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Polygalacturonase inhibiting proteins (PGIPs) are cell wall proteins that inhibit the

pectin-depolymerizing activity of polygalacturonases secreted by microbial pathogens

and insects. These ubiquitous inhibitors have a leucine-rich repeat structure that is

strongly conserved in monocot and dicot plants. Previous reviews have summarized the

importance of PGIP in plant defense and the structural basis of PG-PGIP interaction;

here we update the current knowledge about PGIPs with the recent findings on the

composition and evolution of pgip gene families, with a special emphasis on legume and

cereal crops. We also update the information about the inhibition properties of single

pgip gene products against microbial PGs and the results, including field tests, showing

the capacity of PGIP to protect crop plants against fungal, oomycetes and bacterial

pathogens.

Keywords: polygalacturonase inhibiting proteins (PGIPs), gene family, transgenic plants, plant protection, fungal

pathogens, bacterial pathogens

Introduction

Successful colonization of plant tissues by microbial pathogens requires the overcoming of the cell
wall. To this end, pathogens produce a wide array of plant cell wall degrading enzymes (CWDEs),
among which endo-polygalacturonases (PGs; EC 3.2.1.15) are secreted at very early stages of the
infection process (tenHave et al., 1998). PGs cleave the α-(1–4) linkages between theD-galacturonic
acid residues of homogalacturonan, the main component of pectin, causing cell separation and
maceration of the host tissue. To counteract the activity of PGs, plants deploy the cell wall poly-
galacturonase inhibiting proteins (PGIPs) that inhibit the pectin-depolymerizing activity of PGs.
No plant species or mutants totally lacking PGIP activity have been characterized so far. The struc-
ture of PGIPs is typically formed by 10 imperfect leucine-rich repeats (LRRs) of 24 residues each,
which are organized to form two β-sheets, one of which (sheet B1) occupies the concave inner
side of the molecule and contains residues crucial for the interaction with PGs (Di Matteo et al.,
2003). In addition to PG inhibition, the interaction between PGs and PGIPs promotes the forma-
tion of oligogalacturonides (OGs), which are elicitors of a variety of defense responses (Cervone
et al., 1989; Ridley et al., 2001; Ferrari et al., 2013). Since many aspects of the PGIP biology have
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been already summarized in previous reviews (De Lorenzo et al.,
2001; De Lorenzo and Ferrari, 2002; D’Ovidio et al., 2004a;
Gomathi and Gnanamanickam, 2004; Shanmugam, 2005; Di
Matteo et al., 2006; Federici et al., 2006; Cantu et al., 2008;
Misas-Villamil and van der Hoorn, 2008; Protsenko et al., 2008;
Reignault et al., 2008; Lagaert et al., 2009), here we present an
overview of the recent findings on genome composition and evo-
lution of pgip gene families and on the efficacy of PGIP to limit
the development of diseases caused by microbial pathogens in
crop plants.

PGIP Genes and their Genomic
Organization

Early characterization of a polygalacturonase-inhibiting activity
was reported in 1970s (Albersheim and Anderson, 1971) and
the first pgip gene was isolated 20 years later in French bean
(Toubart et al., 1992). Since then, several PGIPs and a large
number of pgip genes have been characterized. Up to now more
than 170 complete or partial pgip genes from dicot and mono-
cot plants have been deposited in nucleotide databases (e.g.,
http://www.ncbi.nlm.nih.gov/). Most of these genes have been
identified as pgip genes on the basis of sequence identity but
only a few of them have been shown to encode proteins with
PG-inhibitory activity.

Genome analysis has shown that pgip genes did not undergo
a large expansion and may exist as single genes, as in diploid
wheat species (Di Giovanni et al., 2008), or organized into gene
families, the members of which are organized in tandem and
can vary from two, as in Arabidopsis thaliana (Ferrari et al.,
2003), to sixteen, as in Brassica napus (Hegedus et al., 2008).
The majority of pgip genes are intronless, however, some of
them can contain a short intron as in Atpgip1 and Atpgip2 (Fer-
rari et al., 2003). Moreover, pgip genes can be inactivated by
transposon elements as in cultivated and wild wheat where the
occurrence of Copia-retrotransposon and Vacuna transposons
has been reported (Di Giovanni et al., 2008). Characterized pgip
loci are shown in Figure 1. Like other families of defense-related
genes, pgip families show variation in the expression pattern of
the different members, some of which are constitutive, others are
tissue-specific and, in most cases, up-regulated following stress
stimuli (see reviews indicated above; Table 1). At the protein
level, members of a pgip family show both functional redundancy
and sub-functionalization (De Lorenzo et al., 2001; Federici et al.,
2006). As suggested previously, these features likely have an adap-
tive significance for combating more efficiently a broad array of
pathogens (Ferrari et al., 2003) or responding more rapidly to
diverse environmental stimuli (D’Ovidio et al., 2004b). In support
of this view, a recent analysis of the genomic organization and
composition of the legume pgip families suggested that the forces
driving the evolution of the pgip genes follow the birth-and-death
model (Kalunke et al., 2014), similarly to what proposed for the
evolution of NBS-LRR-type R genes (Michelmore and Meyers,
1998). This possibility is based on genomic features that include
inferred recent duplications, diversification as well as pseudoge-
nization of pgip copies, as found in soybean, bean, barrel clover
and chickpea (Kalunke et al., 2014). The organization of the pgip

families therefore supports the view that tandem duplications are
frequent in stress-related genes and are beneficial for survival in
challenging environments (Oh et al., 2012).

