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The implication of organic acids in Cd and Ni translocation was studied in the halophyte
species Sesuvium portulacastrum. Citric, fumaric, malic, and ascorbic acids were
separated and quantified by HPLC technique in shoots, roots and xylem saps of plants
grown on nutrient solutions added with 50 µM Cd, 100 µM Ni and the combination
of 50 µM Cd + 100 µM Ni. Results showed that Cd had no significant impact on
biomass production while Ni and the combination of both metals drastically affected
plant development. Cadmium and Ni concentrations in tissues and xylem sap were
higher in plants subjected to individual metal application than those subjected to the
combined effect of Cd and Ni suggesting a possible competition between these metals
for absorption. Both metals applied separately or in combination induced an increase
in citrate concentration in shoots and xylem sap but a decrease of this concentration in
the roots. However, a minor relationship was observed between metal application and
fumaric, malic, and ascorbic acids. Both observations suggest the implication of citric
acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively
high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be
involved in metal chelation and thus contributes to heavy metal tolerance in this species.

Keywords: halophytes, phytoremediation, heavy metals, translocation, organic acids

Introduction

As a result of industrial activities, over-fertilization and improper disposal of wastes, pollution of
agricultural soils with heavy metals has become increasingly serious throughout the world. These
pollutants are characterized by their persistence in the environment and their highly toxic effects
to all living organisms (Wong et al., 2002; Rajkumar et al., 2009). Several heavy metals such as Cd,
Pb, Hg are non-vital elements and may be toxic even at low concentrations, mainly through their
high affinity for S and N atoms in the amino acid side chain (Wei et al., 2003). As a consequence,
these elements bind to essential sulfhydryl groups of enzymes or structural proteins, and compete
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with nutrients such as Ca, Fe, and Mg for transporters in cell
membrane (Carrier et al., 2003).

The accumulation of toxic metals in the environment exceed-
ing the threshold level may not only cause visible symptoms
of injury in plants, but also imposes serious health hazards to
animals and human beings if the contaminated plants are con-
sumed in diet. This type of pollution is more and more frequently
generated by power stations, heating systems, metal-working
industries, waste incinerators, urban traffic, cement factories or
as a by-product of phosphate fertilizers production (Prasad, 1995;
Sanità di Toppi and Gabbrielli, 1999). The cleanup of heavy met-
als contaminated soils is one of the most difficult task for envi-
ronmental engineering. In most cases, conventional traditional
physic–chemical methods are quite expensive and may lead to
serious soil alterations (Gardea-Torresdey et al., 2005).

Phytoremediation is based on the use of plants to remove or
degrade inorganic and organic pollutants from soils and water. It
has been proposed as a promising, environmentally friendly and
relatively cheap alternative to classical methods (McGrath et al.,
2001). This approach includes distinct strategies such as phy-
toextraction, phytostabilization, phytovolatilization, phytodegra-
dation, and phytofiltration (Garbisu and Alkorta, 2001). As far as
heavy metals are concerned, phytoextraction is especially suitable
since those pollutants could not be degraded. The phytoextrac-
tion process is based on three essential steps conditioning the
final deposition of metals in the shoots. The first one is the
pollutants absorption through root system followed by metal
transportation from the roots to the shoots and finally the detox-
ification and sequestration of metals within the shoot tissues.

As far as metal absorption is concerned, several stud-
ies demonstrated that plant roots are able to excrete a wide
range of organic compounds into their surrounding media to
enhance metal availability and facilitate their uptake by roots
(Cieslinski et al., 1997; Hall, 2002; Haoliang et al., 2007). These
compounds are commonly classified in two categories (i) high
molecular weight (HMW) and (ii) low molecular weight (LMW)
compounds (Watanabe and Osaki, 2002; Dalla Vecchia et al.,
2005; Rascio and Navari-Izzo, 2011). The first one includes
mucilage (mainly polysaccharides and polyuronic acid) and
ectoenzymes, while the latter mainly consists of organic acids,
sugars, phenols and various amino acids, including non-protein
amino acids such as phytosiderophores (Marschner et al., 2007).

