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Anthropogenic nitrogen deposition is currently causing a more than twofold increase

of reactive nitrogen input over large areas in the tropics. Elevated 15N abundance

( 15
δ N) in the growth rings of some tropical trees has been hypothesized to reflect an

increased leaching of 15N-depleted nitrate from the soil, following anthropogenic nitrogen

deposition over the last decades. To find further evidence for altered nitrogen cycling in

tropical forests, wemeasured long-term 15
δ N values in trees from Bolivia, Cameroon, and

Thailand. We used two different sampling methods. In the first, wood samples were taken

in a conventional way: from the pith to the bark across the stem of 28 large trees (the

“radial” method). In the second, 15
δ N values were compared across a fixed diameter

(the “fixed-diameter” method). We sampled 400 trees that differed widely in size, but

measured 15
δ N in the stem around the same diameter (20 cm dbh) in all trees. As a result,

the growth rings formed around this diameter differed in age and allowed a comparison of
15

δ N values over time with an explicit control for potential size-effects on 15
δ N values. We

found a significant increase of tree-ring 15
δ N across the stem radius of large trees from

Bolivia and Cameroon, but no change in tree-ring 15
δ N values over time was found in any

of the study sites when controlling for tree size. This suggests that radial trends of 15
δ N

values within trees reflect tree ontogeny (size development). However, for the trees from

Cameroon and Thailand, a low statistical power in the fixed-diameter method prevents to

conclude this with high certainty. For the trees from Bolivia, statistical power in the fixed-

diameter method was high, showing that the temporal trend in tree-ring 15
δ N values in the

radial method is primarily caused by tree ontogeny and unlikely by a change in nitrogen

cycling. We therefore stress to account for tree size before tree-ring 15
δ N values can be

properly interpreted.
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Introduction

The rate of natural nitrogen input in tropical forests generally
ranges between 2 and 20 kgN ha−1 year−1, depending on the
amount of reactive nitrogen created by lighting and by het-
erotrophic soil microbes and rhizobia associated with legumes
(Vitousek and Sanford, 1986; Galloway, 2004; Pons et al., 2007).
Over the last century, nitrogen deposition has strongly increased
globally as a result of the widespread use of artificial nitrogen
fertilizers and the burning of fossil fuels (Gruber and Galloway,
2008; Davidson, 2009). In the tropics, estimates of anthropogenic
N deposition vary greatly, but in large regions N deposition
reaches 5–10 kgN ha−1 year−1, which is about a doubling of
natural rates (Galloway et al., 2008; Hietz et al., 2011). The con-
sequences of this increased input are still largely unclear (Gal-
loway et al., 2008). Furthermore, the assessment of the effects of
increased N inputs on forests has been limited by a lack of long-
term “baseline” biogeochemical data (Gerhart and McLauchlan,
2014). Nitrogen isotopes preserved in wood have the potential to
provide these data over a long, multi-decadal to centennial, time
scale. There is general agreement that nitrogen isotopes (δ15N) in
plant material reflect the δ

15N signature of the available N sources
under most field conditions (Evans et al., 1996; Högberg et al.,
1999) and thus can provide valuable information on changes in
nitrogen cycling in terrestrial ecosystems.

In tropics, the few studies that have measured δ
15N in tree

rings found a consistent increase of δ15N during the last decennia
in trees from Brazil and Thailand (Hietz et al., 2010, 2011). A sim-
ilar result was found when comparing historical and current δ15N
values in leaves from amoist forest in Panama (Hietz et al., 2011).
These increases in plant δ

15N values have been related to higher
nitrification and denitrification rates following elevated nitro-
gen deposition (Hietz et al., 2011; Mayor et al., 2014). In undis-
turbed tropical rainforest and in the absence of anthropogenic
nitrogen deposition, all available mineral N is generally taken
up, preferentially as ammonium by trees, leaving little for nitri-
fication (Robertson, 1989; Vernimmen et al., 2007). Increased
nitrification will occur when N-availability exceeds N-uptake,
which could occur with increasing nitrogen deposition. During
nitrification there is a strong fractionation against 15N, yield-
ing 15N-depleted nitrate (relative to ammonium). If not taken
up by vegetation, a fraction of the nitrate will leach downwards
and is eventually lost, causing a gradual 15N enrichment of the
remaining soil nitrogen pool (Högberg and Johannisson, 1993;
Högberg, 1997). Denitrification rates can also be increased when
N-availability exceeds N-uptake (Corre et al., 2010). A strong dis-
crimination against 15N occurs during denitrification (Houlton
et al., 2006), leading to the loss of relatively 15N-depleted nitrogen
oxides and N2.

The increases of tree-ring δ
15N values in tropical trees could

thus be evidence for enhanced leaching of nitrate and/or den-
itrification and suggest tropical nitrogen cycles are becoming
more “open” (Högberg, 1990; Högberg and Johannisson, 1993;
Hietz et al., 2011). More nitrate leaching can lead to acidification
of the soil, which could alter the availability of other nutrients
(Matson et al., 1999; Corre et al., 2010). In the long term, such
changes can negatively affect plant growth and biodiversity, as is

well-known from temperate forests (Magill et al., 2004; Phoenix
et al., 2006).