Inhibition Activity of PGIPs

A number of papers deals with the inhibition activity of PGIPs
purified from several plant tissues. This aspect has been reviewed
several years ago (De Lorenzo et al., 2001); here, we present
an update of this information (Table 2). Because purified PGIPs
may contain a mix of highly similar PGIP isoforms, the activ-
ity detected in a tissue may result from the contribution of the
activities of different PGIPs expressed in that tissue. An appropri-
ate approach to study the inhibition activity of individual PGIP
isoforms is their expression in a heterologous system. However,
only a few of the more than 170 pgip genes isolated so far from
different plant species have been investigated. As reported in
Table 3, individual heterologous expression and analysis of all
members of a pgip family has been performed only for Ara-
bidopsis (Ferrari et al., 2003), common bean (D’Ovidio et al.,
2004b), soybean (D’Ovidio et al., 2006; Kalunke et al., 2014)
and wheat (Janni et al., 2013). PGIPs have been expressed in
prokaryotic systems, as a fusion with the maltose-binding pro-
tein (MBP) (Jang et al., 2003; Table 3) or using lower temperature
for bacterial growth (Chen et al., 2011), in Pichia pastoris and in
plants by stable transformation or, transiently, by virus-mediated
expression (Table 3). In some cases, the proteins were success-
fully expressed, but did not show any inhibitory activity in vitro,
as, for example, in the case of some GmPGIPs (D’Ovidio et al.,
2006). GmPGIP3, but not GmPGIP1, GmPGIP2, and GmPGIP7
showed inhibitory activity, whereas no expression of GmPGIP5
was obtained (D’Ovidio et al., 2006; Kalunke et al., 2014). Sim-
ilarly, TaPGIP1 and TaPGIP2, encoded by the two members of
the wheat pgip family, were successfully expressed but showed no
inhibition activity (Janni et al., 2013).

The absence of inhibition activity in vitro may also reflect
the possibility that some PGIPs are active only in the in planta
environment, as suggested by Joubert et al. (2006) in the case
of the Botrytis cinerea BcPG2 and VvPGIP1 from grapevine
(Vitis vinifera L.). These proteins do not interact in vitro,
although VvPGIP1 reduces symptoms caused by BcPG2 upon
co-infiltration in leaves. The number and sources of PGs tested
is also limited; only a few studies have been carried out against
PGs of bacteria and insects (Doostdar et al., 1997; D’Ovidio et al.,
2004b; Frati et al., 2006; Hwang et al., 2010; Schacht et al., 2011;
Kirsch et al., 2012). The limitations of data prevents to draw con-
clusions about correlations between PGIPs of specific plant fam-
ilies and specific pathogens. Notably, PG produced by a highly
detrimental pathogen, Fusarium verticillioides, is not inhibited
by any known PGIP (see Table 2). This PG has been a target of
an unsuccessful attempt to render PvPGIP2 an efficient inhibitor
against this PG (see below, Benedetti et al., 2011a).

The utilization of pgip genes for crop protection relies on the
identification of inhibitors with broad specificities against the
many PGs produced by phytopathogens and/or the construc-
tion of novel PGIPs with stronger and broader inhibitor activity.
Many more PGIPs than those reported in Tables 2, 3 exist in
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FIGURE 1 | Schematic representation of the genomic organization

pgip families in rice, wheat, bean, soybean, chickpea, barrel clover

and thale cress. Each block-arrow with compound-type lines represents a

predicted pgip gene and a block-arrow with dash type lines represents a

predicted pseudo-gene or remnant gene. Vertical line within block-arrow

indicates introns (Capgip2, Atpgip1, and Atpgip2) or a Copia retrotransposon

(Tapgip3). The direction of the arrow indicates ATG to stop codon. The

location of pgip genes of legume species are based on Kalunke et al. (2014),

those of rice and wheat on Janni et al. (2006) and Di Giovanni et al. (2008),

and those of thale crest on Ferrari et al. (2003). Chr, chromosome.
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TABLE 1 | Treatments or stress stimuli affecting pgip expression in some plant species with a well characterized pgip family.

Pgip family Treatments or stress stimuli References

Rice Abscisic acid (ABA), brassinosteroid, gibberellic acid (GA), 3-indole acetic acid (IAA), jasmonic

acid (JA), kinetin, naphthalene acetic acid (NAA), salicylic acid (SA); Rhizoctonia solani

(necrotrophic fungus)

Janni et al., 2006; Lu et al., 2012

Wheat Bipolaris sorokiniana (necrotrophic fungus) and mechanical wounding Janni et al., 2013

Bean Oligogalacturonides (OGs); mechanical wounding; Botrytis cinerea, Sclerotinia sclerotiorum

(necrotrophic fungi); Colletotrichum lindemuthianum (hemibiotrophic fungus)

Bergmann et al., 1994; Nuss et al., 1996; Devoto

et al., 1997; D’Ovidio et al., 2004b; Oliveira et al.,

2010; Kalunke et al., 2011

Soybean Mechanical wounding; S. sclerotiorum (necrotrophic fungus) D’Ovidio et al., 2006; Kalunke et al., 2014

M. truncatula JA, SA, ABA; Colletotrichum trifolii (hemibiotrophic fungus) Song and Nam, 2005

Rapeseed JA, SA, mechanical wounding; S. sclerotiorum Hegedus et al., 2008

Pepper SA, Methyl jasmonate (Me-JA), ABA, wounding, cold treatment Wang et al., 2013

Arabidopsis OGs; JA; B. cinerea; Stemphylium solani (necrotrophic fungus); aluminum, low-pH, cold;

geminivirus

Ferrari et al., 2003; Ascencio-Ibanez et al., 2008;

Sawaki et al., 2009; Di et al., 2012; Kobayashi et al.,

2014

nature and are likely to have different specificities against micro-
bial PGs, considering that single amino acid changes are able to
change specificity of the inhibitors (Leckie et al., 1999). Search-
ing for PGIPs with novel specificities may allow to count on
a much larger reservoir of possible genes for crop protection.
A direct and simple strategy to isolate PGIPs with recognition
capability against a given PG may be based on affinity chromath-
ography methods, similar to that originally used to purify PGIP
from P. vulgaris (Cervone et al., 1987), and mass spectrometry.
Attempts to drive in vitro evolution of PGIPs to generate proteins
with improved inhibition properties have not been successful yet
(Benedetti et al., 2011a).

The occurrence of PG-inhibiting activity in crude leaf protein
extracts of tetraploid wild wheat (T. dicoccoides) possessing non
functional pgip genes (Di Giovanni et al., 2008) suggested the
existance of pgip genes with a sequence divergent from the clas-
sical one. This possibility, which deserves further investigation,
is also supported by the finding that the wheat tissue contains
PG-inhibiting proteins with N-terminal sequences (Lin and Li,
2002; Kemp et al., 2003) different from TaPGIP1 and TaPGIP2
(Janni et al., 2013) and from the pgip sequences reported so
far (http://www.ncbi.nlm.nih.gov/nucleotide/). Recently, a wheat
gene with some sequence similarity to pgip genes has been
reported and was shown to be involved in the defense response
against Fusarium graminearum (Hou et al., 2014).