Organic compounds are also involved in long distance
metal transport between roots and shoots (Lasat et al., 2000;
Ghnaya et al., 2013). X-ray absorption analysis indeed demon-
strated that metal ions are combined with oxygen or nitrogen
atoms in the xylem sap which suggests that their translocation
might involve organic acids or amino acids (Wei et al., 2007).
Cultivation of plants under metal constraints commonly induces
important accumulation of lowmolecular weight organic acids in
various plant organs and in the xylem-sap reinforcing the hypoth-
esis that these molecules are involved in root-to-shoot translo-
cation of several metal ions in the form of bound complexes
(Tatár et al., 1998; Haydon and Cobbett, 2007; Ghnaya et al.,
2013). For example, nickel exists in the form of Ni(II)-citrate
complexes in the leaves from Ni-hyperaccumulators species from
New Caledonia (Berazaín et al., 2007) while in Alyssum murale

X-ray experiments also demonstrated that citric acid was the
main ligand responsible for long distance transport of nickel
(Montargès-Pelletier et al., 2008)

Beside their contribution to heavymetal translocation, organic
acids may also be involved inmetal detoxification through chelat-
ing processes leading to reduction of the free ionic forms of
metals which are by far the most toxic forms. Also it was sug-
gested that the build-up in shoot citrate concentrations under
HMs exposure could be positively correlated with plant capa-
bility to detoxify and accumulate Cd in several plant species
(Krämer et al., 2000; Sun et al., 2006; Ghnaya et al., 2013). For
example, the Cd-hyperaccumulator Thlaspi caerulescens (syn.
Noccaea caerulescens) synthesizes more organic acids when sub-
jected to Cd2+ in order to reduce the reactivity of free Cd2+
ions with proteins thus allowing a high accumulation of Cd in
the shoots without injury symptoms (Salt et al., 1999; Pence et al.,
2000).

Sesuvium portulacastrum is a dicotyledonous halophyte
belonging to the Aizoaceae family and is commonly known
to accumulate large quantities of salts in its above ground
tissue. It constitutes a promising plant species for phytore-
mediation of heavy metal polluted soils (Zaier et al., 2010;
Ghnaya et al., 2013) but the precise role of organic acid in
the tolerance mechanisms of this species still needs to be
confirmed. Moreover, all data available for this species con-
cern plant exposure to one single heavy metal, although pol-
luted sites are frequently contaminated by several contami-
nants. The aim of this work was therefore to study the relation
between the accumulation of cadmium and nickel applied sep-
arately or concomitantly and organic acids concentrations in
roots, shoots and xylem sap to confirm the possible implica-
tion of these compounds in the translocation and sequestra-
tion of heavy metals in the halophyte species of S. portulacas-
trum.

Materials and Methods

Reagents
All solutions were prepared in MilliQ purified water (Millipore,
Molsheim, France). The standard solutions were prepared by
appropriate dilution of cadmium and nickel standard solutions
(1000 µg L−1, Merck, Darmstadt, Germany). All reagents used
were of analytical-reagent-grade. Organic acids were obtained
from Sigma (St. Louis, MO, USA), and the other reagents were
purchased from Merck (Darmstadt, Germany). Stock solutions
were prepared by dissolving malic, citric, fumaric, and ascorbic
acids in double distilled water and were kept at 4◦C. Analytical
standard solutions were prepared from these stock solutions by
serial dilutions.

Plant Material and Xylem Sap Collection
Sesuvium portulacastrum, was propagated by cuttings from
mother plants cultivated in greenhouse. Three cm-long stem seg-
ments with one node and two opposite leaves were sampled,
sterilized by a 5 min treatment in saturated calcium hypochlorite
solution and thoroughly washed with distilled water. They were
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then placed for 7 d in 1–10th strength aerated Hoagland solution.
Rhizogenesis took place after the first week.

The rooted cuttings were transferred for 21 days on an aer-
ated Hoagland’s complete nutrient solution (20 seedlings per
treatment) spiked with the appropriate levels of Cd, Ni singly
or in combination [control without heavy metals, 50 µM Cd,
100 µMNi and the combination (50 µMCd+ 100µMNi)]. The
Hoagland’s solution consisted of 5 mM Ca(NO3)2, 5 mM KNO3,
1 mM KH2PO4, 50 µM H3BO3, 1 mM MgSO4, 4.5 µM MnCl2,
3.8 µM ZnSO4, 0.3 µMCuSO4 and 0.2 µM (NH4)6Mo7O24 and
20 µM FeEDTA; pH was adjusted to 4.8 with HCl. The total vol-
ume of the solution was kept constant by adding deionised water
to compensate the water lost through plant transpiration, sam-
pling and evaporation. The solutions were changed every 3 days
and pH was adjusted daily.

