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The endosperm is an ephemeral tissue surrounding the embryo that is essential for its
development. Aside from the embryo nourishing function, the endosperm serves as a
battlefield for epigenetic processes that have been hypothesized to reinforce transposable
element silencing in the embryo. Specifically, global DNA demethylation in the central cell
may serve to produce small RNAs that migrate to egg cell and embryo to induce de novo
DNA methylation. The Polycomb Repressive Complex 2 (PRC2) is particularly targeted to
DNA hypomethylated regions, possibly alleviating the negative effects associated with
loss of DNA methylation in the endosperm. The functional requirement of the PRC2
in the endosperm can be bypassed by increasing the maternal genome dosage in the
endosperm, suggesting a main functional role of the endosperm PRC2 in reducing sexual
conflict. We therefore propose that the functional requirement of an endosperm PRC2 was
coupled to the evolution of a sexual endosperm and mechanisms enforcing transposon
silencing in the embryo. The evolutionary consequences of this scenario for genome

expansion will be discussed.
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INTRODUCTION

The endosperm is a nutritive tissue formed in seeds of flow-
ering plants that surrounds the embryo and is essential for its
development. Embryo and endosperm are the products of two
distinct fertilization events and enclosed by the maternally derived
integuments that form the seed coat. While the embryo is derived
from the fertilized egg cell, the endosperm is the descendent of
the fertilized central cell (Li and Berger, 2012). The majority of
angiosperms have an eight-nucleated, seven-celled Polygonum-
type embryo sack that develops from the single surviving haploid
megaspore after three rounds of nuclei divisions, followed by
nuclei migrations and cellularization. The female gametophyte
consists of the egg cell flanked by two synergid cells, a diploid
central cell derived from fusion of two polar nuclei and three
antipodal cells that will degenerate shortly before or after fertil-
ization (Sprunck and Gross-Hardt, 2011). As a consequence of
the central cell being diploid, the endosperm of most species is
triploid. Ancestral to the seven-celled female gametophyte is the
four celled female gametophyte that contains a haploid central cell
that will form a diploid endosperm after fertilization (Friedman
and Williams, 2003; Segal et al., 2003). There are also angiosperms
(e.g., Piperaceae) where all four megaspores survive after meiosis
and contribute to female gametophyte formation, giving rise
to central cells with more than two nuclei that will form a
high-ploidy (>3#n) endosperm after fertilization (Friedman et al.,
2008).

EVOLUTION OF PLOIDY SHIFTS IN THE ENDOSPERM

It has been hypothesized that the transition from a purely mater-
nal embryo nourishing tissue to a biparental endosperm resulted

in two possible conflicts: (i) conflict of male and female par-
ents over the allocation of nutrients to the developing progeny
and (ii) conflict among the developing progeny for resources
from the maternal sporophyte (Haig and Westoby, 1989a,b;
Friedman, 1995). The kin-conflict theory provides a theoretical
framework for both conflicts (Haig, 2013). This theory con-
siders that the resources provided by the maternal sporophyte
to provision the offspring are limited and that the relatedness
of the endosperm to the maternal sporophyte is decisive for
its ability to acquire nutrients for the developing embryo. In
outcrossing species, the sexual endosperm containing maternal
and paternal genomes is less related to the maternal sporophyte
and sibling embryos compared to its own embryo (Charnov,
1979; Friedman et al., 2008) Therefore, paternally contributed
alleles maximizing nutrient allocation to the endosperm will
promote development of the embryo supported by this genetically
related endosperm on the expense of the sibling embryos (Haig
and Westoby, 1989a,b; Haig, 2013). Increasing the number of
maternal genomes contributed to the central cell could have
evolved as a mechanism to control resource provisioning to
the developing progeny and to limit the selfish behavior of the
endosperm. Therefore, transitions from the haploid central cell
to the diploid and higher ploidy central cell can be viewed as
evolutionary transitions to resolve conflict between maternal and
paternal genomes on the provisioning of the progeny (Friedman
et al., 2008).

