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Plants rely on “reserve” (stored) carbon (C) for growth and survival when newly synthesized C
becomes limited. Besides a classic yet recalcitrant C reserve starch, fructans, a class of sucrose-
derived soluble fructosyl-oligosaccharides, represent a major store of C in many temperate plant
species including the economically important Asteraceae and Poaceae families (Hendry, 1993).
Dicots typically accumulate inulin-type fructans as long-term storage (underground organs) whilst
grasses and cereals accumulate fructans as short-term reserves in above-ground parts (Pollock and
Cairns, 1991; Van Laere and Van den Ende, 2002). Unlike chloroplast-based water-insoluble starch,
fructans are semi-soluble, possess flexible structures (Phelps, 1965; Valluru and Van den Ende,
2008), can be synthesized at low temperatures (Pollock and Cairns, 1991), and are degraded by
a single type of fructan hydrolases, fructan exohydrolases (FEHs). Unlike starch that store in plas-
tids, fructans store in vacuoles, which is physically less stressful to the active constituents of, and
allows more C synthesis by, the photosynthetic cell, whichmay be different in dicots where fructans
do not typically accumulate in green parts.

Plants synthesize diverse fructan types exhibiting a wide range of functions (for review, see
Valluru and Van den Ende, 2008; Van den Ende, 2013). Fructan biosynthetic enzymes, fructosyl-
transferases (FTs), which evolved from vacuolar-type acid invertases (VIs) (Altenbach et al., 2009),
use sucrose (Suc) as a substrate whereby an organ-specific Suc threshold triggers FT genes at the
transcriptional level (Lu et al., 2002). Though the regulatory mechanism of Suc signal transduction
remains largely elusive, transcription factors (TFs) can be suspected to mediate such inductive pro-
cesses either by directly binding and stimulating FT genes (e.g., TaMYB13 TF binds to FT genes,
1-SST and 6-SFT; Xue et al., 2011) or by up-regulating vacuolar based proteins (e.g., TaMYB13 TF
up-regulates vacuolar processing enzyme, Taγ-VPE1, whose mRNA levels highly correlated with
FTs mRNA levels in wheat stems; Kooiker et al., 2013).

In addition, protein phosphatases (PP2A; Martínez-Noël et al., 2009) and second messenger
Ca2+ (Martínez-Noël et al., 2006) mediate Suc-induction of fructan synthesis in wheat, although
the underlying mechanisms remain largely undefined. The cationic role of Ca2+ in fructan synthe-
sis is somewhat counterintuitive because Suc induces a Ca2+ efflux from the vacuole (Furuichi et al.,
2001), the site of fructan synthesis. Perhaps Suc might ensure more alkaline (less acidic) vacuolar
environment [Suc-induces Slowly activating Vacuolar (SV) ion channel that transiently effluxes
vacuolar Ca2+; (Pottosin and Schönknecht, 2007)], favoring fructan synthesis that is thought to
be less stable under low pH (Flores-Maltos et al., 2014). Some of the protein mediators involved
in Suc-mediated induction of fructan synthesis, including Ca2+ signaling components, calmod-
ulin (CaM), calcineurin B-like (CBL1), and Ca2+–dependent protein kinases (CDPKs), are closely
involved in hormone signaling and environmental stress (Ludwig et al., 2004).
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Remarkable progress has been made in understanding the
crosstalk between sugar signaling and hormonal networks (León
and Sheen, 2003; Matsoukas, 2014). Abscisic acid (ABA) appears
to have positive effect on reserve C storage, whereby ABA
greatly enhances Suc-induction of starch biosynthetic genes,
ADP-glucose pyrophosphorylase (subunit ApL3) and starch-
branching enzyme Sbe2.2, with no effect on their expression
in the absence of Suc (Rook et al., 2001), implying that ABA
promotes reserve starch biosynthesis. Similarly, ABA (50mM)
has recently been shown to promote fructan accumulation by
increasing gene expressions of 1-FFT and 1-SST in agave (Suárez-
González et al., 2014). Further, the barley FT gene (6-SFT)
promoter carries recognition sites for MYC, MYB proteins
and many cis-acting elements that mediate ABA and drought
responses (Nagaraj, 2004). Indeed, hormonal regulation of fruc-
tan metabolic enzymes (1-SST and 1-FEHI) has already been
suggested by Bausewein et al. (2012). ABA actions are likely
to be further promoted by a small Ca2+ sensor, CBL1, which
represses PP2C, a negative component of ABA signaling (Lan
et al., 2011).