After 21 days of treatment, 10 plants were harvested for anal-
ysis. Shoots were separated from roots, rinsed three times with
cold water and blotted between two layers of filter-paper. Roots
were dipped in a 0.01 M HCl cold solution to eliminate external
Ni or Cd adsorbed at the root surface according to Aldrich et al.
(2003). Roots were then rinsed three times with cold distilled
water and blotted with filter-paper. The xylem sap collection was
performed on 10 plants per treatment at the end of a 3 week
period. The shoots were excised 2 cm above the root and the
solution exuded from the cut surface, after discharging the first
drop, was considered xylem sap. Samples were collected bymeans
of trapping into a 1.5 mL plastic vial filled with a small piece
of cotton for 2 h after cutting. After determination of exuded
volumes, the xylem sap samples were stored at −20◦C until
analysis.

Sample Preparation
Roots and shoots were frozen in liquid nitrogen and then freeze-
dried. Samples were ground with a mortar and pestle to a fine
powder and 50 mg samples were sequentially extracted with
4 mL HCL 0.1 N the mixture was centrifuged for 15 min at
15,000 g. The separated supernatant was further ultracentrifuged
for 45 min at 15,000 g and the new supernatant was filtered
throughout a 0.22 µm Millipore filter. The xylem saps also were
filtered with sterile filters MILEX-GV of 0.22 µm (Millipore).

Instrumentation and Analytical Procedures
Organic acid samples were analyzed using a Varian HPLC sys-
tem with a tertiary gradient pump, a Gemini-NX reverse-phase
HPLC column (100 × 4.5 mm; Phenomenex, Torrance, CA,
USA), a variable wavelength UV/VIS detector and an autosam-
pler equipped with a refrigerated sample compartment (Varian
Canada Inc, Mississauga, ON, Canada). Samples were filtered
across a Nalgene nylon membrane filter (0.45-µm diameter) sup-
plied by Nalge Company (Rochester, NY, USA). The injected
sample volume was 20 µL in the case of shoot and root extracts
and 10 µL in the case of xylem sap. The organic acids were
eluted with 0.008 N H2SO4 /H2O at 1.0 ml min−1 flow under
isocratic conditions and monitored at 210 nm for malic, citric,
and fumaric acids, and at 245 nm for ascorbic acid. The acid
compounds were identified based on retention time and UV
spectra relative to standards. A multilevel calibration method

with daily prepared standard solutions was used for quantita-
tive determination of the acids. Each sample was analyzed in
triplicate.

Ten µL of the collected xylem saps were diluted in 5 mL of
0.1 N HNO3 before Cd and Ni (II) concentrations were deter-
mined by inductively coupled plasma-mass spectrometry by a
Varian 820 ICP-MS. For all themeasures by ICP-MS, an aliquot of
2 mg L−1 of an internal standard solution (45Sc, 89Y, 159Tb) was
added both to samples and calibration curve to give a final con-
centration of 20 mg L−1. The instrument was tuned daily with
a multi-element tuning solution for optimized signal-to-noise
ratio.

Statistical Analysis
ANOVAwith orthogonal contrasts and mean comparison proce-
dures were used to detect differences between treatments. Mean
separation procedures were conducted using the multiple range
tests with Fisher’s least significant difference (LSD; P < 0.05).

Results

Effects Metal Treatment on Plant Growth
and Development
The effect of Cd and Ni applied separately or together on S. por-
tulacastrum development was evaluated based on fresh biomass
production after 21 days of treatment. Our results (Figure 1)
indicated that 50 µM Cd had no significant impact on the
biomass production in this halophyte species. Hence under this
treatment, the reduction of biomass production did not exceed
25% as compared to control plants. In contrast, Ni alone as
well as the combination of both metals (Cd + Ni) significantly
reduced plant growth. This biomass reduction reached 35 and
49% as compared to control respectively under Ni and Cd + Ni
treatments.