EPIGENETIC PROCESSES IN THE ENDOSPERM
In Arabidopsis, DNA methylation occurs in CG, CHG, and CHH
(where H = A, T, or C) sequence contexts and is controlled

www.frontiersin.org

March 2015 | Volume 6 | Article 130 | 1


http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Journal/10.3389/fpls.2015.00130/abstract
http://www.frontiersin.org/Journal/10.3389/fpls.2015.00130/abstract
http://community.frontiersin.org/people/u/25793
http://community.frontiersin.org/people/u/209722
mailto:claudia.kohler@slu.se
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Evolution_and_Development/archive

Kéhler and Lafon-Placette

Epigenetic processes in the endosperm

by three families of DNA methyltransferases that have different
sequence preference. The DNA methyltransferase MET1 acts as a
maintenance methyltransferase for symmetric CG residues, while
non-CG methylation is maintained by the CHROMOMETHY-
LASE3 (in CHG context) and the DOMAINS REARRANGED
METHYLASES 1/2 (DRM1/2) and CMT2 (in CHH context).
The small RNA (sRNA) pathway targets DRM1/2-mediated
de novo methylation in all sequence contexts and is required
for the maintenance of CHH methylation (Kim and Zilber-
man, 2014). Genome-wide methylation studies of embryo and
endosperm in Arabidopsis seeds revealed that the endosperm
is globally hypomethylated compared to the embryo (Gehring
et al., 2009; Hsieh et al., 2009), signifying substantial epigenome
differences of the two fertilization products. Hypomethylation
in the endosperm is restricted to the maternally inherited alle-
les, suggesting that the hypomethylated status is established in
the central cell and inherited to the endosperm (Ibarra et al.,
2012). In Arabidopsis, demethylation of the maternal genome
requires the DNA glycosylase DEMETER (DME) that excises
5-methylcytosine preferably at small transposable elements (TEs)
and is expressed in the central cell of the female gametophyte
before fertilization (Hsieh et al., 2009). Maternal demethylation
is nearly fully reversed in dme mutant endosperm (Ibarra et al,,
2012), indicating that DME is likely the only enzyme accounting
for global DNA methylation differences between the maternal
and paternal endosperm genomes in Arabidopsis. The process of
extensive endosperm demethylation is likely conserved between
monocots and dicots, but involves specific differences caused
by divergent evolution of the DME-like family (Zemach et al.,
2010). Importantly, DME function is not restricted to the female
central cell but DME also acts in the vegetative cell in pollen,
the companion cell to the sperm cells. Similar to its role in
the central cell, DME is causing hypomethylation of distinct
regions in the vegetative cell. Almost half of those hypomethy-
lated regions in the vegetative cell overlap with hypomethylated
regions identified in the maternal genomes of the endosperm
that likely descend from the central cell (Ibarra et al., 2012).
While de novo methylation in CHH context is generally depleted
in sperm (Calarco et al., 2012; Ibarra et al., 2012), regions that
become hypomethylated by DME in the vegetative cell have
increased levels of CHH methylation in sperm (Ibarra et al.,
2012), suggesting communication between vegetative cells and
sperm cells. Thus, it seems likely that sSRNAs that are formed
from demethylated regions in the vegetative cell migrate to sperm
cells and reinforce methylation at distinct target sites, a hypothesis
that remains to be experimentally tested. In agreement with this
notion, 21 nt and 24 nt sRNAs corresponding to differentially
methylated regions accumulate in sperm cells (Slotkin et al., 2009;
Calarco et al., 2012) and prominently target regions of imprinted
genes (discussed below) that maintain the paternal allele silenced
after fertilization (Calarco et al., 2012). While traveling of a micro-
RNA from the vegetative cell to sperm cells was proposed (Slotkin
et al., 2009), this study may have suffered from an unspecific
promoter (Grant-Downton et al., 2013), biasing the conclusions.
Nevertheless, expression of a micro-RNA in the central cell can
silence a reporter in the egg cell (Ibarra et al., 2012); revealing that
21 nt sRNAs (that are preferentially formed from microRNAs)

can indeed travel from the companion cells to the neighbor-
ing gametes. While previously only 24 nt sRNAs were known
to establish de novo methylation by the sRNA-dependent DNA
methylation pathway (RADM; Cao and Jacobsen, 2002; Cao et al.,
2003), recent data revealed a role of 21 nt sSRNAs in silencing of
transcriptionally active TEs via the RADM pathway (McCue et al.,
2015).

