidly con-
verted to unavailable Fe3+, and hence, foliar application is a better
option to overcome Fe deficiency and to increase grain Fe and its
bioavailability in rice (Wei et al., 2012a). Under anaerobic water
management, Fe2+ is readily available to rice plants (Figure 1), so
no fertilization is needed. Application of Zn at 5–25 kg Zn ha−1

as zinc sulfate incorporated to the soil before flooding or after
transplanting is the most common Zn fertilizer recommendation
for rice (Dobermann and Fairhurst, 2000). However, soil-applied
zinc sulfate has often been unsuccessful in improving grain Zn con-
centration and yield under flooded paddy due to redox induced
fixation of applied Zn (Srivastava et al., 1999; Johnson-Beebout
et al., 2009). In rice, positive effects of soil Zn fertilization on
grain Zn have been noticed primarily with aerobic water manage-
ment (Wang et al., 2014). On the other hand, foliar Zn application
has been more effective in improving grain Zn concentration in
flooded rice compared to soil Zn fertilization (Wissuwa et al., 2008;
Wirth et al., 2009). Zn and Fe fertilization strategies and its effects
on the uptake and accumulation of Zn, Fe, and Cd in rice are
illustrated in Figure 1.

Although foliar application of Fe or Zn is more promising than
soil application for enhancing grain Fe or Zn, the efficiency of
foliar applied Fe or Zn varies depending on the time of fertilization,
source of Zn fertilization and ability of genotypes to remobilize
Zn or Fe from source tissues to grain (Karak et al., 2006; Cakmak,
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FIGURE 1 | Illustration of water and fertilizer managements and their effects on zinc (Zn), iron (Fe), and cadmium (Cd) uptake and accumulation in

rice grain. The arrows (↓) under the compounds indicate precipitation.

2009; Wei et al., 2012b). Late season foliar application of Zn or
Fe at flowering or at early grain filling stage is more effective in
improving grain Zn or Fe, respectively, than early season appli-
cation (Phattarakul et al., 2012; Mabesa et al., 2013). Though the
levels of Zn and Fe in grains are positively related, fertilization of
one element did not affect the grain concentration of the other
(Cakmak et al., 2010; Wei et al., 2012a,b). However, foliar fertiliza-
tion of combined Fe and Zn fertilizers enhanced both grain-Fe and
-Zn content without any antagonistic effects (Wei et al., 2012a).
Among fertilization strategies for flooded rice, the most likely to
succeed is a combined foliar Zn and Fe spray soon after flowering
or at early grain filling stage, and it is important to study how to
make foliar fertilizers more effective.

Optimized management of N fertilizer could improve grain
Fe and Zn, as indicated by a strong correlation of seed Fe
and Zn with N in several crop species under sufficient Zn
supply (Zhang et al., 2008; Cakmak et al., 2010; Kutman et al.,
2010) Better N nutrition promotes protein synthesis, which is
a major sink for Fe and Zn, and enhances the expression Zn
and Fe transporter proteins, such as ZIP family transporters
(Cakmak et al., 2010). Better N nutrition may also enhance the
production of other nitrogenous compounds such as NA and
deoxymugineic acid (DMA), and YSL proteins involved in Zn
transport within the plant (Haydon and Cobbett, 2007; Curie
et al., 2009). Under high N supply, vegetative growth is enhanced
and plants remain green for a longer time, resulting in longer
grain filling periods, and delayed senescence (Kutman et al.,
2010). However, under low Zn conditions, increased biomass
production induced by optimal N fertilization can decrease grain

Zn concentration due to biological dilution (Zhang et al., 2008;
Kutman et al., 2012). In summary, it is always important to opti-
mize N fertilization in rice production, but there is not very
much scope for adjusting N management for the purpose of
biofortification.

Phosphate fertilizers are major sources of Cd input in agri-
cultural land and in cereal crops (Eriksson, 1990; He and Singh,
1993; Gao et al., 2010). They can contain significant amounts of
Cd due to its presence in the rock phosphate used for production
(Williams and David, 1973). However, once recognized, these rel-
atively high-Cd phosphate rock sources have been avoided in the
production of fertilizer, so there is very little evidence of actual
P-fertilizer-related Cd uptake in rice. The effect of Zn fertiliza-
tion on Cd uptake by plants is highly dependent on the soil Cd
and Zn concentrations. Higher biomass accumulation under high
NPK fertilization, results in enhanced Cd uptake but may either
increase or decrease concentration, depending on the balance of
fertilizer effects on crop growth, root distribution, and Cd avail-
ability. This could be a useful strategy for phytoremediation but
not for cereal production. Increase in Cd uptake under higher rate
of fertilization than lower rate of fertilization (Singh, 1990), sug-
gests that efficient management of fertilizers is necessary to keep a
control on Cd accumulation in agricultural crops.

IMPROVING IRON AND ZINC NUTRITION, AND MITIGATING
CADMIUM TOXICITY RISK THROUGH GENETICS AND
MANAGEMENT APPROACHES
Biofortified rice has a potential to reach areas that currently could
not be reached by other interventions since rice consumption is
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high in affected regions. In flooded rice fields, Cd uptake risk is low
(Uraguchi and Fujiwara, 2012), but the trend is for more rice fields
to become aerobic due to erratic rain or scarce water resources.
Therefore, the risk of Cd accumulation will increase with more
aerobic water management, particularly in Cd contaminated areas.
To mitigate this, it is essential to develop a low Cd accumulating
cultivar by down-regulating the expression of endogenous genes
involved in Cd uptake and/or translocation by identifying a genetic
marker and subsequently introgressing the trait into the popular
varieties through marker assisted breeding. The latter approach
has been validated in the field using the dysfuntionalOsNRAMP5
mutant (Ishikawa et al., 2012). It significantly decreases root Cd
uptake and Cd content in the straw and grain, apparently without
decreasing Fe uptake in root, shoot, and straw (Ishimaru et al.,
2012; Sasaki et al., 2012). As we continue to identify new pathways
to biofortification of rice with Fe and Zn, it is critical to exam-
ine the potential for each biofortification mechanism to affect Cd
uptake.
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