Structural Studies on the PG-PGIP
Interaction

Thus, the possibility of engineering new forms of PGIPs depends
on the detailed structural knowledge of the PG-PGIP interac-
tion. Several structural studies have been performed (Mattei et al.,
2001; King et al., 2002; Benedetti et al., 2011b, 2013; Gutierrez-
Sanchez et al., 2012), but a high resolution 3D-structure of the
PG-PGIP complex is still missing. The enzyme-inhibitor combi-
nations that have been more extensively investigated, are those
that PGIP2 from Phaseolus vulgaris (PvPGIP2) forms with PG
from A. niger (AnPGII), F. phyllophilum (FpPG) and C. lupini
(ClPG). Site-directed mutagenesis has shown that the residues

involved in the interaction are located in the concave surface of
the inhibitor (Leckie et al., 1999; Federici et al., 2001; Spinelli
et al., 2009; Benedetti et al., 2011b, 2013). Computational meth-
ods such as the Codon Substitution Model in combination with
the Desolvation Energy Calculation and the Repeat Conserva-
tion Mapping (RCM; Helft et al., 2011) have pinpointed several
residues of PvPGIP2 responsible for the PG-inhibiting activity
(Casasoli et al., 2009).

On the other hand, residues of PG that are critical for the
interaction with PGIP have been also studied. FvPG is 92.5%
identical to FpPG, but is inhibited by neither PvPGIP2 nor other
known PGIPs. By both loss- and gain-of-function site-directed
mutations, a single amino acid at position 274 of both FvPG
and FpPG was demonstrated to act as a switch for recognition
by PvPGIP2 (Raiola et al., 2008; Benedetti et al., 2013). Unfortu-
nately, the lack of high-resolution structural information on the
PG-PGIP complex does not allow to precisely identify the con-
tacting residue in PGIP. Moreover, both PGs and PGIPs are gly-
cosylated proteins (Caprari et al., 1993; Lim et al., 2009); however,
whether glycosylation plays a role in the PGIP-PG interaction
requires further investigation. For example, glycosylation in pearl
millet PGIP was found to affect pH and temperature stability of
the protein but not its capability of inhibiting AnPGII (Prabhu
et al., 2015).

A single PGIP may display different mechanisms of PG inhi-
bition (competitive, non competitive and mixed) suggesting that
the protein is highly versatile in recognizing different epitopes
of various PGs (Federici et al., 2001; King et al., 2002; Sicilia
et al., 2005; Bonivento et al., 2008). Consequently, many 3D-
models based on docking predictions have been proposed so far
(Sicilia et al., 2005; Maulik et al., 2009; Prabhu et al., 2014). Tech-
niques such as the mass amide exchange mass spectrometry in
the case of AnPGII and FpPG and the Small Angle X-ray Scat-
tering (SAXS) in the case of FpPG and ClPG have produced
models that, in some cases, are discordant. For example, while the
mass amide exchange mass spectrometry predicts that the area of
FpPG in contact with PvPGIP2 is located at the N-terminus and
predominantly on the underside of the enzyme beta-barrel struc-
tures (Gutierrez-Sanchez et al., 2012), the SAXS analysis indicates
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TABLE 2 | Bulk PGIP purified from plants and tested against microbial PGs. These data update those reported in De Lorenzo et al. (2001).

Plant Tissue PGIP

preparation

Polygalacturonases References

Inhibited Not inhibited

Tomato (Solanum

lycopersici L.)

Stem Crude extract Ralstonia solanacearum Schacht et al., 2011

Tobacco (Nicotiana

tabacum L.)

Nectar Botrytis cinerea Thornburg et al., 2003

Potato (Solanum

tuberosum L.)

Gel

chromatography

Aspergillus niger Fusarium solani (isolate

3122)

Machinandiarena et al., 2001

Fusarium moniliforme§

Fusarilm solani isolate

1402

Common Bean

(Phaseolus vulgaris L.)

Leaves PG-Sepharose

chromatography

Fusarium anthophilum Fusarium verticillioides Raiola et al., 2008

Fusarium circinatum Fusarium proliferatum

ISPAVEmc 1189

Fusarium subglutinans. Fusarium nygamai

Fusarium proliferatum

isolate 1152

Fusarium proliferatum

PVS-Fu 64

Fusarium sacchari

Fusarium fujikuroi

F. thapsinum

Fusarium moniliforme§

FC-10

Fusarium moniliforme§

PD

Sella et al., 2004

Leek (Allium

ampeloprasum L.)

Basal leaves Mono-S

chromatography

Fusarium anthophilum Raiola et al., 2008

Fusarium circinatum

Fusarium subglutinans

Fusarium proliferatum

Fusarium sacchari

Fusarium fujikuroi

Fusarium verticillioides

Fusarium proliferatum

ISPAVEmc 1189

Fusarium nygamai

Asparagus (Asparagus

officinalis L.)

White spear Mono-S

chromatography

Fusarium anthophilum Raiola et al., 2008

Fusarium circinatum

Fusarium subglutinans.

Fusarium proliferatum

Fusarium sacchari

Fusarium fujikuroi

Fusarium verticillioides

Fusarium proliferatum

ISPAVEmc 1189

Fusarium nygamai

Pepper (Capsicum

annuum L.)

Fruit Ion-exchange

chromatography

Colletotrichum

gleosporoides,

Shivashankar et al., 2010

Colletotrichum capsici,

Colletotrichum

lindemuthianum

Sclerotium rolfsi

Fusarium moniliforme§

(Continued)
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TABLE 2 | Continued

Plant Tissue PGIP

preparation

Polygalacturonases References

Inhibited Not inhibited

Guava (Psidium

guajava L.)

Fruit Purified using a

Sephadex G-100

Aspergillus niger Deo and Shastri, 2003

“Oroblanco” grapefruit

hybrid (Citrus grandis × C.

paradisi Macf.)