To find further evidence for altered nitrogen cycling (i.e.,
changing nitrification rates) in tropical forests, we measured
δ
15N values in 400 trees from three sites differing in nitrogen
deposition rates. We use a new sampling method that explicitly
controls for potential ontogenetic effects by comparing tree-ring
δ
15N values over time across trees with a fixed size (Rozendaal
et al., 2010; van der Sleen et al., 2015). We argue that such a
control is important, because ontogenetic changes (i.e., during
size/age development) could, in theory, also lead to apparent
trends in tree-ring δ

15N values over time. Tree-ring properties
(e.g., ring width and stable isotopes) are usually measured in a
stem disc from the pith to the bark or, in other words, from
the first visible and oldest growth ring up to the last and most
recently formed (outer) ring. The period in between may span
more than a century, during which changes in tree-ring proper-
ties could reflect human-driven environmental changes, like the
effects of climate change and increased anthropogenic N deposi-
tions. However, during that same period, a tree also grew from a
small understorey seedling to a dominant canopy tree. Changes
in tree-ring δ

15N during tree development could result from
increased rooting depth with tree size. There is generally a pro-
nounced pattern of 15N enrichment in soil profiles, with increas-
ing δ

15N values with soil depth (Hobbie and Ouimette, 2009).
Thus, if trees root deeper whenmaturing (and forage for nitrogen
at greater depths), this may affect the δ

15N signature of wood in
tree rings over time. Alternatively, shifts in the exploited nitrogen
sources during tree development can also affect tree-ring δ

15N
values. Different N sources (like NH+

4 and NO−
3 ) differ strongly

in their δ
15N signature (Hobbie and Högberg, 2012).

Ontogenetic changes could thus potentially obscure, or can
be interpreted to reflect, temporal changes in nitrogen cycling
and thus need to be accounted for. The new sampling method
we apply here is not affected by tree ontogeny because similar
sized trees are compared over time. We compare this new sam-
pling method against the conventional method of sampling from
the pith to the bark across the stem of large trees. Using both
methods, we evaluate evidence for changes in natural 15N values
in tree rings that could reflect alterations of nitrogen cycling in
three tropical forest sites (in Bolivia, Cameroon, and Thailand).

Materials and Methods

Study Area
The study was carried out in a forest site in Bolivia (South
America), Thailand (Southeast Asia), and Cameroon (Africa;
Figure 1). These sites were selected because of the previous work
conducted there, which facilitated the collection of samples and
provided relatively good background knowledge on these forests
(e.g., Groenendijk et al., 2014; Vlam et al., 2014; van der Sleen
et al., 2015). Site characteristics are summarized in Table 1.

In Bolivia, trees were sampled in the logging concession “La
Chonta,” around 300 km northeast of Santa Cruz de la Sierra
(15.84 S, 62.85 W). The forest in La Chonta is a semi-deciduous
moist forest and the transitional between Chiquitano dry forest
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FIGURE 1 | Study areas (white stars) and anthropogenic NH3 and

NOx emissions around the study areas (averaged over a 1◦ grid

cell centring the study sites). Wood samples were collected from

three tropical forests (≥1500mm rainfall per year; green areas). From

left to right: La Chonta logging concession (Bolivia); a logging

concession adjacent to Korup National park (Cameroon) and Huai Kha

Khaeng Wildlife Sanctuary (Thailand). Nitrogen emission data per 0.1◦

grid cell are from the European Commission, Joint Research

Centre/Netherlands Environmental Assessment Agency, EDGAR

version 4.2.

TABLE 1 | Characteristics of the study sites. See text for details and

references.

Site, country Av. precipitation Av. temperature Soil Soil

mm year−1 (◦C) texture

La Chonta, Bolivia 1580 24.7 ultisols sandy-loam

Korup, Cameroon ∼4000 26.5 ultisols sandy

HKK, Thailand 1473 23.5 ultisols sandy-loam

and moist Amazonian forest (Peña-Claros et al., 2008). Annual
precipitation in the region averages 1580mm, with 4–5 months
receiving <100mm from May to September (Peña-Claros et al.,
2008). Soils in the study area are mostly derived from gneiss,
granitic, and metamorphic rocks and have been described as
sandy-loam ultisols (Peña-Claros et al., 2012). They have a neu-
tral pH and a high fertility due to human influences, as ca. 20
percent of the area is being covered by anthropogenic soils, which
have a darkened soil with charcoal fragments and pottery shards
as evidence of pre-Columbian agriculture (Paz-Rivera and Putz,
2009).

In Thailand, trees were collected in the Huai Kha Khaeng
Wildlife Sanctuary (HKK), Uthai Thani province, around 250 km
northwest of Bangkok (15.60 N 99.20 E; same study area as Hietz
et al., 2011). The vegetation in HKK is a semi-deciduous moist
forest (Bunyavejchewin et al., 2009). Mean annual rainfall aver-
ages 1473mm, with a 4–6 months dry season (<100mm/month)
from November to April (Vlam et al., 2014). Soils in HKK
are variable, but most are highly weathered ultisols derived
from parent material of granite porphyry (Bunyavejchewin
et al., 2009). Soil texture is sandy loam at the soil surface,
with increasing clay accumulation below 40 cm depth (Bunyave-
jchewin et al., 2009).