Metals Concentrations in Root, Shoot, and
Xylem Sap
The variation of Cd and Ni concentrations in the shoots and the
roots of S. portulacastrum cultivated during 21 days in the pres-
ence of 50 µM Cd and 100 µM Ni applied separately or together
are given in Figure 2.

Results showed that both metals accumulated to a higher
extent in the roots than in the shoots. It is noteworthy that the
combination of Cd and Ni in the nutrient solution significantly
reduced the accumulation of Cd and Ni inside the root and the
shoot tissues. Hence metal (Cd or Ni) concentrations in tissues
under combined treatments represented only 50% of those mea-
sured when the metal (Cd or Ni) were added separately to the
nutrient solution. Such a behavior is in the favor of putative com-
petition between Cd2+and Ni2+ for the absorption process at the
root cell plasma membrane.

In the xylem sap (Figure 3), Cd and Ni were more con-
centrated than in the shoot both in individual and combined
treatments. Nevertheless, as reported for leaves and roots, the
simultaneous presence of Cd and Ni reduced the metal concen-
tration in the ascendant sap. Nickel was more concentrated in
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FIGURE 1 | Changes in fresh weights (FW; g plant−1 ) of Sesuvium portulacastrum subjected during 3 weeks to various treatments [(50 µM Cd,
100 µM Ni) and the combination of (50 µM Cd + 100 µM Ni )]. Means of eight replicates. Bars marked with same letter are not significantly different at p = 0.05.

FIGURE 2 | Variation in Cd concentrations in shoots (A) and roots (B) and Ni concentrations in shoots (C) and roots (D) in S. portulacastrum
cultivated during 21 days under different treatments: control without metal; 50 µM Cd; 100 µM Ni and the combination of (50 µM Cd + 100 µM Ni).
Means of eight replicates. Bars marked with same letter are not significantly different at p = 0.05.

the xylem sap as compared to Cd. The Cd and Ni concentrations
in xylem sap of S. portulacastrum exposed to 50 µM Cd and
100 µM Ni were 1300 and 1450 µg L−1, respectively. These

results confirm the high potential of this halophyte not only to
absorb, but also to translocate several metals from roots toward
the shoots.
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FIGURE 3 | Cadmium (A) and Nickel (B) concentrations in xylem saps of S. portulacastrum subjected during 21 days to different treatments. Means of
eight replicates. Bars marked with same letter are not significantly different at p = 0.05.

Modification of Organic Acid Concentrations
in Tissues Under Different Treatments
In order to evaluate the possible implication of organic acids in
Cd and Ni, translocation and/or chelation and tolerance in S.
portulacastrum, we estimated the concentrations of these com-
pounds in tissues of plant cultivated under different treatments
(Figures 4 and 5). Fumarate, ascorbate, citrate, and malate were
the major organic acids detected. Our analysis demonstrated that
malic and citric acids were the most abundant organic acids in
the roots and the shoots of this halophyte under different Cd
and Ni combination (Figures 4 and 5). Hence due to the low
modification in the fumaric and ascorbic acids contents in tis-
sues of plants exposed to metal stress as compared to controls,
we focused hereafter on the variation of malic and citric acids
concentrations.

The addition of 50 µM Cd and 100 µM Ni alone or in
combination reduced the malic acid concentration in the roots
(Figure 4) and in the shoots (Figure 5) of S. portulacastrum.
This reduction was of the same amplitude for Cd and Ni when
applied separately but was accentuated in response to a combined
application. These data suggest that heavy metals inhibited the
biosynthesis of malic acid.

Citric acid is the first metabolite synthesized by the Krebs
cycle. We demonstrated that citric acid concentration was
reduced in the roots of plants subjected to Cd, Ni, and Cd + Ni
(Figure 4). In contrast, the presence of both metals together or
separately in the culture medium induced a significant increase
of citrate concentrations in the shoot (Figure 5). This effect was
more obvious under combined Cd + Ni treatment since the rel-
ative increase compared to control plants was 55, 93 and 258%
under Cd, Ni, and Cd + Ni treatments, respectively.