Fruit Anion exchange

chromatography

Penicillium italicum D’hallewin et al., 2004

Botrytis cinerea

Apple (Malus

domestica L.)

Fruit Colletotrichum acutatum Gregori et al., 2008

Fruit skin Partial purified Botryosphaeria dothidea Glomerella cingulata Lee et al., 2006

Parenchymal

tissues

Partial purified Monilia fructigena Buza et al., 2004

Cantaloupe (Cucumis

melo L.)

Fruit Cation exchange

chromatography

Phomopsis cucurbitae Didymella bryoniae Fish and Davis, 2004

Aspergillus niger Rhizopus PG

Fusarium solani Fusarium verticillioides

Cotton (Gossypium

hirsutum L.)

Stem PG-affinity

chromatography

Aspergilus niger James and Dubery, 2001

Pear (Pyrus communis L.) Fruit Partial purified Verticillium dahliae Ladu et al., 2012; Faize

et al., 2003Botrytis cinerea

Venturia nashicola

Pearl millets (Pennisetum

glaucum (L) R. Br.)

Seedlings Crude extract Aspergilus niger Prabhu et al., 2012

Grass pea (Lathyrus

sativus L.)

Seeds Gel-filtration

chromatography

Aspergilus niger Tamburino et al., 2012

Rhizopus spp

Orange (Citrus reticulate

L.)

Fruit Partial purified Diaprepes abbreviatus Doostdar et al., 1997

Blue mustard (Chorispora

bungeana)

Leaves, stem,

root

Partial purified Aspergillus niger Di et al., 2009

Stemphylium solani

Ginseng

(Panax ginseng L.)

Crude extract Colletotrichum

gloeosporioides

Sathiyaraj et al., 2010

Phythium ultimum

Fusarium oxysporum

Rhizoctonia solani

Bread wheat (Triticum

aestivum L.)

Leaves Cation exchange

chromatography

Cochliobolus sativus Aspergillus niger (EPG I

and II)

Kemp et al., 2003

Cryphonectria

parasitica

Postia placenta

Fusarium moniliforme§

Colletotrichum

lindemuthianum

Aspergillus niger

exopolygalacturonase

Ralstonia

solanacearum

(Continued)

Frontiers in Plant Science | www.frontiersin.org 6 March 2015 | Volume 6 | Article 146

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Kalunke et al. PGIP and crop protection

TABLE 2 | Continued

Plant Tissue PGIP

preparation

Polygalacturonases References

Inhibited Not inhibited

Durum wheat

(Triticum turgidum ssp.

dicoccoides

Leaves Crude extract Fusarium graminearum Fusarium phyllophylum Janni et al., 2013

Bipolaris sorokiniana

Stenocarpella maydis

§Reclassified as Fusarium phyllophilum (Mariotti et al., 2008).

that the protein region in contact with PvPGIP2 is located at
the C-terminus of the enzyme and includes the loops surround-
ing the active site cleft. A site-directed mutagenesis analysis has
been used to validate this second view (Benedetti et al., 2013).
In general, low resolution techniques such as SAXS analysis or
mass amide exchange mass spectrometry require validation by
site-directed mutagenesis to locate the contacting residues in a
protein complex.

The X-ray crystallography, successfully used to solve sev-
eral high-resolution structures of PGs (van Santen et al., 1999;
Federici et al., 2001; Bonivento et al., 2008) and that of PvPGIP2
(Di Matteo et al., 2003), was so far unsuccessful in the case
of the PG-PGIP complex. This is probably due to the intrin-
sic instability of the PG-PGIP interaction, which only occurs,
under apoplastic conditions of pH and ionic strength, through
the contact of only a few, sometimes only one, residues (Leckie
et al., 1999). The use of a cross-linker for stabilizing the PG-PGIP
complex coupled to techniques that allow the protein analysis
directly in solution, such as SAXS and NMR spectroscopy (Wand
and Englander, 1996; Nietlispach et al., 2004), may be a valid
alternative in order to obtain a detailed map of the contacting
residues but this requires a subsequent validation by site-directed
mutagenesis.

PGIPs Engineered in Dicot Crops

The important role of PGIP in plant defense has been demon-
strated by overexpressing pgip genes in several plant species. In
these experiments, the source of the used genes was either the
same plant species utilized for transformation or a different one
(Table 4). The transformation of the model plant A. thaliana
has been particularly useful to highlight the potentiality of sev-
eral pgip genes, namely the endogenous Atpgip1 and Atpgip2,
the bean Pvpgip2 and the rapeseed (Brassica napus) Bnpgip1 or
Bnpgip2. Arabidopsis plants overexpressing Atpgip1 or Atpgip2
showed a significant reduction of disease symptoms caused by
B. cinerea (Ferrari et al., 2003) and were less susceptible against
the hemibiotrophic fungal pathogen F. graminearum (Ferrari
et al., 2012), the major causal agent of Fusarium head blight
(FHB). Conversely, silencing of their expression using an anti-
sense Atpgip, led to enhanced susceptibility (Ferrari et al., 2006).
Arabidopsis plants expressing Pvpgip2, encoding an efficient
inhibitor of the B. cinerea PG (ten Have et al., 1998), showed
reduction of disease symptoms caused by B. cinerea and those
expressing the rapeseed genes Bnpgip1 and Bnpgip2 delayed the
symptoms caused by S. sclerotiorum (Bashi et al., 2013).

The protective potential of pgip genes has also been demon-
strated in transgenic crops. The first transgenic crop plant
obtained by using a pgip gene and tested against pathogenic
microorganisms were tomatos expressing PvPGIP1 from P. vul-
garis. These plants, however, did not show any increased resis-
tance against Fusarium oxysporum f. sp. lycopersici, B. cinerea,
and Alternaria solani. The negative result was due to the inability
of PvPGIP1 to inhibit the PGs secreted by these fungi, as shown
by in vitro inhibition assays and led to discovery of other forms of
PGIPs and eventually to the existence of a complex PGIP family
in French bean (Desiderio et al., 1997). A few years later, trans-
genic tomato plants expressing a pear (Pyrus communis L.) PGIP
(PcPGIP) capable of inhibiting the PGs secreted by B. cinerea,
showed a reduction of disease lesions caused by this fungus both
on ripening fruit (15% reduction) and leaves (about 25% reduc-
tion). The initial establishment of infection was not affected in
the transgenic plants but the later colonization of the host tissue
was significantly reduced (Powell et al., 2000).

