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In a previous study, we reported that the common reed accumulates water-soluble Cd

complexed with an α-glucan-like molecule, and that the synthesis of this molecule is

induced in the stem of the common reed under Cd stress. We studied the metabolic

background to ensure α-glucan accumulation under the Cd stress conditions that

generally inhibit photosynthesis. We found that the common reed maintained an

adequate CO2 assimilation rate, tended to allocate more assimilated 11C to the stem,

and accumulated starch granules in its stem under Cd stress conditions. AGPase activity,

which is the rate-limiting enzyme for starch synthesis, increased in the stem of common

reed grown in the presence of Cd. Starch accumulation in the stem of common reed

was not obvious under other excess metal conditions. Common reed may preferentially

allocate assimilated carbon as the carbon source for the formation of Cd and α-glucan

complexes in its stem followed by prevention of Cd transfer to leaves acting as the

photosynthetic organ. These responses may allow the common reed to grow even under

severe Cd stress conditions.

Keywords: AGPase, α-amylase, 11CO2 tracer, Cd, common reed, starch

Introduction

Common reed (Phragmites australis [(Cav.) Trin. ex Steudel]) is resistant to various abiotic stresses
and has a large biomass (Mal and Narine, 2004). Responses of common reed to NaCl-salinity
(Matoh et al., 1988; Kanai et al., 2007; Liu et al., 2012), drought (Pagter et al., 2005; Liu et al.,
2012), and heavy metals (Wang and Peverly, 1996; Ye et al., 1997; Bonanno, 2011) have been
investigated.

Common reed is not a heavy-metal hyper-accumulator, and the Cd content in its shoot is often
less than that in other wetland plants (Stoltz and Greger, 2002; Ali et al., 2004). However, common
reed has been proposed as a candidate plant for rhizofiltration, because of its large biomass and
ability to accumulate Cd in its roots, consequently, decreasing the Cd concentration in water (Ali
et al., 2004). Therefore, the mechanisms responsible for Cd tolerance in common reed have been
investigated. In the roots, the increase of phytochelatins, lignin deposition, and unknown proteins
were reported to be involved in Cd tolerance (Ederli et al., 2004; Jiang and Wang, 2007). In the
shoot, the activities of antioxidant enzymes and amount of glutathione were found to be increased
by Cd (Fediuc and Erdei, 2002; Pietrini et al., 2003), similar to that found in other plants (Gill and
Tuteja, 2011).
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On the other hand, we reported a novel Cd-associated and
Cd-induced molecule in the stem of the common reed (Higuchi
et al., 2013). In association with Cd, this molecule is soluble
and its major component is assumed to be an α-glucan (Higuchi
et al., 2013). This is in contrast to rice in which decreased dis-
tribution of Cd in the soluble fraction has been reported and
is thought to be responsible for increased Cd tolerance (Xiong
et al., 2009). Moreover, photosynthesis is generally inhibited by
excess Cd (Gallego et al., 2012; Parmar et al., 2013), and thus, it
seems to be difficult for the common reed to accumulate α-glucan
when grown with Cd. Furthermore, the net photosynthetic rate is
reduced by Cd (Mobin and Khan, 2007; Ying et al., 2010).

In this study, we demonstrate carbon assimilation and
retranslocation; the increase of AGPase activity, which is the rate-
limiting enzyme for starch synthesis; and the accumulation of
starch granules in the stem of common reed grown with Cd.
These responses seem to be related to the supply of substrate
for the synthesis of α-glucan-like molecules that are associated
with Cd.