It is also likely that the low concentrations of ethy-
lene (ET) and auxins (AUX) contribute to promote fruc-
tan storage. Supportively, low concentrations of exogenous
1-aminocyclopropance 1-carboxylicacid (ACC at 1µM, ethy-
lene precursor) and AUX (13.4µM) increased fructan content in
2-month-old agave (Barreto et al., 2010). Further, a high concen-
tration (10µM or 10µL L−1) of exogenous ET decreased fructan
content in onion, which was counteracted by ethylene binding
inhibitor 1-methylcyclopropene (1-MCP) (Cools et al., 2011).
Indeed, the hormonal balance (AUX/cytokinins, CKs) has been
suggested to play a role in the regulation of fructan synthesiz-
ing enzymes (1-SST and 1-FFT) in Vernonia herbacea (Trevisan
et al., 2014). Presumably, FTs could carry motifs for these hor-
mones, as reported for FEHs that carry motifs for AUX, ABA, ET,
gibberellins (GA), and salicylic acid (SA) (Michiels et al., 2004).
Both AUX and ET homeostasis could be regulated by Ca2+ sig-
naling. Ca2+/CaM binds to small AUX-up RNAs (SAURs) pro-
teins (Yang and Poovaiah, 2000), the negative regulators of AUX
synthesis (Kant et al., 2009). In contrast, AUX induces SAURs
as a feed-forward mechanism (Kant et al., 2009). In addition to
CDPKs (that induces ACC synthases, ACS2 and ACS6), PP2As
tightly control ET biosynthesis by differentially regulating the
turnover of ACS5 and ACS6 isoforms (Skottke et al., 2011). Taken
all together, it appears that hormones may act at low concentra-
tion either as an “inductive signal” or as a “facilitator” mediating
Suc-induction of fructan biosynthesis, a presumption worthy of
further attention (Figure 1A). Recent studies emphasize a close
relation between the spatio-temporal dynamics of hormones (ET
and ABA) and fructan synthesis and its related gene transcripts in
the endosperm transfer cells of barley (Thiel et al., 2012; Peukert
et al., 2014).

This, however, raises a subsequent question: “Do hormones
also regulate fructan catabolism?” (Figure 1B), considering that
(1) hormones coordinately regulate stress-inducible acid INVs
(e.g., Ivr2; Trouverie et al., 2004) and hexose transporters
(VvHT5; Hayes et al., 2010) regulating carbon partitioning and
sink strength; (2) FEHs evolved from acid INVs (INVs) of

cell-wall type (Le Roy et al., 2007) and Suc directly inhibits FEH
activities at the enzyme level (Verhaest et al., 2007); and (3) FEHs
(FEHIIa) gene promoter carry motifs for several hormones such
as AUX (ASF1, ARF, and CATATGGMSAUR), ABA (ABRE), ET
(GC box and ERE), GA (GARE), and SA (ASF1 and W box)
(Michiels et al., 2004). While hormones (ABA, GA, AUX, CKs,
and brassinosteroids; for review, see Roitsch et al., 2003) induce
extracellular INVs, one remaining question would be: “What
actually triggers the induction of vacuolar FEHs under stress?.”

While stress stimuli induce FEHs (Michiels et al., 2004;
Yang et al., 2004) as well as the involvement of sugar signal-
ing after defoliation (Lothier et al., 2010), one important can-
didate that fulfills this role could be “stress-inducible ABA.”
Recent studies are now elucidating the multiple molecular con-
nections in how the spatial and temporal regulation of hormones
permits the fine-tuning of the stress response (Dubois et al.,
2013). Presumably, ABA (stress-induced or a stress-like condi-
tion) may regulate FEHs in two-ways: directly, ABA can regu-
late 1-FEH at the transcriptional level (Ruuska et al., 2007); or
indirectly, via ABA-induced luminal acidification [ABA induces
vacuolar H+-ATPase activity in ice plant (Mesembryanthemum
crystallinum, Barkla et al., 1999); or increases phosphatidylinosi-
tol 3,5-bisphosphate [PtdIns(3,5)P2] that activates vacuolar H

+-
PPase activity in fava bean, (Bak et al., 2013)], which may act as
a trigger, providing an acidic environment enhancing FEH activ-
ity as FEHs have an acidic pH optimum (∼5.0) (Henson, 1989;
Henson and Livingston, 1996; Van den Ende et al., 2003). ABA
induction of 1-FEH may be mediated by protein kinases (e.g.,
PI3K signaling has been proposed to mediate ABA induction
of 1-FEH1, Bausewein et al., 2012). This also suggests a possi-
ble role for pH signaling in FEH regulation. In addition, GA
might be important hormone for FEH regulation (Morvan et al.,
1997). Such hormone regulation of FEHs also supports the cur-
rent understanding that hormones may function as “mediators”
enabling the communication and transduction of environmental
changes into stress responses (Pozo et al., 2015).