Tobacco has been the most used crop plant for testing the
effect of PGIP expression on resistance to pathogens. Constitutive
and high-level expression of Pvpgip2 (from P. vulgaris), Vvpgip1
(from V. vinifera), Capgip1 [from pepper (Capsicum annum)]
and Brpgip2 (from B. rapa) have been obtained in transgenic
tobacco. Plants expressing PvPGIP2 showed about 35% reduction
of symptoms caused by B. cinerea (Manfredini et al., 2005) and,
more recently, were shown to display reduced disease symptoms
against Rhizoctonia solani and two oomycete pathogens, Phy-
tophthora parasitica var. nicotianae and the blue mold-causing
agent Peronospora hyoscyami f. sp. tabacina (Borras-Hidalgo
et al., 2012). Notably, the experiments against P. hyoscyami f.sp.
tabacina were performed in the field during seasonal condi-
tions that favor the pathogen spreading. In agreement with what
observed under controlled conditions, resistance of transgenic
plants was comparable to that exhibited by Nicotiana species
(N. rustica, N. debneyi and N. megalosiphon) that are highly
resistant to blue mold disease. These transgenic plants express-
ing PvPGIP2 represented the first example of PGIP-expressing
plants subjected to field trails. Recently, transgenic rice express-
ing OsPGIP1 showed also improved resistance against Rhizocto-
nia solani in field experiments (Wang et al., 2014b).

Transgenic tobacco plants expressing the grapevine pgip gene
Vvpgip1 (Joubert et al., 2006) also showed a reduced (from 47
to 69%) disease susceptibility to B. cinerea infection. As for
plants expressing PvPGIP2, the resistance phenotype correlated
with the accumulation of VvPGIP1 as well as with its capabil-
ity of inhibiting the activity of PG secreted by B. cinerea, namely

Frontiers in Plant Science | www.frontiersin.org 7 March 2015 | Volume 6 | Article 146

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Kalunke et al. PGIP and crop protection

TABLE 3 | Pgip genes individually expressed in plants or in heterologous systems and tested for inhibition activity against microbial PGs.

Species Gene Heterologous systems Origin of purified PG References

Inhibited Not inhibited

Common bean (Phaseolus

vulgaris L.)

PvPGIP1 Transgenic tomato Fusarium oxysporum Desiderio et al., 1997

Botrytis cinerea

Alternaria solani

Stenocarpella maydis Berger et al., 2000

Aspergillus niger

PvPGIP1

PvPGIP2

PvPGIP3

PvPGIP4

PVX/Nicotiana benthamiana Aspergillus niger Lygus rugulipennis D’Ovidio et al., 2006; Frati

et al., 2006Fusarium moniliforme§ Adelphocoris lineolatus

Stenocarpella maydis Orthops kalmi

Colletotrichum acutatum Closterotomus norwegicus

Botrytis cinerea

PvPGIP2 Transgenic wheat Bipolaris sorokiniana Claviceps purpurea Janni et al., 2008; Volpi

et al., 2013F. graminearum

Transgenic Brassica napus Rhizoctonia solani Akhgari et al., 2012

Transgenic sugarbeet Fusarium phyllophilum FC10 Mohammadzadeh et al.,

2012

PVX/Nicotiana benthamiana Fusarium phyllophilum FC-10 Fusarium phyllophilum 25305 Mariotti et al., 2008

Fusarium phyllophilum 10241 Fusarium verticillioides 62264

Fusarium phyllophilum 25219 Fusarium verticillioides PD

Fusarium phyllophilum 25218

Runner bean (Phaseolus

coccineus L.)

PcPGIP2 PVX/Nicotiana benthamiana Fusarium moniliforme§ Farina et al., 2009

Aspergillus niger

Colletotrichum lupini

Botrytis cinerea

Tepary bean (Phaseolus

acutifolius L.)

PaPGIP2 PVX/Nicotiana benthamiana Fusarium moniliforme§ Farina et al., 2009

Aspergillus niger

Colletotrichum lupini

Botrytis cinerea

Lima bean (Phaseolus

lunatus L.)

PlPGIP2 PVX/Nicotiana benthamiana Fusarium moniliforme§ Farina et al., 2009

Aspergillus niger

Colletotrichum lupini

Botrytis cinerea

Soybean (Glycine max L.) GmPGIP1

GmPGIP2

PVX/Nicotiana benthamiana Sclerotinia sclerotiorum PGb D’Ovidio et al., 2006; Frati

et al., 2006Sclerotinia sclerotiorum PGa

Fusarium moniliforme§

Botrytis aclada

Aspergillus niger

Botrytis cinerea

Colletotrichum acutatum

Fusarium graminearum

Lygus rugulipennis

Adelphocoris lineolatus

Orthops kalmi

Closterotomus norwegicus

(Continued)
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TABLE 3 | Continued

Species Gene Heterologous systems Origin of purified PG References

Inhibited Not inhibited

GmPGIP3 PVX/Nicotiana benthamiana Sclerotinia sclerotiorum PGb D’Ovidio et al., 2006; Frati

et al., 2006Sclerotinia sclerotiorum PGa

Fusarium moniliforme§

Botrytis aclada

Aspergillus niger

Botrytis cinerea

Colletotrichum acutatum

Fusarium graminearum

GmPGIP4 PVX/Nicotiana benthamiana Sclerotinia sclerotiorum PGb D’Ovidio et al., 2006; Frati

et al., 2006Sclerotinia sclerotiorum PGa

Fusarium moniliforme§

Botrytis aclada

Aspergillus niger

Botrytis cinerea

Colletotrichum acutatum

Fusarium graminearum

GmPGIP7 PVX/Nicotiana benthamiana Sclerotinia sclerotiorum

Fusarium graminearum Kalunke et al., 2014

Colletotrichum

acutatum

Aspergillus niger

Pepper (Capsicum

annum L.)

CaPGIP1

CaPGIP2

Escherichia coli Alternaria alternata Wang et al., 2013

Colletotrichum nicotianae

Rapeseed (Brassica

napus L.)