This preliminary data showing the decrease of citrate con-
centration in the roots and its increase in the shoots sug-
gests the possible implication of this carboxylic acid in the
translocation of metal ions (Cd2+ and Ni2+) from the roots

to the shoots through the xylem vessels. The determination
of organic acid concentrations in the xylem sap (Figure 6)
showed that malic, ascorbic, and fumaric acids were detectable
in the xylem sap of control and metal-treated S. portulacas-
trum plants. However, the reduced and unchanged concen-
tration of malic, ascorbic, and fumaric acids in the xylem
sap under control and metal treatments (Figure 6) sug-
gest that these compounds are not involved in long dis-
tance transport of Cd and Ni in this species. In contrast,
citric acid concentration drastically increased in the xylem
sap of Cd and Ni-treated plants (Figure 6). The citric acid
concentration in the xylem was metal dose-dependent and
increased with increasing total metal concentration in the
medium as follow: 50 µM Cd < 100 µM Ni < 50 µM
Cd + 100 µMNi.

Discussion

Several recent works demonstrated that halophyte species are
more adapted to cope with abiotic stress including heavy met-
als than salt sensitive ones (Lefèvre et al., 2010; Zaier et al.,
2010; Amari et al., 2014; Taamalli et al., 2014). Hence it has been
demonstrated that S. portulacastrum, for example, is able to
accumulate Cd and Pb in the shoots without significant growth
reduction (Ghnaya et al., 2005; Zaier et al., 2010). These authors
and others (Amari et al., 2014; Taamalli et al., 2014) demon-
strated that halophyte plants may tolerate heavy metals more effi-
ciently than conventional glycophyte accumulator species such
as Brassica juncea. This capacity may be controlled by several
mechanisms of metal detoxification as the overproduction of
phytochelatins (Zaier et al., 2010) and chelation to organic acids
(Ghnaya et al., 2013). However, for plant responses to the combi-
nation of metals, only little data concerning halophyte species are
available.
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FIGURE 4 | Concentrations of organic acids in roots of S. portulacastrum subjected during 21 days to different treatments. Means of eight replicates.
Bars marked with same letter are not significantly different at p = 0.05.

FIGURE 5 | Concentrations of organic acids in shoots of S. portulacastrum grown in control and subjected during 21 days at different metal
treatments. Means of eight replicates. Bars marked with same letter are not significantly different at p = 0.05.

The tolerance to heavy metals in plants could be controlled by
two essential strategies: exclusion and accumulation. The exclu-
sion one signifies that a plant avoids or restricts the absorption
of metals while accumulation is directly related to the ability of
the plant to sequester metals inside the tissues. In our study, we
showed that S. portulacastrum is able to accumulate Cd and Ni
which confirm the previous results published by Ghnaya et al.
(2005, 2007) and Zaier et al. (2010, 2014) demonstrating that this
species adopts the second strategy. However, we also showed that,
the coexistence of both Cd and Ni in the medium reduced the
concentration of Cd2+ and Ni2+ in the tissues of this halophyte
suggesting a competitive interaction between both elements for
the absorption through the root cell membranes. The compe-
tition between bivalent metal-cations for absorption at the cell

membrane level was previously suggested (Ghnaya et al., 2007;
Assuncão et al., 2008; Zaier et al., 2014) and was attributed to the
low specificity of metal transporters and the chemical similarities
between cations (Zhao et al., 2002; Caille et al., 2005).

Previous studies reported that S. portulacastrum is able to
accumulate Cd, Pb, and As at levels to characteristic of accumu-
lator plant species (Ghnaya et al., 2005, 2013; Zaier et al., 2010;
Lokhande et al., 2011; Wali et al., 2014). Nevertheless, this study
is the first one, to the best of our knowledge, to show that this
halophyte is also able to accumulate 150 µg Ni g−1 DW in the
shoots, strengthening the hypothesis that metal tolerance mech-
anisms selected by this species are not specific to one single ele-
ment and may thus be used for phytoremedation of polymetallic
contaminated soils.
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FIGURE 6 | Concentrations of organic acids in xylem saps of S. portulacastrum grown during 21 days on control and metal enriched solutions. Means
of eight replicates. Bars marked with same letter are not significantly different at p = 0.05.