Materials and Methods

Plant Materials
Plants were cultivated in a greenhouse maintained at 24–28◦C
under natural light. The composition of the standard nutrient
solution was 1mM (NH4)2SO4, 0.5mM KCl, 0.25mM K2HPO4,
0.5mM CaCl2, 0.5mMMgCl2, 90µM Fe-EDTA, 46µMH3BO3,
9.2µM MnCl2, 0.32µM CuSO4, 0.77µM ZnSO4, and 0.08µM
(NH4)6Mo7O24. The pH of the nutrient solution was adjusted to
5.5 by the addition of HCl, and the solution was changed every
3 d. Seeds of common reed collected in Hokkaido Prefecture
(Japan) were purchased from Snow Brand Seed Co., Ltd. (Sap-
poro, Japan). The seeds were germinated on gauze floating in
tap water; seedlings that grew to a height of 1–2 cm were trans-
ferred to a half-strength nutrient solution, and those that grew
to a height of 5–6 cm were transferred to a full-strength nutrient
solution in 5-L plastic containers. Seedlings that grew to 20 cm in
height were used in subsequent experiments. For comparison of
starch accumulation among several heavy metal stresses, 50µM
CdCl2, MnCl2, CuCl2, NiCl2, or ZnCl2 were added to the nutri-
ent solution for 12 d. For other experiments, plants were grown
with 10µM CdCl2. Plants were sampled at approximately noon
and stored at −80◦C for subsequent assay of enzyme activity or
were dried for starch measurements.

Starch Determination
The starch content of plant tissues was determined using an
assay described by Wong et al. (2003). Briefly, dried plant tissues
were ground using a mortar and pestle. Five to ten milligrams
of ground powder was washed twice in 1mL methanol, and then
twice in 1mL distilled water. The precipitate was suspended in
0.5mL distilled water and heated in a boiling water bath for 2 h.
The final volume was adjusted to 1mL with distilled water. The
amount of starch was determined by the method described by
Bergmeyer et al. (1974). To 100µL of the above solution, 100µL
of 50mM Na-acetate buffer (pH 5.0) was added, followed by 50
nkat of glucoamylase (EC 3.2.1.3., Rhizopus niveus, Seikagaku co.,

Tokyo, Japan), and 5 nkat α-amylase ultrapure (EC3.2.1.1, Nip-
pon Gene, Tokyo, Japan). This solution was mixed and incubated
for 1 h at 25◦C, then for 1 h at 60◦C, and was then centrifuged
at 10,000 × g for 10min. Next, the supernatant (200µL) was
mixed with 800µL of a solution consisting of 60mM HEPES-
KOH (pH 7.4), 5mMMgCl2, 2mMNADP, and 25mMATP. The
amount of glucose in the solution was determined by the increase
in absorbance at 340 nm after the addition of 1mL each of hex-
okinase (EC 2.7.1.1, 2.8 nkat, Roche Diagnostics Japan, Tokyo,
Japan) and G6P dehydrogenase (EC 1.1.1.49, 2.3 nkat, Roche
Diagnostics Japan).

Enzymatic Activity
Frozen plant tissues were ground using a mortar and pestle with
liquid N2. The protein content of samples was estimated using a
Protein Assay Kit with Standard I based on the Bradford method
(Bio Rad, Hercules, CA, USA). For AGPase (EC 2.7.7.27) activity,
we used the method reported by Nakamura et al. (1989). Phos-
phoglucomutase (EC 5.4.2.2) was purchased from Sigma-Aldrich
(St. Louis, MO, USA).

Photosynthetic Rate
Intact leaves from common reed plants growing in a green-
house were used to measure the photosynthetic rate. Leaf gas
exchange was measured using an open gas-exchange system (LI-
6400XT; LI-COR Inc., Lincoln, NE, USA) with an integrated flu-
orescence chamber head (LI-6400-40 leaf chamber fluorimeter;
LI-COR Inc.). The CO2 assimilation rate (µmol CO2 m−2

·s−1)
was measured using the stored program of the light-curve mode
of LI-6400. Parameters were set as follows: TempR (relative
temperature) = 20◦C, CO2R (relative CO2 concentration) =

400µmol m−2
·s−1, flow = 500µmol·s−1, and PQntm (light

intensity and quality) = 500µmol photon m−2
·s−1 (containing

10% blue light).

