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Intensive breeding has led to a narrowing in the genetic base of our major crops. In
wheat, access to the extensive gene pool residing in its many and varied relatives (some
cultivated, others wild) is hampered by the block on recombination imposed by the
Ph1 (Pairing homoeologous 1) gene. Here, the ph1b mutant has been exploited to
induced allosyndesis between wheat chromosomes and those of both Hordeum vulgare
(cultivated barley) and H. chilense (a wild barley). A number of single chromosome
Hordeum sp. substitution and addition lines in wheat were crossed and backcrossed
to the ph1b mutant to produce plants in which pairing between the wheat and the
non-wheat chromosomes was not suppressed by the presence of Ph1. Genomic
in situ hybridization was applied to almost 500 BC1F2 progeny as a screen for
allosyndetic recombinants. Chromosome rearrangements were detected affecting H.
chilense chromosomes 4Hch, 5Hch, 6Hch, and 7Hch and H. vulgare chromosomes 4Hv,
6Hv, and 7Hv. Two of these were clearly the product of a recombination event involving
chromosome 4Hch and a wheat chromosome.

Keywords: Triticum, Hordeum substitution and addition lines, Ph1 locus, wheat breeding, recombination, meiosis

Introduction

Bread wheat (Triticum aestivum) is one of the most important food crops of the world, and contin-
uous improvement in its productivity will be required to keep pace with global population growth.
The genetic base of the species is rather narrow, as its speciation was very recent (Salamini et al.,
2002; Riehl et al., 2013). However, a large number of sexually compatible species (some wild and
some cultivated) are known, and these represent a much needed reservoir of potentially exploitable
genetic variation.

The genome of an interspecific or (intergeneric) hybrid combines the haploid complements
of each of its sexual parents. Even though their genomes are closely related to one another, in
most cases, the chromosomes of wheat and those of its relatives fail to pair with one another and
thus allosyndetic recombination is rare. The failure of homoeologs (chromosomes from related
genomes but not completely homologous) to pair at meiosis is ensured by the wild type allele at the
Ph1 locus (Riley and Chapman, 1958; Sears and Okamoto, 1958; Sears, 1976). This gene imposes
diploid-like chromosome behavior during meiosis, even though the constituent sub-genomes of
this hexaploid species are known to be very closely related to one another. Deletion of the Ph1
locus allows homoeologs to pair relatively freely with one another (Moore, 2014), a situation which
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TABLE 1 | Plants used for crosses made to engineer individuals carrying a Hordeum sp. chromosome in a ph1b mutant background.

Initial parental lines Descendence

Wheat line (female), nomenclature and number of plants used CSph1ph1
(male)

F1 BC1F1 BC1F2

(4B)4Hch disomic substitution line CS(4B)4Hch 5 3 15 17 30

(4D)4Hch disomic substitution line CS(4D)4Hch 5 3 11 15 48

(5A)5Hch disomic substitution line CS(5A)5Hch 5 3 16 22 12

(5B)5Hch disomic substitution line CS(5B)5Hch 5 3 15 48 30

(5D)5Hch disomic substitution line CS(5D)5Hch 5 3 11 22 20

(7A)7Hch disomic substitution line CS(7A)7Hch 5 3 21 47 77

(7B)7Hch disomic substitution line CS(7B)7Hch 5 3 19 59 64

(7D)7Hch disomic substitution line CS(7D)7Hch 5 3 19 36 40

5Hch disomic addition line 5Hch addition 5 3 5 27 –

6Hch disomic addition line 6Hch addition 5 3 29 35 20

7Hch disomic addition line 7Hch addition 5 3 16 21 25

Total of wheat-H. chilense plants 55 33 177 349 366

2Hv disomic addition line 2Hv addition 5 3 11 20 –

4Hv disomic addition line 4Hv addition 5 3 15 52 46

6Hv disomic addition line 6Hv addition 5 3 23 33 23

7Hv disomic addition line 7Hv addition 5 3 21 28 38

Total of wheat-H.vulgare plants 20 12 70 133 107

Total 75 45 218 482 473

CS, wheat cv. Chinese Spring; Hch, H. chilense; Hv, H. vulgare.

TABLE 2 | DNA-based markers used as genotypic assays for the presence
of specific Hordeum sp. chromosomes.