In Cameroon, fieldwork took place in a logging conces-
sion (Forest Management Unit 11.001) of Transformation REEF
Cameroon (TRC). This area is adjacent to the northwest border

of Korup National park, in Western Cameroon (5.23 N, 9.10
E). The forest consists of a semi-deciduous lowland rainforest of
the Guineo-Congolian type. Annual precipitation in the region
averages around 4000mm, with 1–3 months receiving <100mm
from December to February (Groenendijk et al., 2014). No
detailed information on soil characteristics is available for the
area where trees were collected, but the soil in a 50 ha forest
plot located ∼50 km south of the study site (CTFS Korup plot),
is generally skeletal and sandy (up to 70% sand in some areas),
with small but increasing clay content with increasing soil depth
(Chuyong et al., 2004). Most organic matter is in the top few cen-
timeters of the soil profile and soils are very nutrient poor as a
result of the high leaching due to heavy rainfall (Chuyong et al.,
2004).

Nitrogen Emissions
Anthropogenic NOx and NH3 emission data for the study sites
were obtained from the European Commission, Joint Research
Centre (JRC)/Netherlands Environmental Assessment Agency
(PBL), EDGAR version 4.2 (http://edgar.jrc.ec.europa.eu). Per
study site, emission data at a 0.1◦ grid cell (∼11 × 11 km) were
averaged over a 1◦ square (∼110 × 110 km) centering the sam-
pled trees. As NOx and NH3 can travel through the atmosphere
for many kilometers before being rained out, emissions averaged
over a 1◦ grid cell are likely more representative of local nitro-
gen deposition than at a relatively small 0.1◦ scale. NH3 and NOx

emissions at a 1◦ grid cell were converted to a hectare scale (using
the R package SDMTools, which calculates surface areas for
spherical polygons based on latitude and longitude coordinates).
Results per site are given in Figure 1.

Study Species and Collection
At each site, we sampled trees of two species (Table 2). Species
were selected based on their abundance (we chose relatively
common species) and the possession of clear annual growth
rings. The annual nature of growth rings has been demonstrated
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TABLE 2 | The study species. Species were selected based on their abundance (we chose relatively common species) and the possession of clear annual

growth rings.

Country Species Family Functional groupa Sample

size

Bolivia Cariniana ianeirensis

Hura crepitans

Lecythidaceae

Euphorbiaceae

partial shade-tolerant

partial shade-tolerant

59

55

Cameroon Daniellia ogea

Terminalia ivorensis

Fabaceaeb

Combretaceae

partial shade-tolerant

long-lived pioneer

91

84

Thailand Melia azedarach

Toona ciliata

Meliaceae

Meliaceae

long-lived pioneer

long-lived pioneer

63

49

aFunctional groups are based on the definitions in Poorter et al. (2006).
bNon-nodulating (Diabate et al., 2005).

for the Bolivian species by Lopez et al. (2012), for the species
studied in Thailand by Baker et al. (2005), and Cameroon by
Groenendijk et al. (2014). At each site, trees were collected in
144–297 ha of undisturbed forest. All trees larger than 20 cm
diameter at breast height (dbh) were sampled in a 50m radius
around a randomly assigned gps point. At each site, we used ran-
dom points spread over the study area and collected around 50
to 100 trees per species (ranging in size from 20 to >100 cm
dbh). In Cameroon and Bolivia, a first round of selective logging
took place in the study area at the time of sampling (no previ-
ous logging had taken place in any of the areas). At these sites,
logging operations permitted the collection of stem discs. If no
discs could be collected, 5-mm diameter cores were taken using
an increment borer (Suunto, Finland and Haglöf, Sweden). Cores
were collected in at least three different directions at breast height
per tree. After drying, the surface area of discs and cores were
either cut or polished depending on what gave the best visibility
of ring boundaries.

Tree-Ring Identification and Sampling Strategy
Growth rings were identified using a LINTAB 6 measuring table
or using high-resolution scans (1600 dpi) and WinDendro soft-
ware (Regent Instruments, Canada). Rings were identified for
each tree in at least three different directions following standard
dendrochronological approaches (Stokes and Smiley, 1996). For
each tree, we visually cross-dated (i.e., matched) the ring-width
series from three different directions. Matching the ring-width
series within the same tree allows the detection of locally absent
(missing) or false rings.

We collected wood samples with two different methods. In the
first, 10-year wood samples over the period 1950–2010 were col-
lected in 28 large trees (five trees per species, except of only three
trees in Cariniana ianeirensis). For each tree, these wood sam-
ples were taken radially (Figure 2 top panel), that is from pith
(i.e., the most inner and oldest growth ring) to bark (i.e., the most
outer and recent formed growth ring). We only focused on 1950–
2010 because this is the period during which changes in nitrogen
cycling due to anthropogenic nitrogen depositions might have
occurred. We will refer to this method as the “radial” sampling
method.