11C-Assimilation
We performed real-time and non-destructive imaging of 11C-
assimilate dynamics in intact common reed plants using a
positron-emitting tracer imaging system (PETIS). The upper part
of young leaves from three common reed plants was inserted
into a sealed acrylic compartment (inner volume: 432mL), and
other parts of the plants, including leaf sheaths, stems, and roots
were set within the field of view (120mm width × 187mm
height) of the PETIS apparatus (a modified PPIS-4800 model;
Hamamatsu Photonics, Hamamatsu, Japan). 11CO2 (half-life:
20.4min) gas was synthesized using an energetic proton beam
delivered from an AVF cyclotron located at Takasaki Ion Acceler-
ators for Advanced Radiation Application, Japan Atomic Energy
Agency, following the method described by Ishioka et al. (1999).
After 100 MBq of 11CO2 gas with ambient air was fed into the
compartment at a flow rate of 400mL·min−1, serial images of
11C-assimilates in plants were acquired every 10 s for 2 h using
PETIS. All experiments were performed in a growth chamber
under controlled conditions at 28◦C and 65% relative humid-
ity. Light was maintained at a photon flux density of approx-
imately 400µmol photon m−2

·s−1 on the young leaf using a
light-emitting diode (LED) light source (ISL-150X150-HWW;
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CCS Incorporated, Kyoto, Japan). Using NIH ImageJ 1.49e soft-
ware (http://rsb.info.nih.gov/ij/, 2 August 2014), regions of inter-
est (ROIs) were manually selected on each image, and the time
course of 11C-radioactivity in the ROIs was calculated.

Results

Common Reed Can Supply Sufficient Carbon
Assimilates to its Stem Under Cd Stress
We analyzed the ability of common reed to assimilate and allo-
cate carbon under conditions of 10µM Cd stress. By day 3 of
the Cd treatment, the Cd concentration of the leaves increased
noticeably (data not shown). First, we measured the CO2 assimi-
lation rate under Cd stress. The CO2 assimilation rates of mature
leaves were slightly but not significantly decreased during the 3
d of Cd stress, and were comparable to those in control leaves
(Figure 1). The CO2 assimilation rates of young leaves were not
affected by Cd (Figure 1). Although we confirmed leaf chlorosis
and growth reduction in common reed induced by 2–4 weeks of
Cd treatment, the leaves survived and continued to grow (data
not shown).

Next, we monitored the allocation of assimilated carbon.
Using a combination of 11C, which has a half-life of 20min and
the real-time imaging method PETIS, repeated CO2 assimilation
and allocation of assimilates in the same plant can be detected
under different conditions. The use of this method is suitable for
analyzing common reed that exhibits large individual differences
in shape, for example, the development of tillers or the elongation
of inter nodes. We supplied 11CO2 to young leaves and moni-
tored radioactivity for 2 h, after which each plant was grown with
or without Cd for 3 d, before repeating the pulse labeling exper-
iment (Supplementary Figure S1). Whole plant data (Figure 2)
confirmed that the amount of assimilated carbon released from
source leaves was not decreased by Cd stress. Carbon allocated

FIGURE 1 | CO2 assimilation rate at 500 PPFD under Cd stress. CO2

assimilation rates for a mature leaf just before (day 0), and mature and young

leaves 3 d after (day 3) starting 10µM Cd stress were measured. White bars,

control plants; black bars, Cd-treated plants. We used leaves from the same

three plants at day 0 and day 3. Data are represented as the mean ± SE

(n = 3).

to the stem tended to decrease in control plants during the 3-d
period, whereas it tended to increase in plants grown with Cd for
3 d (Figure 2). The allocation of carbon to roots was increased
in both control and Cd-treated plants during the 3-d period
(Figure 2). That is, 3 d of culture with Cd seemed to increase the
allocation of carbon to the stem when compared to the control
plants.