Marker
name

Sequence of primers (5‘→3′) Hordeum
chromo-
some

Annealing
temperature
(◦C)

BAWU759-F TCGACATCTCTCCCATTTCCC 2H-S 50

BAWU759-R AACCAGATATGGATGCCAGG 2H-S 50

HVCSG-F* CACTTGCCTACCTCGATA
TAGTTTGC

2Hv-L 50

HVCSG-R* GTGGATTCCATGCATGCA
ATATGTGG

2Hv-L 50

BAWU303-F AATGTGCCTCCACAGGGTAG 4H-S 55

BAWU303-R GATACTGAGTGGAAAGCGGC 4H-S 55

BAWU808-F TGCCCCCAAACTTTATATGC 4H-L 55

BAWU808-R GAGGGTCTTCCTGTTGTGGA 4H-L 55

BAWU131-F GAACGCCAGCCAAATTGTAT 5H-S 60

BAWU131-R ACCATTTTGATCCTTCTGCG 5H-S 60

BAWU782-F CAACTTGGACAACACAACGC 5H-L 60

BAWU782-R CTTGTGCATGCGCAGAGTAT 5H-L 60

BAWU94-F TTTCAAGCAGAGCTGCAAAG 6H-S 55

BAWU94-R GCTTGCTGAGCGCTTTCTAC 6H-S 55

BAWU107-F CGCCTATTTCTGAGCTCCTG 6H-L 55

BAWU107-R CGAGTATGGGAGTGGCAGTT 6H-L 55

BAWU763-F AGAACCGAGATGAGGAATGTG 7H-S 58

BAWU763-R AGTCTCTTCGCGGAATCAAG 7H-S 58

BAWU550-F ATGCCACCATTTACAAAGCC 7H-L 50

BAWU550-R TTTCTGGGTCCTGATCCTTG 7H-L 50

F, Forward primer; R, reverse primer; Hv, H. vulgare; H, H. chilense and H. vulgare.

has been exploited for introgression purposes through the use
of the ph1b mutant (Riley et al., 1968b; Sears, 1977, 1981, 1982;
Khan, 1999; Lukaszewski, 2000; Qi et al., 2008; Liu et al., 2011;
Zhao et al., 2013).

Hordeum chilense, a species which is readily crossable with
wheat, is a diploid relative of cultivated barley. It has been
identified as a potential donor to wheat for a number of traits
of agronomic interest (Martín et al., 1998, 2000). The bread
wheat × H. chilense hybrid has been the source of a col-
lection of single (Hordeum) chromosome addition lines and
chromosome substitution lines in a bread wheat genetic back-
ground (Miller et al., 1982), and similar cytogenetic stocks
have been developed involving the cultivated barley (H. vul-
gare) chromosomes (Islam et al., 1978, 1981). The self-fertile
amphidiploid Tritordeum represents the product of chromo-
some doubling of the hybrid T. turgidum × H. chilense (Martín
and Sanchez-Mongelaguna, 1982). The presence of Ph1 main-
tains the integrity of Hordeum sp. chromosome(s) in all of
this germplasm, meaning that the introgression of favorable
non-wheat genes is inevitably accompanied by the inheri-
tance of a large number of unwanted ones. The experience
with introgression into wheat from other related species sug-
gests that this linkage drag can best be overcome by employ-
ing a ph1b-based strategy. Here, we describe progress made
with an introgression program using the ph1b mutant to
induce chromosome pairing and recombination between the
chromosomes of H. chilense or H. vulgare, and those of
wheat.
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FIGURE 1 | Development of Hordeum sp. introgression lines in
hexaploid wheat in the ph1b mutant background. Crosses between a
Hordeum sp. substitution or addition line in bread wheat cv. Chinese Spring
(2n = 6x = 42) and the ph1b mutant in hexaploid wheat were developed

and backcrossed to the ph1b mutant to obtain Hordeum sp. introgressions
in the absence of the Ph1 locus. Screening and characterization of
chromosome complements were carried out by multicolor in situ hybridization
and molecular markers analyses.

FIGURE 2 | Genotypic assays for the presence of Ph1 and a
Hordeum sp. chromosome. (A) The presence of chromosomes 4Hch

(lanes #4–#9) is marked by the successful amplification of the
BAWU303 EST fragment. (B) The absence of Ph1 is marked by the

loss of the ABC920 SCAR marker (individuals #4, #6, #8, #9, and
#11) M: size marker; ph1-: the parental ph1b mutant, Ph1+: wild type
wheat. CS, Triticum aestivum cv. Chinese Spring; Hch, Hordeum
chilense.
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TABLE 3 | The frequency of allosyndesis involving a Hordeum and a wheat chromosome in either the presence (Ph1+) or absence (ph1−) of the Ph1
locus.