In the second method, we control for tree ontogeny by com-
paring δ

15N values over time across similar sized trees. In this

method, 10-year bulk wood samples were collected at a fixed
diameter (see illustrated in Figure 3 top panel). The diameter
used was 20 cm dbh and was chosen because trees with a diameter
of 20 cm are relatively large (with crowns in the sub-canopy) and
likely possess well-developed root systems. Much larger diam-
eters would require the sampling of very large trees to obtain
information of the distant past (Figure 2 top panel). For each
tree, we sampled the ring formed when the tree reached 20 cm
(the “central” ring), as well as the four rings formed before and
the five rings formed after the central ring. This yielded a bulk
sample of 10 growth years for each tree around a diameter of
20 cm. A total of 405 trees were sampled in this way. Because we
collected trees ranging in size from 25 to >100 cm dbh, the rings
formed around the 20 cm diameter differed in age. This allowed
an analysis of tree-ring δ

15N values over time across trees in the
same ontogenetic stage (Figure 3 top panel). We will refer to this
sampling method as the “fixed-diameter” sampling method.

Stable Nitrogen Isotopes
The 10-year bulk samples of coarse wood were ground until a
very fine powder was formed using a mixer mill (Retsch MM301,
Germany). Soluble nitrogen compounds were extracted from the
wood samples following Saurer et al. (2004) and Hietz et al.
(2010). This extraction removes most of the labile nitrogen and
can improve isotope signals (Elhani et al., 2003). Between 20
and 50mg of ground wood was placed in 2ml vials. We subse-
quently added a 1ml of toluene/ethanol (1:1) for 4 h, followed by
1mL of ethanol for 4 h, and finally de-ionized water for 1 h. The
entire extractionwas performed at 50◦C. Between extractions and
after rinsing with water, the samples were centrifuged at 10,000
rcf for 5min, the supernatant discarded and the wood samples
oven-dried at 60◦C for 48 h.

Wood δ
15N values and nitrogen content (in %) weremeasured

on 10 ± 1mg of each sample at the Department of Chemical
Ecology and Ecosystem Research, University of Vienna, with an
elemental analyzer (EA 1110, CE Instruments, Milan, Italy) oper-
ating in continuous-flow mode and coupled through a ConFlo
III interface (Finnigan MAT, Bremen, Germany) to a gas isotope
ratio mass spectrometer (DeltaPLUS, Finnigan MAT). Tree-ring
δ
15N values are expressed relative to the δ

15N of atmospheric N2.
The standard deviation of the repeated measurement of δ

15N in
standard material was 0.27‰.
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FIGURE 2 | Tree-ring δ
15N-values in time using the method illustrated

in the top panel (10-year bulk wood samples taken radially from

1950 to 2010). For each site, the two species were combined in a

mixed-effect model, including “calendar year” as a fixed factor and

“individual tree” as a random factor. A significant increase of tree-ring

δ
15N-values over time was found in the trees from Bolivia and Cameroon,

but not in trees from Thailand (p-values of mixed-effect models in each

panel; full results in Table 3A).

Statistical Analyses
Differences between species were analyzed by comparing the
average δ

15N over the period 1950–2000 between the two
species per site in a t-test. Subsequently, the site-specific
δ
15N values (for 1950–2000) were compared across the three
sites using a One-Way ANOVA and a Bonferroni Post-hoc
test.

Linear mixed-effect models were used to assess the presence
of temporal trends in tree-ring δ

15N. For the data obtained in
the radial sampling method, the two species per site were ana-
lyzed in a mixed-effect model that included “calendar year” as a
fixed factor. “Individual tree” was included as a random factor
to account for the repeated measurement structure of the data.

FIGURE 3 | Tree-ring δ
15N-values in time using the fixed-diameter

method illustrated in the top panel (10-year bulk wood samples

around 20cm dbh). Each point in the graph thus represents an individual

tree sampled around the same size. Differences in the size of sampled trees

allowed a comparison of δ
15N-values in similar sized trees over time. For

each site, the two species were combined in a mixed-effect model,

including “calendar year” as a fixed factor and “tree species” as a random

factor. No significant change of tree-ring δ
15N-values was found in Bolivia

and Cameroon (P > 0.05). In Thailand, a trend of increasing tree-ring

δ
15N-values was found over the period 1950–1990 only (estimate of year

effect: 0.0272 ± 0.016, p = 0.086). Results of mixed-effect model analyses

in Table 3B.

For the fixed-diameter method, we analyzed the data of the two
species per site with a mixed-effect model that included “cal-
endar year” as a fixed factor and “tree species” as a random
factor.

We estimated the statistical power of the mixed-effect model
employed on the data from the fixed-diameter method with a
power test. To this end, we simulated data based on the observed
data and forced in different temporal δ

15N trends. For each
species a simulated dataset was created using the de-trended vari-
ance in δ

15N in the observed data of that species. The mean δ
15N
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FIGURE 4 | Average δ
15N-values from 1950 to 2000 per species.