Common Reed Accumulates Starch Granules in
its Stem Under Cd Stress
Starch serves as a temporary pool of carbon. Thus far, we have
observed a large number of starch granules in the stem of com-
mon reed grown with Cd. To investigate whether stress starch
in stem has some special characteristics, we analyzed the shape
and molecular structure of the starch present in stems. We col-
lected starch granules from stems grown with Cd, and from con-
trol stems that contained a small amount of starch. The shapes
of starch granules observed by scanning electron microscopy
were similar in the control and Cd-treated plants (Supplementary
Figures S2B,C). The chain-length distribution of amylopectin in
these starch granules also exhibited similar patterns (Supplemen-
tary Figure S2D). Thus, Cd stress induced the accumulation of
normal starch granules in the stems of common reed.

FIGURE 2 | Distribution of newly assimilated 11C during 3 days of

culture with 10 µM Cd. 11CO2 was supplied to young leaves (dotted line),

and radioactivity in the area under the labeled leaves was monitored

(Supplementary Figure S1). The ratio of radioactivity in the regions of interest

(ROI) (dashed line) before and after starting 10µM Cd stress was calculated

for each individual plant. White bars, control plants; black bars, Cd-treated

plants. Data are represented as the mean ± SE (n = 6).
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The accumulation of starch has previously been reported in
plants under metal stress (Nyitrai et al., 2004; Zambrosi et al.,
2013; Zappala et al., 2014); thus, we tested whether the accumu-
lation of starch granules can be observed in the stem of common
reed grown in the presence of other excess metals. To obtain a
large number of starch granules that could be easily observed, we
added 50µM of each heavy metal to the nutrient solution and
cultured the plants for 12 d. When grown with Cd or Ni, plants
were significantly shorter than the control plants (P < 0.05)
(Supplementary Figure S3A); however, plants grew continuously
and the symptoms of leaf chlorosis were mild. Thus, damage
caused by Cd or Ni was not extreme when compared to plants
grown with other metals. Cd, Cu, and Zn tended to accumu-
late more in stems than in leaves (Supplementary Figures S3B–F),
especially Cd. A significant amount of starch accumulated in the
leaves of all plants grown in the presence of excess heavy metals
(Figure 3, hatched bars). However, the amount of starch in the
stems of Cd treated plants was about three-fold higher than the
amount in plants grown with other metals (Figure 3, black bars).
Starch accumulation in stems grown with Cd was also clearly
visible by iodine staining (Supplementary Figure S2A).

Agpase Activity is Increased by Cd Stress in the
Stem
To investigate whether Cd triggers starch synthesis, we mea-
sured the activity of AGPase, which is the rate-limiting enzyme
for starch synthesis. Although short-term culture of plants with
10µMCd allows for the accumulation of only a small amount of
starch granules, we tested common reed grown with 10µM Cd
over 7 days to determine how early common reed respond to Cd.
Starch levels tended to increase in stems under Cd stress, but the
result was not significant (Figure 4B). The increase in AGPase
activity in stems grown with Cd was significant (Figure 4E). One
day of culture with Cd was sufficient to elevate AGPase activ-
ity. The amount of starch and AGPase activity in leaves tended

to increase during culture with Cd, but this was not always sig-
nificant (Figures 4A,D). In roots, these factors were not affected
by Cd (Figures 4C,F). Common reed can grow under more
severe Cd stress conditions. We confirmed the increase in starch
amounts and AGPase activities in stem even under 100µM Cd
conditions (Supplementary Figure S4).