De novo DNA methylation increases during embryo develop-
ment, suggesting increased activity of the RADM pathway during
embryo development (Jullien et al., 2012). In agreement with this
view, de novo DNA methylation in the embryo depends on the
activity of DRM2 and in part as well on DRM1 (Jullien et al.,
2012). After fertilization, increased production of sSRNAs occurs
in siliques, reaching maximum levels at 6 days after anthesis
(Mosher et al., 2009). Increased sSRNA production correlates with
a steadily increasing de novo methylation in the embryo (Jullien
et al., 2012), giving rise to the hypothesis that sSRNAs migrate
from the endosperm to the developing embryo and enforce TE
silencing in the embryo by de novo DNA methylation. De novo
DNA methyltransferases DRM1 and DRM2 seem not to be active
in the early endosperm (Jullien et al., 2012) but are expressed
around the time of endosperm cellularization (Belmonte et al.,
2013), in agreement with the presence of substantial levels of
CHH methylation levels in the cellularized endosperm (Hsieh
et al., 2009; Ibarra et al., 2012).

GENOMIC IMPRINTING IN THE ENDOSPERM

As a consequence of DNA hypomethylation in the central cell, the
parental genomes are differentially methylated in the endosperm,
which can cause genes to become preferentially expressed from
either the maternally or paternally inherited alleles. Parent-of-
origin dependent gene expression as a consequence of epigenetic
modification of maternal and paternal alleles in the gametes is a
well-known phenomenon termed genomic imprinting (Gehring,
2013). Hypomethylation of TEs can cause either activation or
silencing of the neighboring genes. What determines whether a
gene will become activated or silenced in response to hypomethy-
lation remains to be resolved, however, it seems likely that the
distance of the TE to the gene is decisive. While many maternally
and paternally expressed imprinted genes (MEGs and PEGs,
respectively) have TEs in the vicinity of the 5 region, many
PEGs have TEs additionally in the coding and 3’ region of the
gene (Wolff et al., 2011; Ibarra et al., 2012). Hypomethylation
might expose binding sites for the repressive FERTILIZATION
INDEPENDENT SEED (FIS)-Polycomb Repressive Complex 2
(PRC2), as it has been proposed for the differentially methylated
region downstream of the PHERESI gene (Villar et al., 2009).
The PRC2 is an evolutionary conserved repressive complex that
modifies histones by applying histone trimethylation marks on
histone H3 at lysine 27 (H3K27me3; Simon and Kingston, 2013).
In Arabidopsis, there are at least three PRC2 complexes with
different functional roles during plant development. The FIS-
PRC2 is specifically expressed in the central cell and in the
endosperm and consists of the subunits MEDEA (MEA), FIS2,
FERTILIZATION INDEPENDENT ENDOSPERM (FIE), and
MSII (Hennig and Derkacheva, 2009). Genome-wide profiling
of H3K27me3 occupancy in the endosperm revealed that several
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FIGURE 1 | Hypothesized emergence of FIS2-PRC2-like complex in
angiosperms connected to its role in sexual endosperm. (A) In
angiosperms, FIS2-PRC2-like function may have arisen to repress the
paternal genome in the endosperm as predicted by the kin-conflict
theory. The selfish behavior of the paternal genome, promoting nutrient
allocation to the progeny, is symbolized by “+++" According to this
hypothesis, in gymnosperms, where the nourishing tissue is purely
maternal, FIS2-PRC2-like function is not required. (B) FIS2-PRC2-like
function may have allowed the emergence of DNA hypomethylation via
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DME-like activity and small RNA (sRNA) production in central cell and
endosperm. FIS2-PRC2 acts on hypomethylated regions, limiting the
deleterious activity of transposable elements (TE). This tradeoff between
TE silencing and activity allows the production of sSRNAs traveling to the
egg cell and embryo, reinforcing TE silencing. Such a demethylation
process may not have emerged in gymnosperms, leading to a limited
silencing of TEs and explaining the genome expansion in this taxon.
Purple and green colors symbolize maternal and paternal genomes,
respectively.

DNA hypomethylated TEs were targeted by the FIS-PRC2, reveal-
ing a redistribution of the FIS-PRC2 dependent on the location of
DNA methylation (Weinhofer et al., 2010). A similar redistribu-

tion of H3K27me3 to TEs occurs in mutants deficient for MET1
(Deleris et al., 2012), as well as in mammalian cells depleted for
DNA methylation (Reddington et al., 2013; Saksouk et al., 2014)
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revealing a general ability of PRC2 to target and possibly silence
hypomethylated TEs.