BnPGIP1 Pichia pastoris Sclerotinia sclerotiorum PG6 Bashi et al., 2013

Chinese cabbage (Brassica

rapa L.)

BrPGIP2 Transgenic Brassica rapa Pectobacterium carotovorum Hwang et al., 2010

Botryosphaeria dothidea

BrPGIP2 Escherichia coli Sclerotinia sclerotiorum HuangFu et al., 2014

Grapevine (Vitis vinifera L.) VvPGIP1 Transgenic tobacco Botrytis cinerea PGI Botrytis cinerea PG3 Joubert et al., 2006

Botrytis cinerea PG4 Aspergillus niger PGII

Botrytis cinerea PG6

Aspergillus. niger PGA

Aspergillus niger PGB

Aspergillus niger PGI Botrytis cinerea PG2 Joubert et al., 2007

Apple

(Malus domestica Borkh.)

MdPGIP1 Transgenic tobacco Colletotrichum lupini Aspergillus niger Oelofse et al., 2006

Botryosphaeria obtusa

Diaporthe ambigua

Transgenic potato Verticillium dahliae Gazendam et al., 2004

Pear (Pyrus communis L.) PpPGIP Transgenic grape Botrytis cinerea Agüero et al., 2005

Transgenic tomato Botrytis cinerea Powell et al., 2000

Transgenic persimmon Botrytis cinerea Tamura et al., 2004

(Continued)
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TABLE 3 | Continued

Species Gene Heterologous systems Origin of purified PG References

Inhibited Not inhibited

Raspberry (Rubus idaeus L.) RiPGIP Transgenic pea Stenocarpella maydis Richter et al., 2006

Colletotrichum lupini

Wheat

(Triticum aestivum L.)

TaPGIP1

TaPGIP2

PVX/Nicotiana benthamiana Fusarium phyllophylu Janni et al., 2013

Stenocarpella maydis

Bipolaris sorokiniana

Fusarium graminearum

Rice (Oryza sativa L.) OsPGIP1 PVX/Nicotiana benthamiana Sclerotinia sclerotiorum Janni et al., 2006

Fusarium moniliforme§

Fusarium graminearum

Aspergillus niger

Botrytis cinerea

OsFOR1 Escherichia coli BL21 Aspergillus niger PG Jang et al., 2003

Pearl millet [Pennisetum

glaucum (L.) R. Br.]

PglPGIP1 Escherichia coli SHuffle® T7

Express

Aspergillus niger, AnPGII Fusarium moniliforme,

FmPGIII

Prabhu et al., 2014

Arabidopsis thaliana AtPGIP1

AtPGIP2

Transgenic Arabidopsis Colletotrichum gloeosporioides Aspergillus niger Frati et al., 2006; Ferrari

et al., 2012, 2003Stenocarpella maydis Fusarium moniliforme§

Botrytis cinerea Lygus rugulipennis

Fusarium graminearum Adelphocoris lineolatus

Orthops kalmi

Closterotomus norwegicus

§Reclassified as Fusarium phyllophilum FC10 (Mariotti et al., 2008).

BcPG1, BcPG3, and BcPG6. Several observations, however, sug-
gest that PGIPmay improve resistance bymechanisms other than
classical PGIP-PG inhibition. For example, non-infected trans-
genic tobacco plants expressing Vvpgip1 show modified expres-
sion patterns of genes involved in various metabolic pathways
(Alexandersson et al., 2011) and an altered cell wall structure
(Nguema-Ona et al., 2013). In these plants, lignin accumulation
and arabinoxyloglucan-cellulose re-organization leads to a gen-
eral strengthening/reinforcing of the cell wall that may contribute
to an improved resistance against B. cinerea.

A reduction of disease symptoms (about 50%) caused by
Alternaria alternata and Colletotrichum nicotianae was also
observed in transgenic tobacco lines expressing the pepper
CaPGIP1 and, once again, resistance correlated with the inhi-
bition capacity of purified CaPGIP1 against PG activity of both
fungal pathogens (Wang et al., 2013).

Within the Solanaceae family, transgenic potato (Solanum
tuberosum) plants expressing the gene StPGIP1 from S. torvum
showed a 50% reduction of wilt disease symptoms caused by
Verticillium dahliae and a normal plant growth (Guo et al.,
2014). Transgenic potato plants overexpressing the apple pgip1
gene showed protection against the same fungal pathogen but
displayed an extended juvenile phase (Gazendam et al., 2004).

Transgenic grapevine (V. vinifera) plants constitutively
expressing the pear PcPGIP gene represent an interesting exam-
ple of the potential of PGIP for protection against pathogens

other than fungi and oomycetes. These plants show a delayed
development of the Pierce’s disease (PD) caused by bacterial
pathogen Xylella fastidiosa (Agüero et al., 2005). Not only leaf
scorching and Xylella titre were reduced but also plants showed
a better re-growth after pruning compared to infected untrans-
formed controls. Moreover, an inverse dose-effect relationship
was shown between development of PD and levels of PcPGIP
activity in the tissues. The improved resistance of the grapevine
plants expressing PcPGIP against a bacterial pathogen was unex-
pected, because until then the PGIP inhibition activity was
thought to be limited to fungal and insect PGs (Cervone et al.,
1990; Johnston et al., 1993; D’Ovidio et al., 2004b). It was later
shown that pear PcPGIP inhibits the PG encoded by X. fastid-
iosa and that PG activity is a virulence factor of this pathogen
(Roper et al., 2007; Pérez-Donoso et al., 2010). The observa-
tion that PcPGIP is present in xylem exudates of non-transgenic
scions grafted on transgenic rootstocks expressing PcPGIP sug-
gests that grafting of non transgenic varieties on transgenic root-
stocks represents, in this case, a useful agronomical practice for
plant protection (Agüero et al., 2005).

The results obtained with X. fastidiosa prompted further
investigations on the capability of PGIP of controlling bacte-
rial diseases (summarized in Table 4). Transgenic tobacco plants
expressing B. rapa BrPGIP2 were resistant against Pectobac-
terium carotovorum, the causal agent of the soft rot disease,
with a strong reduction (66–88%) of the symptoms as compared
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TABLE 4 | List of transgenic crops produced using the gene coding for PGIP and their response to fungal, oomycetes or bacterial phytopathogens.