Wheat
line

Hordeum sp.
introgressed

No of plants
analyzed

No of plants
showing
wheat-Hordeum
pairing

Frequency of
wheat-Hordeum
pairing (%)

No of
PMCs
scored

No of PMCs
scored showing
wheat-Hordeum
pairing

Frequency of
wheat-Hordeum
pairing in PMCs
(%)

p-value

Ph1+ 5 0 0.00 206 0 0.00 p = 0.000∗∗∗

ph1− H. chilense 42 19 45.23 2422 43 1.77

H. vulgare 21 13 61.90 1352 25 1.84

Total 63 32 53.56 3774 67 1.80

FIGURE 3 | Chromosome pairing at meiotic metaphase I as determined
by the allelic status at Ph1. In the presence of Ph1, the Hordeum sp.
chromosomes [(A) 7Hch , shown in green and (D) 4Hv , shown in red]
remained unpaired. In a ph1b background, the Hordeum sp. chromosome
[(B) 5Hch , shown in green and (E) 7Hv , shown in red] remained as a

univalent in most cells. Allosyndesis is induced by the absence of Ph1
between a Hordeum sp. chromosome [(C) 5Hch, shown in green and (F)
7Hv , shown in red], and a wheat chromosome. Arrows indicate pairing
between Hordeum sp.-wheat homoeologs induced by the absence of the
Ph1 locus. Bar: 10 µm.

Materials and Methods

Plant Materials
Table 1 lists the various H. chilense substitution lines and H.
chilense and H. vulgare addition lines (Islam et al., 1978, 1981;
Miller et al., 1982) used as the female parent in crosses with the
ph1b mutant (Sears, 1977). Grains were germinated on wet filter
paper in the dark for 5 days at 4◦C, followed by a period of 24 h
at 25◦C. Emerging seedling roots were excised, incubated for 4 h
in 0.05% w/v colchicine at 25◦C, fixed in Carnoy’s solution (three
parts 100% ethanol plus one part glacial acetic acid), and finally
stored at 4 C for at least 1 month. The plants were subsequently
raised in a greenhouse held at 26 C during the day and 22◦C dur-
ing the night (16 h photoperiod). Immature spikes were fixed in
Carnoy’s solution and used to characterize chromosome pairing
at meiosis metaphase I.

DNA Marker Characterization
Genomic DNA was extracted from frozen seedling leaves follow-
ing Murray and Thompson (1980), as modified by Hernández
et al. (2001). The absence of Ph1 was verified using a PCR assay

described by Wang et al. (2002). Each 30 µL PCR contained
1x PCR buffer with MgCl2 (Bioline USA, Taunton, MA, USA),
0.25 mM dNTP, 0.17 µM primers, 0.02 U/µL Taq DNA poly-
merase (Bioline USA), and 20 ng template. The reaction was
first denatured (94◦C/5 min), and then subjected to 35 cycles
of 94◦C/60 s, 51◦C/60 s, and 72◦C/60 s, followed by a final
extension (72◦C/7 min). The PCR products were electrophoret-
ically separated through a 1% agarose gel and visualized by
EtBr staining. The presence of each Hordeum sp. chromosome
was based on PCR assays described by Liu et al. (1996) and
Hagras et al. (2005) as detailed in Table 2. The composition
of these PCR reactions was as above, while the amplification
regime comprised an initial denaturing step (94◦C/5 min), fol-
lowed by 35 cycles of 94◦C/15 s, 50–65◦C (primer dependent,
see Table 2) /30 s, 72◦C/60 s, and completed by a final exten-
sion (72◦C/6 min). The amplicons were separated as described
above.

Cytogenetic Analysis
Chromosome spreads were prepared from both pollen mother
cells (PMCs) at meiotic metaphase I and from root tip cells.
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FIGURE 4 | Hordeum sp./wheat chromosome pairing at meiotic metaphase I as detected by GISH. (A–A”) Rod bivalents with a sub-terminal chiasma.
(B–B”) Rod bivalents with a more proximal chiasma. (C–C”) A Hordeum sp. chromosome involved in a multivalent. Bar: 10 µm.