Discussion

In this study, we showed that common reed under Cd stress
tends to allocate newly assimilated carbon to the stem when com-
pared to that in control plants (Figure 2). In other words, the
ratio of carbon distribution to the stem was not altered under
Cd stress, but decreased in control plants during the 3-d exper-
imental period (Supplementary Figure S5). The carbon source
allocated to the stemmight support the synthesis of α-glucan-like
molecules associated with Cd, which are induced by excess Cd in
the stem of common reed plants (Higuchi et al., 2013). In parallel,
starch accumulates in the stem of the common reed grown with
Cd. The accumulation of starch has previously been reported in
plants under metal stress. Tian et al. (2010) reported that the
disturbance of Na and K homeostasis caused defects in phloem
loading or translocation, and consequently caused accumulation
of starch in Arabidopsis leaves. Excess Cu disturbed the develop-
ment of chloroplasts, and starch granules accumulated in cotyle-
dons of screwbean mesquite (Zappala et al., 2014). Low-dose Pb
and Ni, but not Cd, increased the starch content in detached bean
leaves (Nyitrai et al., 2004), and starch granules accumulated in
damaged root cells of citrus due to excess Cu (Zambrosi et al.,
2013). These previous studies suggest that metal stress disturbs
the export or consumption of assimilates and leads to the accu-
mulation of starch; however, export and allocation of assimilated
11C from leaves to other parts of the plant was not decreased by
Cd in common reed (Figure 2). Thus, starch accumulation in the
stem of common reed seems to be an adaptive response, rather
than a result of damage under excess Cd conditions. Abundant

FIGURE 3 | Accumulation of starch in reed plants grown under

excess heavy metal conditions. Seedlings were divided into six

groups and transplanted into normal culture solution or solutions

containing an excess of heavy metals (50µM CdCl2, MnCl2, CuCl2,

NiCl2, or ZnCl2), where they were then grown for 12 d. Black bar:

stem. Hatched bar: leaves. Data are represented as the mean ± SE

(n = 3). ∗P < 0.05 indicate significant differences (according to Dunnett’s

test).
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FIGURE 4 | Time course of starch accumulation and AGPase activity

in common reed grown with 10 µM Cd. (A–C), Starch concentration;

(D–F), AGPase activity. (A,D), leaf; (B,E), stem; (C,F), root. White bars,

control plants; black bars, Cd-treated plants. Data are represented as the

mean ± SE (n = 3). ∗P < 0.05 and ∗∗P < 0.01 indicate significant differences

(according to Student’s t-test).

carbon in the stem of common reed grown with Cd could be tem-
porarily pooled as starch and utilized to synthesize α-glucan-like
molecules trapping Cd.

Both enzyme activity and supply of carbon control starch
synthesis. AGPase is a key enzyme involved in starch synthesis
(Preiss et al., 1991). AGPase activities increased in the stems of
common reed grown with Cd within 1 day before the starch lev-
els increased significantly (Figure 4). Common reed stimulated
AGPase activity in stem even under 100µMCd conditions (Sup-
plementary Figure S4). This means that the primary carbon
metabolism of common reed functions even under severe Cd
stress conditions. A few studies reported the influence of mineral
stress on AGPase in vegetative tissues. Chen et al. reported that
AGPase activity in the leaves of rice seedlings slightly decreased
under salt stress (Chen et al., 2008). Several studies discussed
AGPase activity in the stems, which is important in the pool-
ing of carbohydrates (Cook et al., 2012; Seferoglu et al., 2013),
but upregulation of AGPase in the stems by mineral stress
has not been reported. Whether Cd directly regulates enzymes
involved in carbohydrate metabolism or indirectly influences
carbon metabolism requires further study.

Zn/Cd hyper-accumulator Picris divaricata could maintain a
CO2 assimilation rate at 0.2mg·g−1 dry weight (DW) shoot Cd
concentration (Ying et al., 2010). In the case of Brassica juncea,

the CO2 assimilation rate decreased when the Cd concentration
in the leaves was higher than 0.05mg·g−1 DW (Mobin and Khan,
2007). In this study, less than 0.01mg·g−1 DW Cd was detected
in the leaves used in Figures 1, 4. The leaves of common reed
may not have developed a tolerance to Cd comparable to that of
hyper-accumulators, and the low Cd concentration in the leaves

may be a key factor in the maintenance of photosynthesis. How-
ever, we foundmore than 0.05mg·g−1 DWCd in the stem used in
Figure 4. Thus, amyloplasts/chloroplasts in the stem of common
reed could have some mechanism for Cd tolerance.
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