EVOLUTION OF EPIGENETIC PROCESSES IN THE
ENDOSPERM AS A MECHANISM TO PREVENT GENOME
EXPANSION

Thus far, we do not know when endosperm-expressed PRC2 genes
have emerged during angiosperm evolution. While the FIS-PRC2
subunit encoding genes FIS2 and MEA are specific for Arabidopsis
thaliana (Spillane et al., 2007; Chen et al., 2009), functional
homologs of both genes are expressed in the triploid endosperm
of monocots and lower eudicots (Haun et al., 2007; Luo et al,,
2009; Gleason and Kramer, 2012) suggesting that the evolution
of FIS-PRC2-like complexes is connected with the evolution of
a sexual endosperm. Nevertheless, homologs but not orthologs
fulfill the FIS2-PRC2 functional role in dicots and monocots and
different PRC2 genes are regulated by genomic imprinting in
monocots (Danilevskaya et al., 2003; Luo et al., 2009) and dicots
(Grossniklaus et al., 1998; Luo et al., 2000), raising the hypothesis
that FIS-PRC2-like complexes have evolved independently in both
plant groups. The functional requirement of the FIS-PRC2 can
be bypassed by increasing the maternal genome dosage in the
endosperm (Kradolfer et al., 2013), suggesting that the FIS-PRC2
serves to suppress expression of paternally contributed genes.
Supporting this view, Arabidopsis mutants lacking a FIS-PRC2
can form a functional diploid endosperm (Nowack et al., 2007);
revealing that by reducing paternal genome dosage the functional
requirement of the FIS-PRC2 can be bypassed. We therefore
hypothesize that in gymnosperms, where the female gametophyte
forms an endosperm-like nourishing structure, a FIS-PRC2-like
complex would not be required. This notion is supported by the
fact that the FIS-PRC2 prevents autonomous endosperm forma-
tion and thus couples fertilization to endosperm development
(Guitton and Berger, 2005), a function that is not required in
gymnosperms.

As outlined above, the PRC2 is targeted to regions with
reduced DNA methylation in the endosperm (Weinhofer et al.,
2010; Zhang et al., 2014) and could, therefore, potentially repress
activity of TEs upon loss of DNA methylation. It can thus
be envisioned that DNA hypomethylation activities in the cen-
tral cell evolved concomitantly with a central cell/endosperm-
expressed PRC2 that alleviated the negative effects associated
with loss of DNA methylation. Following this logic, the evolution
of hypomethylation mechanisms in the central cell to enforce
silencing of TEs in the egg cell and descendent embryo were
closely coupled to the evolution of FIS-PRC2-like complexes in
the central cell and endosperm to ensure TE silencing after DNA
hypomethylation. This scenario would imply that TE transcrip-
tion upon DNA hypomethylation and PRC2-mediated TE repres-
sion are balanced to ensure sufficient TE-derived sRNAs being
made to enforce silencing in the embryo but TE transposition
remains suppressed (Figure 1).

If indeed a FIS-PRC2-like complex as well as DME-like
enzymes evolved together with the sexual endosperm, neither
of both should be present in the large female gametophytes of
gymnosperms. The female gametophyte in gymnosperms serves

an endosperm-like role in supporting embryo growth, but it is of
pure maternal origin and forms a multicellular structure before
fertilization. Consequently, the enormous genome expansion in
gymnosperms may be a consequence of the lack of efficient TE
silencing mechanisms that possibly have evolved after the female
gametophyte became sexualized (Figure 1).

Testing this hypothesis requires to test whether orthologs of
FIS-PRC2-like genes and DME-like genes are expressed in the
female gametophyte of gymnosperms and basal angiosperms,
which remains a challenge of future investigations.

Together, we propose that the evolution of mechanisms enforc-
ing TE silencing in the embryo evolved concomitantly with the
sexual endosperm. The evolution of PRC2 activity in the central
cell and endosperm allowed DNA hypomethylation activities
being active in the central cell to enforced TE silencing in the
egg cell and embryo. Consequently, genome size restriction by
efficient control of TE silencing may be directly coupled with the
evolution of a sexual endosperm.
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