TABLE 4 | (A) The frequency of allosyndesis between individual H. chilense or H. vulgare chromosomes and those of wheat. (B) The frequency of pairing between
specific Hordeum chromosomes and each of their wheat homoeologs.

(A) Frequency of Hordeum-wheat pairing (%)

Genome Chromosome 4 Chromosome 6 Chromosome 7 p-value

H. chilense 1.59 1.65 1.83 0.63 (p>0.05)

H. vulgare 1.24 2.78 0.86 0.75 (p > 0.05)

p-value 0.39 (p > 0.05) 0.41 (p > 0.05) 0.70 (p > 0.05)

(B) Frequency of Hordeum-wheat pairing (%)

Wheat homoeology group Chromosome 4Hch Chromosome 5Hch Chromosome 7Hch

A – 3.55 0.79

B 0.31 2.85 2.78

D 2.87 2.68 4.09

p-value 0.37 (p > 0.05) 0.42 (p > 0.05) 0.30 (p > 0.05)
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TABLE 5 | BC1F2 progeny retaining H. chilense or H. vulgare chromatin.

Wheat line No of plants

Complete chromosome Hordeum-wheat
translocations

Telosomic
chromosome

Small
introgression

Total

2 copies 1 copy 0 copies

CS(4B)4Hch 2 13 15 0 0 0 30

CS(4D)4Hch 0 15 31 0 0 2 (4.2%) 48

CS(5A)5Hch 0 5 7 0 0 0 12

CS(5B)5Hch 1 10 18 1 (3.3%) 0 0 30

CS(5D)5Hch 0 5 15 0 0 0 20

CS(7A)7Hch 2 32 37 5 (6.3%) 1 0 77

CS(7B)7Hch 1 20 37 4 (6.2%) 2 0 64

CS(7D)7Hch 0 11 26 3 (7.5%) 0 0 40

6Hch addition 0 8 11 0 1 0 20

7Hch addition 2 6 15 2 (8%) 0 0 25

4Hv addition 3 14 28 0 1 0 46

6Hv addition 2 9 11 0 1 0 23

7Hv addition 1 10 25 0 2 0 38

Total 14 158 276 15 8 2 473

Wheat plants carrying stable chromosome introgressions are in bold.

The material was macerated in a drop of 45% glacial acetic acid,
squashed under a cover slip, and dipped in liquid nitrogen in
order to remove the cover slip. The preparations were then air-
dried and either processed directly for in situ hybridization, or
stored at 4◦C until required. The probe used for genomic in
situ hybridization was genomic DNA extracted from H. chilense
(or H. vulgare) seedling leaves. The DNA was labeled with
either biotin-11-dUTP (H. vulgare) or digoxigenin-11-dUTP (H.
chilense; both from Roche Corporate, Basel, Switzerland) by
nick-translation. The in situ hybridization protocol followed that
described by Prieto et al. (2004). The GAA-satellite sequence
(Pedersen et al., 1996) and the pAs1 probe (Rayburn and
Gill, 1986) were used to identify chromosomes involved in
homoeologous pairing, chromosomal translocations, or chro-
mosomal rearrangements. The GAA-satellite sequence iden-
tifies all the A and B wheat chromosomes (Pedersen and
Langridge, 1997), whereas the pAs1 identifies the D wheat
and the H. chilense chromosomes (Cabrera et al., 1995). The
GAA-satellite sequence and the pAs1 probes were also labeled
by nick translation with biotin-11-dUTP and digoxigenin-11-
dUTP, respectively. Biotin- or digoxigenin-labeled DNA were
detected using, respectively, streptavidin-Cy3 (Sigma, St. Louis,
MO, USA) and antidigoxigenin-FITC (Roche Applied Science,
Indianapolis, IN, USA). After counter-staining with DAPI (4′,
6-diamidino-2-phenylindole), the preparations were mounted
in Vectashield (Vector Laboratories, Burlingame, CA, USA).
Hybridization signals were visualized using a Nikon Eclipse 80i
epifluorescence microscopy, and the images captured with a
CCD camera (Nikon Instruments Europe BV, Amstelveen, The
Netherlands).

Statistical Methods
Statistical analyses were performed using the STATISTIX v9.0
software (Analytical Software, Tallahassee, FL, USA). Wilcoxon

(or U of Mann–Whitney) test was used to determine the statisti-
cal significance of differences between means.