While fructan-based Glc (growth signaling) antagonizes ABA
signaling (Morita-Yamamuro et al., 2004), fructose (Fru) signal-
ing negatively interacts with ET signaling via mitogen-activated
protein kinases (MAPK3 and 6) (Shahri et al., 2014). It therefore
appears that ABA has a role in both FT and FEH induction, rais-
ing a question: “How does ABA induce both FTs and FEHs?” One
suggestion is that high and low ABA levels could have oppos-
ing functions, with low concentrations promoting FTs activity
whilst high concentrations induce FEHs. Such a dual role for
ABA has been previously recognized in the regulation of root
growth, whereby low concentration (1µM) of ABA stimulated
while high concentration (100µM) inhibited, the root elongation
growth of pea (Gaither et al., 1975).

Fructan-hormone interactions can be further envisaged by the
fact that both fructans and inactive ABA form (ABA and hydroxyl
ABA are conjugated with Glc for inactivation and the predomi-
nant conjugated form is ABA glucosyl ester, ABA-GE) are stored
in vacuoles (Dietz et al., 2000). Apart from de novo biosynthesis
of ABA in the cytoplasm/plastids, its conjugation/deconjugation
critically controls cellular ABA levels. ABA-GE is stored in vac-
uoles and the apoplast, and is hydrolysed by β-glucosidases (BGs)
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FIGURE 1 | A conceptual mechanistic basis for the interaction

between fructans and hormones. This model explains how hormones

may closely regulate both biosynthesis (A) and catabolism (B) of fructans.

(A), The involvement of hormones in fructan biosynthesis. Suc-specific

pathways involving transcription factors (MYB13), protein phosphatase

(PP2A), and calcium (Ca2+) signaling closely mediate Suc-induction of

fructan biosynthesis. In addition, these components are involved in

hormones, abscisic acid (ABA), auxins (AUX), and ethylene (ET) biosynthesis

as well as their homeostasis. A calcium sensor, CBL1, promotes ABA

signaling by repressing the negative regulator of ABA signaling, PP2C.

Ca2+/CaM module activates small AUX-up RNA proteins (SAURs) that

control AUX levels. In contrast, AUX positively regulates SAURs. While

Ca2+–dependent protein kinases (CDPKs) control the ET biosynthesis; PP2A

tightly control ET biosynthesis by differentially regulating the turnover of ACC

synthase (ACS5 and 6) isoforms. The presence of relatively stable, low levels

of these hormones is important, and may form part of Suc-specific pathways

positively regulating fructan biosynthesis via fine-tuning of FTs. (B), The

hormonal network regulating fructan degradation. Stress-inducible ABA

induces fructan catabolic enzymes, fructan exohydrolases (1-FEH),

promoting fructan degradation in wheat. Suc is further hydrolysed by

ABA-induced acid invertases (INVs). Part of the Fructose (Fru) would be used

for Suc synthesis. While glucose (Glc) antagonizes ABA signaling, Fru

antagonizes ET signaling, mediated by mitogen-activated protein kinases

(MAPK3 and 6). It is known that ET counteracts ABA functions. In order to

promote ET signaling, it is suggested here that both ET and AUX signaling

that function synergistically may counteract ABA signaling and repress

1-FEH expression, thereby reducing glucose and fructose levels. The timing

of fructan degradation may be a critical process affecting carbon availability

and on-going physiological processes that could indeed alter the initiation of

leaf senescence. Such AUX/ET signaling repression of 1-FEH might be

mediated by a transcriptional complex MYB44-MYB77. This protein complex

interacts with auxin response factors (ARFs) that bind to auxin responsive

elements (AuxRE) of auxin responsive genes as was shown in arabidopsis.

While ABA enhances Ca2+ levels, which in turn promotes ABA signaling and

enhances FEH activity, Ca2+ signaling-based CDPKs (via ACS6 and 2) also

promote ET biosynthesis. This suggests that a subtle hormonal balance

governs biological processes more sensibly than could achieve by a single

hormone. However, this conceptual model is largely constructed based on

the knowledge from Arabidopsis; hence, this needs to be confirmed in

fructan-accumulating species. Blue lines represent positive regulation while

red lines indicate negative regulation. Gray lines depict degradation

processes. See text for further explanations and the references.

(Dietz et al., 2000). Of the two BGs isolated so far in plants, BG2
was found in the vacuole (Xu et al., 2012). Abiotic stress normally
induces BG2 activity (Xu et al., 2012) as well as tonoplast-vesicle-
derived exocytosis (TVE, Valluru et al., 2008), exporting both
fructans andABA into the apoplast for further systemic signaling.
A direct signaling capacity for fructans in immune modulation,
mediated by Toll-Like Receptor (TLR) signaling, has recently
been shown in animal cells (Vogt et al., 2013). It would be inter-
esting to investigate such fructan signaling roles as well as fruc-
tan putative sensors (putative proteins with similar functions) in
fructan-accumulating plants.