With respect to metal translocation, many studies suggested
that in the xylem vessel heavy metals are transported in com-
plexed forms with different ligands (Rascio and Navari-Izzo,
2011). Organic acids have been described as potential chela-
tors to facilitate Ni and Cd transport in some plant species
(Sarret et al., 2002; Sun et al., 2006). However, the implication of
organic acids in metal tolerance and cell accumulation is still
under discussion. In fact, the global mechanisms of metal hyper-
accumulation and detoxification in plants have not been fully
elucidated yet and it is widely accepted that they rely on a mul-
titude of interacting properties in plant. Several data suggest
that chelation with specific organic acids constitutes an impor-
tant procedure to efficiently transport and avoid the toxicity
of free reactive metal ions in plants (Wei et al., 2007, 2009).
For example, the Cd-hyperaccumulator T. caerulescens (syn.
Noccaea caerulescens) synthesizes more organic acids when sub-
jected to Cd2+ in order to reduce the reactivity of free Cd ions
with proteins (Salt et al., 1999; Pence et al., 2000; Callahan et al.,
2006).

The evaluation of the Pb translocation and accumulation in
S. portulacastrum and the possible implication of organic acids
in these processes were studied by Ghnaya et al. (2013). These
authors demonstrated that this halophyte accumulated 1470 µg
PbL−1 in its xylem sap when cultivated in the presence of 200µM
PbNO3. The Pb translocation in this species is facilitated by their
chelation to malic and citric acids (Ghnaya et al., 2013).

However, our study showed that Cd and Ni reduced the
biosynthesis of malate (Figures 4 and 5) when applied together
or separately in this species. It is possible that fumarase activity
responsible for conversion of fumarate to malate was inhibited.
However, if this explanation is valid, then fumarate concentra-
tion should increase in tissues, which is not the case in this work.
The second explanation, which is more logical and convincing,
postulates that due to the excessive need in citric acid to chelate
and transport Cd and Ni, disruption of the Krebs cycle leading

to a deficit in malic acid may occur. Finally malate may also be
excreted as exudates in the external medium (Mucha et al., 2010;
Ghnaya et al., 2013).

On the other hand, the decrease of citrate concentration in
the roots and its increase in the shoots suggests the possible
implication of this carboxylic acid in the translocation of metal
ions (Cd2+ and Ni2+) from the roots to the shoots through the
xylem vessels. In the same context, the build-up in shoot cit-
rate concentrations under different heavy metal exposure was
observed in many plant species (Irtelli and Navari-Izzo, 2006;
Sun et al., 2006; Ghnaya et al., 2013) and could be related to their
tolerance and shoot accumulation traits (Krämer et al., 2000;
Sun et al., 2006; Ghnaya et al., 2013). Also, we suggest that citric
acid could be highly implicated in the Cd and Ni transloca-
tion from roots to the shoots in this species. We demonstrated
here that the xylem sap of plants exposed to toxic metal was
more concentrated in citrate than in control plants. The citrate
concentration was also positively correlated with the xylem sap
Cd + Ni concentration. Hence, the high potential of Cd and
Ni translocation and shoot accumulation exhibited by S. portu-
lacastrum could be related and governed by the higher citrate
levels present in leaf cells as previously shown in studies on Pb
translocation and accumulation (Zaier et al., 2010; Ghnaya et al.,
2013).

Conclusion

Taken together the results obtained in this work indicated that
50 µM Cd does not induce significant change in the growth of
the halophyte S. portulacastrum which should be related to the
tolerance of this species against some heavy metals. However,
100 µMNi and the combination of both 50 µM Cd and 100 µM
Ni significantly reduced plant growth. Our data suggest possible
competition between Cd and Ni for root absorption. Among
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organic acids, ascorbic and fumaric acids showed the low-
est concentrations in the xylem sap and remained unchanged
under Cd and Ni application, while malic and citric acids
showed significant modification in response to Cd and Ni.
Malic acid concentration was reduced in roots and shoots of
plants exposed to toxic metals but remained unchanged in the
xylem sap. The citric acid concentration was reduced in roots of
plants treated with Cd and Ni, while an opposite behavior was
observed in the shoots and xylem sap. The positive correlation
between Cd2+ + Ni2+ and citric acid xylem-sap concentra-
tions strongly suggests the implication of citric acid in metal
translocation.

In addition, the enhancement of this acid concentration in
shoots is in favor of its possible implication in metal chelation
and sequestration in these organs. The main results related to the
organic acids concentration under metal stress indicate that cit-
ric acid could be directly involved in Cd and Ni translocation and
accumulation in the shoots of this halophyte.
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