Results

Converting the Substitution and Addition
Lines into a ph1b Mutant Background
The crossing scheme used is illustrated in Figure 1, and the details
of the crossing outcomes from the F1 to the BC1F2 generation
are given in Table 1. The F1 hybrid progeny were genotyped
by PCR to ensure that they had retained the expected Hordeum
sp. chromosome (Table 2; Figure 2A), then crossed again to
the ph1b mutant in order to establish individuals in which the
Hordeum sp. chromosome was now present in a ph1bph1b back-
ground. Zygosity at the Ph1 locus was predicted using a PCR
assay (Figure 2B). The meiotic behavior of the selected individu-
als was characterized by GISH analysis of metaphase I in PMCs,
and the plants were allowed to self-pollinate.

Allosyndetic Pairing in BC1F1 Selections
Lacking Ph1
Meiosis was characterized in 63 BC1F1 segregants carrying a
Hordeum chromosome in the absence of Ph1 and compared
to those carrying the Hordeum chromosome in its presence
(Table 3). No wheat/Hordeum chromosome pairing occurred in
plants of genotype Ph1Ph1 (Table 3; Figures 3A,D). In con-
trast, in the absence of the Ph1 locus, although the Hordeum
chromosomes remained unpaired in most metaphase I PMCs
(Figures 3B,E), pairing was observed in 1.77% of the PMCs
in H. chilense (Table 3; Figure 3C). The equivalent frequency
with respect to H. vulgare chromosomes was 1.84% (Table 3;
Figure 3F). The frequency of plants displaying wheat/Hordeum
chromosome associations was lower in H. chilense than in H.
vulgare (45.23% and 61.90%, respectively), although variability
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FIGURE 5 | Various forms of introgression (arrowed) detected by GISH
(Hordeum chilense and H. vulgare genomic introgressions detected in
green and red, respectively), and FISH patterns (GAA and pAs1 probes
detected in red and green, respectively), in the BC1F2 progeny derived
from the crosses Hordeum addition/substitution line × ph1b mutant.
(A) GISH and (B) FISH pattern of chromosomes of a partial mitotic metaphase
carrying two copies of a 4D chromosome with a distal 4HchL segment. (C)
GISH and (D) FISH pattern of a mitotic metaphase carrying two copies of a
4Hch chromosome with a distal 4DL segment. (E) GISH and (F) FISH pattern
of a mitotic metaphase carrying a homocigous 7HchS–7AL Robertsonian
translocation. (G) GISH and (H) FISH pattern of a mitotic metaphase carrying
a homocigous 7AS–7HchL Robertsonian translocation. (I) GISH of a 4Hv

monotelosomic line. (J) GISH of a 6Hv monotelosomic line. Bar: 10 µm.

depending on the specificHordeum sp. chromosome introgressed
was found. Most of the associations between a Hordeum and
a wheat chromosome involved the formation of a rod biva-
lent harboring a single sub-terminal chiasma (Figures 4A–A”),
although in some cases the chiasma occurred more proximally
(Figures 4B–B”). In a few PMCs, the Hordeum sp. chromosome
formed part of a multivalent (Figures 4C–C”) as the result of
chiasmata between homoeologous chromosomes, or reflecting
the re-arrangement of the wheat genome induced by successive
meiosis during the generations of selfing used to maintain the
ph1b mutant stock. Wilcoxon test showed that the frequency of

allosyndesis was not Hordeum sp. chromosome specific, since
there was no significant difference in pairing frequency between
either chromosomes 4Hch, 6Hch, and 7Hch or between chromo-
somes 4Hv, 6Hv, and 7Hv (Table 4A). In addition, using the
same statistical test, no significance differences where found when
compared the effect of the genome (H. chilense or H. vulgare)
for the same homoeologous group (p = 0.39, 0.41, and 0.70 for
chromosomes 4, 6, and 7, respectively; Table 4A). A statistical
comparison of chromosome pairing frequency involving a H.
chilense chromosome and each of its wheat homoeologs was also
carried out and showed no evidence for any preferential pairing
(Table 4B).