While hormones are known to be involved in C partitioning,
their interaction mechanisms are largely undetermined. Since

hormones extensively interact with each other and regulate bio-
logical processes accordingly, one would expect that ABA induc-
tion of 1-FEH might be subject to the actions of other hormones.
As both AUX and ET signaling generally counteract ABA signal-
ing at the whole plant level depending on their concentrations
(Rock and Sun, 2005; Arc et al., 2013), these hormones can be
expected to counteract ABA-induced 1-FEH expression (Zhang
et al., 2014). Multiple hormones may therefore coordinately reg-
ulate 1-FEHs, whereby 1-FEH gene promoters (e.g., 1-FEH w3
in wheat) carrying motifs for AUX signaling (AUX response ele-
ments, AuxRE) show less sensitivity to ABA. Conversely, 1-FEHs
that do not carry or modify motifs for AUX signaling show
enhanced sensitivity to ABA, initiating early fructan degradation
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(Zhang et al., 2014). A similar interaction between ABA and ET
signaling can be envisaged in 1-FEH regulation (Figure 1B).

The underlying mechanism of how AUX/ET networks coun-
teract ABA function in 1-FEH regulation is unknown. It can how-
ever be suspected that several TFs might mediate such a process.
Auxin response factors (ARFs), which bind to AuxRE, are clas-
sified as either transcriptional activators or repressors of AUX-
responsive genes (Guilfoyle and Hagen, 2007). In epidermal and
root cells of onion, a fructan-accumulating plant, ARF7 has been
shown to interact with MYB77 TF, modulating AUX responsive
genes (Shin et al., 2007). The process how such an interaction
(MYB77 with ARF7) leads to 1-FEH repression rather than its
promotion has yet to be elucidated.

It is suspected here that such a “repressive” function
may have evolved due to MYB77 interaction with other
R2R3 type TF, MYB44 that share partially redundant func-
tions, and form a heterodimer complex in Arabidopsis (Jara-
dat et al., 2013). MYB44 carries a putative transcriptional
repression motif “Ethylene responsive element binding factor-
associated Amphiphilic Repression (EAR)” identified in members
of the ethylene-responsive element binding factor, C2H2, and
AUX/indole-3-acetic acid families of transcriptional regulators
(Kagale et al., 2010). Of the 219 “EAR” motif proteins identified
in Arabidopsis, approximately 40% of these act as negative reg-
ulators of gene expression (Kagale et al., 2010). Thus, it can be
suspected that the protein complex MYB44–MYB77, may act as
a negative regulator of 1-FEH, inhibiting fructan degradation in
fructan-accumulating plants. In contrast, 1-FEH lacking AuxRE
do not bind with this protein complex and show enhanced sensi-
tivity to ABA, resulting in early fructan degradation. Such a dual-
istic regulation of hormone interaction on 1-FEH was recently
demonstrated by Zhang et al. (2014).

Interestingly, ARF7 and ARF19, which are induced by ET,
play critical roles in ET responses in Arabidopsis roots (Li et al.,

2006), suggesting that, perhaps, ET signaling also utilizes a similar
pathway, and function in concert with AUX, to counteract ABA
induced 1-FEH expression. Recently, CKs have been proposed to
antagonize ABA induction of 1-FEHI in chicory hairy root cell
culture (Bausewein et al., 2012). However, the above conceptual
model is largely constructed based on the knowledge from Ara-
bidopsis; hence, this model needs to be tested and confirmed in
fructan-accumulating species.

The study of Zhang et al. (2014) further extends excessive
crosstalk between hormones and sugars to fructans, which could
prove critical, especially in temperate food cereals such as wheat.
Fructan-based C partitioning to developing grain has conven-
tionally been seen as amajor function of fructans especially under
stress. In this regard, early fructan degradation could support on-
going growth and grain-fill processes, potentially delaying leaf
senescence that could extend leaf photosynthetic capacity. It is
widely accepted that delayed, but not unfavorably-induced, leaf
senescence enhances crop yields. Hence, the molecular marker
of 1-FEH w3 could be useful for the genetic selection for high
stem-reserve C partitioning and high grain-weight in wheat
breeding. This study, therefore, not only rules out the impru-
dent notion, “hormones are too complicated to be used for crop
improvement” but also paves the way for “elegant utilization of

hormones in improving future food security.” Understanding such
hormonal signatures in “reserve C partitioning,” one of the key
traits of the conceptual model of yield (Reynolds et al., 2009),
are crucial to simultaneously improve crop grain-fill and lodging
resistance.
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