Data from the fixed-diameter method were compared (Figure 3).

Per site, average δ
15N values of the two species studied were

similar, except for Thailand (p = 0.023). When δ
15N values of the

two species per site were averaged, δ
15N was higher in Cameroon

compared to Bolivia (p < 0.001) and Thailand (p < 0.001) and

average δ
15N-values were lower in Thailand than in Bolivia

(p < 0.001).

value of a species was taken as the values at time= 0. For example,
for Cariniana ianeirensis the mean δ

15N value over the period
1900–2011 is 2.13‰, the residual standard deviation is 0.55‰.
We created data closely resembling the observed data by ran-
domly adding (following a normal distribution withmean=0 and
standard deviation = 1) the residual standard deviation of 0.55
to the mean of 2.13. This was done for each x-axis value in the
observed data, so that the simulated data had the same sam-
ple size and same range on the x-axis. A temporal δ

15N trend
since 1950 was inserted by adding a linear increase to the sim-
ulated data in time. This was done for each species separately.
The simulated datasets of the two species per site were subse-
quently combined. Per site, we tested 20 trends ranging from a
total increase since 1950 from 0.1 to 2‰. For each trend, we gen-
erated 1000 datasets and for each of these datasets we tested if
a mixed-effect model identical to the one used for the observed
data detected a significant effect of “calendar year.” The num-
ber of cases for which “calendar year” was significant was divided
by 1000 to obtain the estimated power of the model and data to
detect a given long-term change in δ

15N.
All analyses were performed in R, version 2.12.2, (R foun-

dation for Statistical Computing, Vienna, Austria), using the
package nlme.

Results

Species and Site Differences in δ
15N

We averaged tree-ring δ
15N values from similar sized tree over

the period 1950–2010 per species (data of fixed-diameter method
in Figure 3). We found no significant difference in average tree-
ring δ

15N values between the two species from Bolivia or between
the two species from Cameroon (Figure 4). In Thailand, aver-
age δ

15N values were significantly higher in T. ciliata than in
M. azedarach (t = 2.34, p = 0.023). Average δ

15N values
were significantly different between sites (combining the two
species per site over the period 1950–2000; F = 104.05, p <

0.001). The δ
15N values were higher in Cameroon compared to

Bolivia (p < 0.001) and Thailand (p < 0.001) and average
δ
15N values were lower in Thailand than in Bolivia (p < 0.001;
Figure 4).

TABLE 3 | Linear mixed-effect model results on temporal changes in δ
15N

values of trees from three sites. The analyses were performed on the data

from two sampling methods. (A) The radial method (Figure 2 top panel).

For each site “calendar year” was included as a fixed factor, “individual

tree” as a random factor in the mixed-effect model analysis. (B) The

fixed-diameter method (Figure 3 top panel). For each site, “calendar year”

was included as a fixed factor, “tree species” as a random factor.

Period analyzed Estimate of year SE df p-value

(A) RADIAL SAMPLING METHOD

Bolivia 1950–2010 0.0142 0.0041 36 0.001

Cameroon 1950–2010 0.0140 0.0055 44 0.014

Thailand 1950–2010 0.0061 0.0052 46 0.570

(B) FIXED-DIAMETER METHOD

Bolivia 1870–2010 −0.0025 0.0021 111 0.230

Cameroon 1850–2010 0.0010 0.0027 172 0.692

Thailand 1890–2010 0.0061 0.0052 109 0.251

Radial Trends in δ
15N

The δ
15N values measured from 1950 to 2010 in 28 large tree

species gradually increased in most individuals, but there was a
high variance and several trees also showed decreased or con-
stant δ15N values over time (Figure 2). When we combined trees
in a mixed-effect model (including “individual tree” as a ran-
dom factor), we found a significant increase of δ

15N values over
the period 1950–2010 in the trees from Bolivia (p = 0.0014;
Table 3A). This increase was 11.2% per decade, leading to a total
increase in δ

15N of 0.85‰ over the period 1950 to 2010. For the
trees in Cameroon, we also found a significant increase of δ

15N
values over the period 1950–2010 (p = 0.014; 8.7% increase per
decade), amounting to a total increase of 0.84‰ since 1950. No
significant change of δ

15N values was found in the trees from
Thailand (Figure 2; Table 3A).

δ
15N Trends in Similar Size Trees

In the fixed-diameter method, we analyzed if trends in tree-ring
δ
15N values were present after controlling for tree ontogeny. Per
site, both species were analyzed together in a linear mixed effect
model (including “tree species” as a random factor). For the 114
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trees from Bolivia, we found no significant change of δ
15N over

the period 1875 to 2005 (Figure 3; Table 3B). Similarly no sig-
nificant trend was found in the 175 trees from Cameroon from
1851 to 2005, or in the 112 trees from Thailand from 1895 to 2005
(Figure 3; Table 3B).