Genetic Evidence for Hordeum sp.
Introgression Induced by the Absence of
Ph1
A total of 473 BC1F2 progeny were analyzed by GISH anal-
ysis to detect and characterize Hordeum sp. chromosome re-
arrangements in the background of the ph1b mutant. About
60% of the progeny lacked any Hordeum sp. chromatin. Overall,
with respect to the Hordeum sp. chromosome, about 3% of
the progeny were disomic and about 33% were monosomic.
The highest transmission rate of a Hordeum chromosome was
observed among the progeny derived from the (4B) 4Hch sub-
stitution line. Two recombinants were identified, both involving
chromosomes 4Hch and 4D (Table 5; Figures 5A–D). A total of
15 individuals harbored a Robertsonian translocation involving
a H. chilense (chromosome 5Hch: one plant, chromosome 7Hch:
14 plants) and the homoeologous wheat chromosomes 5B and
7A, respectively (Table 5; Figures 5E–H). Telosomic chromo-
somes resulting from misdivision were observed in eight plants,
affecting chromosomes 6Hch, 7Hch, 4Hv, 6Hv, and 7Hv (Table 5;
Figures 5I,J).

Discussion

Interspecific hybridization retains its potential to widen the gene
pool available to the wheat breeder. Combining in situ hybridiza-
tion with DNA-based genotyping has eased the process consider-
ably since the initial efforts which followed the recognition that
recombination could be induced by the deletion of Ph1 (Koebner
and Shepherd, 1986; Qi et al., 2007). An in situ hybridization-
based screening strategy has previously been applied to character-
ize introgressions from both H. chilense and H. vulgare, resulting
in the recognition of a number of wheat/Hordeum sp. transloca-
tions (Prieto et al., 2001). Here, the intention was to exploit the
abolition of strict homologous pairing induced by the absence of
Ph1 to generate material where recombination had shortened the
length of the introgressed segment. Chromosome 4Hch is of par-
ticular interest as it harbors a gene (or possibly genes) encoding
resistance against the fungal pathogen Septoria tritici (Rubiales
et al., 2000). Two recombinants involving chromosome 4Hch

were obtained in this work as the results of the same recombi-
nation event between 4DL and 4HchL chromosome arms, and
can help to locate those resistance genes on chromosome 4HchL.
Similarly, chromosome 7Hch has been targeted for its positive
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effect on grain carotenoid content (Alvarez et al., 1999), and chro-
mosome 5Hch for its contribution to enhancing salinity tolerance
(Forster et al., 1990). Although inter-chromosome translocations
are known to occur spontaneously (Mettin et al., 1973; Zeller,
1973; Prieto et al., 2001), and can be induced by ionizing radi-
ation and the action of certain gametocidal genes (Sears, 1956,
1993; Endo, 1988, 1990; Endo and Gill, 1996), the particular
advantage of exploiting the ph1b mutant to promote allosynde-
sis is that the translocations are non-random: rather, they tend
to involve the exchange of genetically related material. Its dis-
advantage is that the frequency of allosyndesis (and hence of
recombination) is rather low, especially between chromosomes of
more distantly related genomes such as Triticum and Hordeum.
The level of ph1b-induced pairing between wheat and cereal rye
(Secale cereale) chromosomes has been estimated to be around
4% (Miller et al., 1994), which is about double the level noted
here between the chromosomes of wheat and either of the two
Hordeum sp. Moreover, the frequency of recombination was cor-
related with the frequency of wheat-rye pairing in metaphase
I in ABDR hybrids in the absence of the Ph1 locus (Naranjo
and Fernández-Rueda, 1996). However, an extensive ph1b-based
attempt to reduce the length of the rye chromosome segment
present in the widely used wheat/rye Robertsonian translocation
1BL.1RS resulted in an estimated recombination frequency of
only around 0.7% (Koebner and Shepherd, 1986; Lukaszewski,
2000). The levels achievable in more closely related species,
notably in the genus Aegilops (Riley et al., 1968a; Gill and Raupp,
1987; Koebner and Shepherd, 1987; Farooq et al., 1990; Ceoloni
et al., 1992), are much higher than this.

Our results showed that homoeologous recombination
between Hordeum sp. and wheat chromosomes did only depend

on the absence of the Ph1 locus as no differences in the fre-
quency of pairing were found when chromosome association
in different homoeologous groups was studied. Most of chromo-
some associations betweenHordeum sp. and wheat chromosomes
were end-to-end extremely distal associations as described previ-
ously (Werner et al., 1992; Benavente et al., 1996; Calderón et al.,
2014).

In summary, the use of the ph1b mutant does induce a
low, but significant level of chromosome pairing and recom-
bination between wheat and Hordeum sp. chromosomes. The
translocation and introgression chromosomes detected in the
present work will serve as potential donor material for the
breeding of cultivars having a higher grain carotenoid con-
tent, stronger resistance against S. tritici and improved salinity
tolerance.
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