Transgenic crops PGIP genec Tested against fungal, oomycetes or bacterial

phytopathogens

References

Tomatoa (Solanum

lycopersicum L.)

PcPGIP Botrytis cinerea* Powell et al., 2000, 1994

PvPGIP1 Fusarium oxysporum f.sp. lycopersici† Desiderio et al., 1997

Botrytis cinerea†

Alternaria solani†

Tobaccoa (Nicotiana

tabacum L.)

PvPGIP2 Botrytis cinerea* Manfredini et al., 2005

Rhizoctonia solani* Borras-Hidalgo et al., 2012

Phytophthora parasitica*

Peronospora hyoscyami*

CaPGIP1 Alternaria alternata* Wang et al., 2013

Colletotrichum nicotianae*

VvPGIP1 Botrytis cinerea* Joubert et al., 2006

BrPGIP2 Pectobacterium carotovorum* Hwang et al., 2010

Potatoa (Solanum

tuberosum L.)

MdPGIP1 StPGIP Verticillium dahliae†

Verticillium dahliae*

Gazendam et al., 2004; Guo

et al., 2014

Brassica rapaa BrPGIP2 Pectobacterium carotovorum* Hwang et al., 2010

Rapeseeda

(Brassica napus L.)

BnPGIP2 Sclerotinia sclerotiorum* HuangFu et al., 2014

Peaa

(Pisum sativum L.)

RiPGIP Glomus intraradices9 Hassan et al., 2012

Grapevinea

(Vitis vinifera L.)

Ricea (Oriza sativa L.)

PcPGIP OsPGIP1 Botrytis cinerea* Agüero et al., 2005; Wang et al.,

2014bXylella fastidiosa*

Rhizoctonia solani

Wheatb

(Triticum aestivum L.,

Triticum durum Desf.)

PvPGIP2GmPGIP3 Bipolaris sorokiniana* Janni et al., 2008

Fusarium graminearum* Ferrari et al., 2012

Claviceps purpurea†

Bipolaris sorokiniana*

Gaeumannomyces graminis var. tritici*

Volpi et al., 2013; Wang et al.,

2014a

Arabidopsis thaliana

L.a
PvPGIP2 Botrytis cinerea* Manfredini et al., 2005

AtPGIP1 AtPGIP2 Fusarium graminearum* Ferrari et al., 2012

BnPGIP1BnPGIP2 Sclerotinia sclerotiorum* Bashi et al., 2013

aThe transgenic gene was under control of CaMV 35S promoter.
bThe transgenic gene was under control of Ubiquitin promoter.
cPc, Pyrus communis; Pv, Phaseolus vulgaris; Ca, Capsicum annum; Vv, Vitis vinifera; Br, Brassica rapa; Md, Malus domestica; St, Solanum torvum; Ri, Rubus idaeus; Ac, Actinidia

deliciosa; At, Arabidopsis thaliana; Bn, Brassica napa.

*Showed enhanced resistance.
†No evidence of enhanced resistance.
9No effect on mycorrhization.

to wild-type plants (Hwang et al., 2010). The resistance cor-
related with the inhibitory activity against P. carotovorum PG
activity found in the total protein extracts of the transgenic
plants (Hwang et al., 2010). Also chinese cabbage (B. rapa ssp.
pekinensis) plants overexpressing BrPGIP2 showed higher resis-
tance against P. carotovorum and produced normal looking pods-
like structures with no viable seeds. Combination of crossing
with non-transgenic plants did not restore fertility of the trans-
genic plants, suggesting that mechanisms such as ploidy changes
occurring during the tissue culture stage or changes in cell-wall
architecture of sexual organs are responsible for the abnormality
(Hwang et al., 2010).

No phenotypic abnormalities were, instead, found in trans-
genic tobacco plants expressing BrPGIP2 (Hwang et al., 2010),
nor in rapeseed plants overexpressing the B. napus Bnpgip2. The
latter plants displayed a significant reduction of rot caused by the
necrotrophic fungal pathogen S. sclerotiorum (HuangFu et al.,
2014).

Additional PGIP-transgenic crops include pea (Pisum
sativum L.), transformed with Ripgip from raspberry (Rubus
idaeus L.) (Richter et al., 2006), persimmon (Diospyros kaki
L.) and apple (Malus domestica Borkh.) transformed with
pear PcPGIP (Szankowski et al., 2003; Tamura et al., 2004),
sugarbeet (Beta vulgaris L.) transformed with bean Pvpgip2

Frontiers in Plant Science | www.frontiersin.org 11 March 2015 | Volume 6 | Article 146

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Kalunke et al. PGIP and crop protection

(Mohammadzadeh et al., 2012), chickpea transformed with
either Ripgip or a pgip gene from kiwi fruit (Senthil et al., 2004),
tobacco transformed with PpPGIP gene from Pyrus pyrifolia
Nakai (Liu et al., 2013) and maize (Zea mays L.) transformed
with bean Pvpgip1 (O’Kennedy et al., 2001). The response of
these plants to pathogens has not been reported yet. Transgenic
pea plants expressing RiPGIP were instead evaluated for their
response to beneficial microorganisms. Glomus intraradices, an
arbuscular mycorrhizal fungus, colonized roots of transgenic
plants at an extend comparable to that observed in control non
transgenic plants, indicating that the expression of RiPGIP does
not affect mycorrhization (Hassan et al., 2012).