Nitrogen Content in Tree Rings
The nitrogen content (as %N of sample dry weight) was deter-
mined for all samples. It has become clear however, from numer-
ous studies assessing wood [N] patterns, that the primary drivers
of tree-ring [N] are physiological in nature and do not reflect
ecosystem N availability (Gerhart and McLauchlan, 2014). As
such, we did not use the [N] results for our methodologi-
cal comparison or for the assessment of the potential effects
of anthropogenic nitrogen deposition. We found that nitro-
gen content in tree rings followed the pattern that is generally
found, with highest nitrogen content in the latest year of growth
and concentrations decreasing with increasing age. This pat-
tern was apparent in all species and for both methods (Figures
S1, S2).

Statistical Power
To assess the possibility that the lack of finding significant
trends in δ

15N values over time with the fixed-diameter method
(Figure 3) was caused by a limited sample size, we estimated the
statistical power of the employed linear mixed-effect models. We
tested the power to detect changes over the period 1950–2005.
The simulated changes ranged from a total increase of δ

15N val-
ues of 0.1 to 2‰ since 1950. The increase of δ

15N values of
0.85‰ since 1950 found radially in trees from Bolivia would
have been detected with a 99.4% certainty in the fixed-diameter
method (Figure 5). For the other two study sites, the power to
detect changes was much lower. For trees from Cameroon, the
0.84‰ increase of δ15N values from 1950 to 2010 found radially,
would have been detected with a probability of only 54.5%. For all
sites, the statistical power to detect a total increase (or decrease)
of 1.5‰ since 1950 would have been detected with a 90–99%
probability (Figure 5).

Discussion

Evaluating Evidence for Changed Nitrogen
Cycling
We used two different sampling methods to evaluate if tree-ring
δ
15N values in trees from tropical forests have consistently
changed over the last decades. Such changes could indicate
altered nitrogen cycling.We will discuss the results per study site.

For the sampled trees from Bolivia, no change in tree-ring
δ
15N values was found over time (Figure 3; Table 3B), even
though the statistical power was high to detect relatively small
changes (Figure 5). Constant δ

15N values however, agree with
our expectation for this location, because anthropogenic nitro-
gen deposition is likely still low in the area (Figure 1). Surpris-
ingly, a significant increase of tree-ring δ

15N values was found
when analyzing δ

15N within 8 large trees (p = 0.0014), which
amounted to a total increase of δ

15N values by 0.85‰ from
1950 to 2010 (Figure 2; Table 3A). If this trend reflects an effect
of anthropogenic nitrogen deposition (as found in some trop-
ical forests, e.g., Hietz et al., 2011), we should have detected it
with a 99.4% certainty in the fixed-diameter method (Figure 5).
The lack of any significant change found when using the fixed-
diameter method therefore suggests that this increase is likely due
to tree ontogeny, because it disappears when controlling for tree
size. These results make an important case for the necessity to
control for tree size when interpreting trends in tree-ring δ

15N
values.

For the study site in Cameroon, no significant change in tree-
ring δ

15N values over time was found using the fixed-diameter
method (Figure 3; Table 3B). However, a significant increase
was found when analyzing δ

15N within 10 large trees from the
same site (p = 0.014; Figure 2). This again seems to point
to an effect of tree ontogeny, rather than to changes in nitro-
gen cycling. But we also found that our power to detect tem-
poral changes in δ

15N was very low in Cameroon, even though
we included 175 trees in the fixed-diameter method. Our sta-
tistical power to detect the 0.84‰ increase since 1950 found
radially (Figure 2) was only 54.5%, which makes it difficult to

FIGURE 5 | Statistical power of the linear mixed-effect models used

to detect long-term changes in δ
15N in the fixed-diameter sampling

method. For each change in δ
15N (x-axis), 1000 datasets were simulated,

based on the actual variance in the observed data. For each data set we

tested if a mixed-effect model identical to the one used on the observed data

detected a significant effect of “calendar year.” The number of cases for

which “calendar year” was significant was divided by 1000 to obtain the

estimated power of the model (y-axis).
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determine with a high certainty that the found trend within
the large trees is solely caused by tree ontogeny. In addi-
tion, for the study site in Cameroon, we expected to find an
affect of anthropogenic nitrogen input, because reconstructed
NH3 and NOx emissions are relatively high in the area
(Figure 1).

In addition to a low statistical power, we explore two other
possible reasons for not finding a change in tree-ring δ

15N
over time. The first relates to natural nitrogen availability. In
nitrogen-limited forests, increased anthropogenic nitrogen input
might not directly lead to a 15N enrichment of the soil nitrogen
pool, because all mineral nitrogen will be readily absorbed by
the vegetation, leaving little for nitrification and leaching of 15N-
depleted nitrate (Macdonald et al., 2002). There is very lim-
ited information on the nitrogen availability in the forest site
in Cameroon, but nitrogen-poor sites have been repeatedly dif-
ferentiated from nitrogen-rich sites by more negative δ

15N val-
ues (Garten, 1993; Garten and Van Miegroet, 1994; Pardo et al.,
2002; Koba et al., 2003). The relatively high average δ

15N values
in the trees from Cameroon compared to Bolivia and Thailand
(Figure 4), suggest the opposite case: a forest that might not be
strongly nitrogen limited.

Another possible reason for the absence of a long-term trend
in δ

15N values in the Cameroonian forest is that actual nitro-
gen input was much lower than assumed from the estimated
NH3 and NOx emissions (Figure l). Obviously, emissions are
not the same as depositions. Emitted NOx and NH3 can travel
through the atmosphere for many kilometers before raining out.
The main components of the estimated nitrogen emission in
the region are forest and agricultural land burning. Fires can
cause large nitrogen emissions (Palacios-Orueta et al., 2005) and
boost estimates of average regional nitrogen emissions. How-
ever, the very low population density in a 100 km radius around
the study site suggests that nitrogen emissions by fire are likely
localized and occur over a short period of time. Thus, nitro-
gen deposition at the site where trees were sampled may be
lower than expected from estimated regional NOx and NH3

emissions.
For the trees from Thailand, no significant change of δ

15N
values in tree rings was found in either method (Figures 2, 3).
This is a surprising result, because pervious research using the
same tree species at the same location found a highly signifi-
cant increase of tree-ring δ

15N values over time (Hietz et al.,
2011). Although Hietz et al. (2011) analyzed trees radially, they
accounted for tree ontogeny, at least partially, by including tree
size as a covariate. The discrepancy between these studies could
have been caused by a low number of trees included in the radial
method of our study (10 vs. 68 trees by Hietz et al., 2011). Given
the relatively large variability of δ

15N values in trees from Thai-
land (Figure 2), it is possible that we were not able to detect
an increased tree-ring δ

15N when only analyzing 10 trees. The
same is likely true for the fixed-diameter method (Figure 3).
Although we sampled 112 trees, our power test revealed a low
statistical power (64%) to detect the ca. 1‰ increase since
1950 found by Hietz et al. (2011). This makes it possible that
a temporal change in tree-ring δ

15N went undetected in our
study.

Hietz et al. (2011) show the strongest increase of δ
15N over

the period 1950–1990 in Toona ciliata and a slight decrease after
1990. For Melia azedarach a slight increase from 1960 to 1990
was found, but tree-ring δ

15N values remained more or less con-
stant after 1990 (Hietz et al., 2011). When we only analyzed the
period 1950–1990 in the fixed-diameter method, we found some
evidence for a trend in tree-ring δ

15N over time (estimate of year
effect=0.0272, SE = 0.016, p = 0.086). This result supports
the presence of a change in tree-ring δ

15N values that cannot
be related to a size or age effect. It is also unlikely that such a
change is caused by human disturbances (e.g., logging), as the
study site is a remote and well-protected forest. Because anthro-
pogenic nitrogen emissions are high in the region (Figure 1), the
increase of tree-ring δ

15N values over the last decades found by
Hietz et al. (2011) and partially in our study, could reflect the
effects of anthropogenic nitrogen deposition. Increased nitrogen
input can increase leaching of 15N-depleted nitrate (Macdonald
et al., 2002), leading to an enrichment of 15N in the remaining
soil nitrogen pool and subsequently of nitrogen in tree-rings. In
the long term, increased nitrate leaching could lead to soil acid-
ification (Vitousek et al., 1997) and negatively affect tree growth
by an increased leaching of other essential nutrients with higher
soil acidity (Schulze, 1989; Aber et al., 1998; Magill et al., 2004).

A New Sampling Design: Advantages and
Disadvantages
Assessing the effect of anthropogenic nitrogen input on nitro-
gen cycling in tropical forests using the natural abundance of
15N in tree rings is not straightforward. Our new methodology
accounted for potential ontogenetic effects by comparing tree-
ring δ

15N values in time across similar sized trees (Figure 3 top
panel). When δ

15N is measured within the same tree radially (i.e.,
from pith to bark; Figure 2 top panel), changes in δ

15N associ-
ated with an altered N cycle can be confounded by ontogenetic
changes. However, the presence of ontogenetic changes in tree-
ring δ

15N values still lacks empirical support, althoughHietz et al.
(2010) found a significant increase of tree-ring δ

15N with tree
age. For wood nitrogen content, it is commonly found that [N]
is highest in the latest growth ring and decreases with tree-ring
age (e.g., Poulson et al., 1995; Choi et al., 2007). We also found
decreasing nitrogen content from bark to pith in most trees and
using both methods (Figures S1, S2). These trends have been
mainly related to physiological processes within the tree (i.e.,
the re-use of nitrogen present in cambial cells during matura-
tion) and not to environmental factors (Gerhart and McLauch-
lan, 2014). Interestingly, we did not find a consistent correlation
between tree-ring δ

15N and nitrogen content (results not shown).
This was especially notable for the data from the radial-sampling
method, in which increases in δ

15N were observed. It thus seems
that other factors than plant physiology underlie the observed
trends in δ

15N within trees (results Figure 2). We will briefly dis-
cuss two possible factors that could lead to shifts in tree-ring δ

15N
values during tree development; their presence however lacks
empirical evidence.