PGIPs Engineered in Monocot Crops

Although the low pectin content of cereal species like wheat
and rice indicates that this cell wall component may have a
marginal role during infection, results show that the expres-
sion of PGIP in transgenic plants limits some diseases caused by
fungal pathogens (Janni et al., 2008; Ferrari et al., 2012; Wang
et al., 2014a,b). In our labs, the bean Pvpgip2 gene was used
under the constitutive promoter of the maize unbiquitin gene
(Ubi-1) to transform both durum and bread wheat by particle
bombardment. PvPGIP2 was correctly targeted to the apoplast
and the transgenic plants did not show any major morpholog-
ical and growth defects. Transgenic wheat showed a significant
reduction (46–50%) of foliar spot blotch symptoms caused by
the hemibiotrophic fungal pathogen Bipolaris sorokiniana and
improved resistance (25–30%) against the hemibiotrophic fun-
gal pathogen F. graminearum (Ferrari et al., 2012), the major
causal agent of FHB in wheat. A reduced degradability of the
transgenic tissue by PG treatments correlated with the capacity of
PvPGIP2 to inhibit PG activity of B. sorokiniana and less strongly
PG of F. graminearum (Janni et al., 2008; Ferrari et al., 2012). An
interesting aspect of the wheat plants expressing PvPGIP2 is that,
under moderate infection with F. graminearum, the reduced FHB
symptoms are concomitant with a greater amount of total starch
in the grains as compared to control plants (D’Ovidio et al., 2012).
On the other hand, wheat plants expressing PvPGIP2 were sus-
ceptible to the biotrophic fungal pathogen Claviceps purpurea,
the causal agent of ergot disease probably because PvPGIP2 is
not able to inhibit the activity of C. purpurea CpPG1 and CpPG2
(Volpi et al., 2013). Recently, transgenic wheat expressing the
soybean GmPGIP3 was shown to be resistant to both take-all and
common root rot diseases caused by the fungal pathogen Gaeu-
mannomyces graminis var. tritici and B. sorokiniana, respectively;
symptoms were reduced of about 47–83% and 42–60%, respec-
tively (Wang et al., 2014a). Similarly, the expression of OsPGIP1
in transgenic rice enhanced resistence against Rhizoctonia solani
in field tests and resistance was related with the expression levels
of OsPGIP1 (Wang et al., 2014b).

Concluding Remarks and Future
Challenges

The results reported in this review clearly indicate that PGIP is
useful to improve resistance in different crop species. High-level

expression of PGIP does not prevent infection but limits sig-
nificantly the colonization of the host tissue with a consequent
positive impact on crop yield and product quality. The efficacy of
PGIP to control diseases has been demonstrated against fungi,
oomycetes and bacteria and is equally efficient against necro-
rophic and hemibiotrophic pathogens. The experiments per-
formed with biotrophs do not allow to draw any clear conclu-
sion since the only fungal biotrophic pathogen analyzed, C. pur-
pures, produced PG activity that was not inhibited by the PGIP
expressed in the transgenic plants (Volpi et al., 2013). The iden-
tification and development of PGIPs with stronger and broader
inhibitory capacities may be useful to utilize these proteins in
crop protection. Germplasm analysis to identify novel PGIPs
is still limited (Farina et al., 2009) and the initial attempts
to drive in vitro evolution of PGIP to generate proteins with
improved inhibition properties have not been particularly suc-
cessful (Benedetti et al., 2011a). Structural studies should be
implemented in order to obtain a detailed map of the contacts
between various PGs and PGIPs. This is necessary not only for
constructing novel inhibitors with stronger activities but also for
future programs of genome editing in which the existing genes of
a plant species may be ameliorated to better adapt to new virulent
strains of microorganisms evolving in nature.

The available results support the notion that inhibition of
the microbial PG by PGIP is a prerequisite of the inhibitors
to confer resistance to transgenic plants against microbes. The
delay of symptoms is often related to the capacity of PGIP to
inhibit the PG activity secreted by the pathogens and, conse-
quently, to reduce both tissue maceration and favor the release
of OGs, as summarized in Figure 2. However, this aspect of the
PGIP’s biology needs further investigation. In some cases PGIP
has been reported to confer resistance without any evidence of
PG-inhibition in vitro (Joubert et al., 2006). Moreover, some evi-
dence suggests that the capability of reducing tissue maceration is
associated with the property of PGIP to bind pectin, likely shield-
ing this component of the cell wall from PG activity (Spadoni
et al., 2006). In this regard the observation that transgenic plants
expressing PGIPs exhibit an altered gene expression and cell wall
composition is also intriguing. It is not yet clear the mechanism
that links the ectopic expression of PGIP to alteration of gene
expression and whether this contributes to disease resistance
(Alexandersson et al., 2011; Nguema-Ona et al., 2013).

An important but very little explored aspect of the PGIP biol-
ogy is its possible role in processes of growth and development.
Although plants overexpressing PGIPs do not show obviousmor-
phological alterations, indeed several reports point to PGIP as
a player in development. PGIP are induced, not only by phos-
phate deficiency, but also by auxin treatment and in mutants
defective in SIZ1, a SUMO (small ubiquitin-related modifier) E3
ligase that is involved in several stress responses, including Pi
starvation, and flowering (Sato and Miura, 2011). Suppression of
PGIPs under the control ABA insensitive 5 (ABI5) transcription
factor accompanies promotion of seed germination by the per-
oxisomal ABC transporter PED3 (Kanai et al., 2010). Upregu-
lation of PGIP2 correlates with the acquisition of competence
to form green callus in an auxin-rich callus induction medium
(Che et al., 2007) and occurs in Arabidopsis tissue culture lines
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FIGURE 2 | A model for the role of PGIP in the defense

response against pathogens. Delay of symptoms is related to the

inhibitory activity of PGIP toward PGs secreted by the pathogens

and likely to the accumulation of oligogalacturonide (OG) elicitors,

which are recognized by WAK1 and likely other receptors not yet

characterized. Cell wall modification and pectin shielding could also

play a role. Signaling cascades activated by OGs are described in

Ferrari et al. (2013).

in which the expression of the peroxidases PRX33 and PRX34
is knocked down by antisense expression (O’Brien et al., 2012),
whereas PGIP1 was identified in a proteomic study performed on
Arabidopsis etiolated hypocotyls used as a model of cells under-
going elongation followed by growth arrest within a short time
(Irshad et al., 2008). Finally, both PGIP1 and PGIP2 are associ-
ated with cell wall stabilization at low pH under the control of
the zinc-finger protein STOP1 (Sensitive to Proton Rhizotoxic-
ity 1) and STOP2 (Kobayashi et al., 2014). A role of PGIP not
only in defense but also in growth and development implies that

the inhibitor may affect one or more of the many endogenous
PGs expressed by plants. This is also an unexplored aspect of the
PGIP biology and, at the moment, only one very old evidence is
available showing that PGIPmay have a plant-derived PG partner
(Cervone et al., 1990).
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