Firstly, plants absorb most nitrogen in the form of either
ammonium or nitrate (Högberg, 1997). Ammonium and nitrate
differ in δ

15N, with nitrate usually depleted in 15N compared
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to ammonium (Mariotti et al., 1981; Nadelhoffer and Fry, 1994;
Robinson, 2001). Thus any shift in the uptake of ammonium rel-
ative to nitrate during tree development will lead to a change in
tree-ring δ

15N values.
Secondly, ontogenetic changes in δ

15N could be the result
of increased rooting depth with size. δ

15N often increases with
soil depth, with the highest δ

15N values at intermediate depth in
less nitrogen-limited forests (Hobbie and Ouimette, 2009). These
profiles are the result of both 15N-depleted plant litter at the soil
surface and the loss of 15N-depleted nitrogen during denitrifica-
tion at intermediate depths where temporary anoxic conditions
favor denitrification (Hobbie and Ouimette, 2009). Increasing
rooting depth (and deeper nitrogen foraging) could thus result
in changes of tree-ring δ

15N values over time.
Ontogenetic effects on tree-ring δ

15N values should be
excluded or accounted for when using tree-ring δ

15N as a tool
to assess changes in soil nitrogen cycling over time. Previous
studies have done so statistically by including tree age as a fac-
tor (Hietz et al., 2011). But this is not an ideal way to disen-
tangle the potential effects of tree development and of nitro-
gen deposition on tree-ring δ

15N values, e.g., because ontoge-
netic changes in tree-ring δ

15N could be non-linear and because
of possible collinearity between ontogenetic effects and changes
related to soil nitrogen cycling. The sampling design used in
this study entirely accounts for ontogeny. However, it has the
main disadvantage that it requires many trees as each tree is
sampled only once. In addition, each sampled tree grows at
a different location, with possibly specific soil properties and
drainage characteristics. This increased spatial samplingmay lead
to a large background variance in δ

15N values. Such a high
variance further requires a large sample size for sufficient sta-
tistical power to detect temporal δ

15N trends. Our power test
revealed that for the study site in Cameroon and Thailand only
changes leading to a total increase ≥1.5‰ from 1950 to 2010
could be detected with≥90% certainty (Figure 5). Thus for small
datasets and/or to detect small changes in δ

15N this method is less
suitable.

Nitrogen Translocation in Sapwood
Another factor that could complicate the interpretation of trends
in tree-ring δ

15N values is nitrogen translocation. Nitrogen in
wood has some radial mobility, meaning that it is not perma-
nently fixed when wood is formed. There are many reports on
translocation of nitrogen across ring boundaries from 15N label-
ing experiments (Nômmik, 1966;Mead and Preston, 1994; Colin-
Belgrand et al., 1996; Schleppi et al., 1999; Elhani et al., 2003; Hart
and Classen, 2003). Trees re-use nitrogen present in cambial cells
during maturation and extract nitrogen before cell death during
heartwood formation (Cowling and Merrill, 1966; Merrill and
Cowling, 1966; Poulson et al., 1995). How the translocation of
nitrogen affects δ

15N values in tree rings is not entirely clear. As
discussed above, we did not find a consistent correlation between
tree-ring δ

15N and nitrogen content.
To reduce translocation effects, an extraction procedure is

commonly applied that removes a large fraction of the solu-
ble (mobile) N compounds from tree-ring wood and retains
structural N compounds in cell walls (Sheppard and Thompson,

2000). We performed a chemical extraction similar to the
Sheppard/Thompson method on all samples. This extraction
might partially account for the effects of nitrogen mobility,
although several studies show that not all mobile N is removed
with this method (see review in Gerhart and McLauchlan,
2014).

To completely avoid potential translocation effects on tree-
ring δ

15N values, one could focus δ
15N analyses on heartwood

only (Hietz et al., 2010). Heartwood does not contain living cells
and therefore nitrogen cannot be translocated between growth
rings. We did not exclude sapwood samples from the analyses
presented here, because of the strong reduction in data points this
would have caused in the radial sampling method (Figure 2). In
our study species, the number of growth rings in sapwood was
variable, but for most trees the sapwood area contained the last
15 to 25 growth rings (i.e., going back to 1995–1985). There-
fore, excluding sapwood samples would not have allowed the
method comparison presented. Furthermore, excluding sapwood
will remove data from the last decades, the period during which
changes in tropical nitrogen cycling are hypothesized to have
occurred.

Conclusions

We used a new sampling methodology that completely controls
for potential ontogenetic effects on tree-ring δ

15N values, but
the method also increases the variance included in the data and
therefore lowers the power to detect relatively small changes
in δ

15N. We did not find evidence for a long-term change of
tree-ring δ

15N values over time for the study site in Cameroon,
a result that could have been caused by the low statistical
power. For the studied trees from Thailand, our results sup-
port, to a limited extent, a previously reported increase in tree-
ring δ

15N values since ∼1950 (Hietz et al., 2011). This change
could reflect an increased nitrate leaching following anthro-
pogenic nitrogen input. But again, a low statistical power hin-
ders the interpretation of this result. For trees from Bolivia, a
much higher statistical power allowed a more rigid conclusion.
Here we show the presence of an ontogenetic trend in δ

15N
values, which disappeared when controlling for tree size. Taken
together, our findings are not consistent with the idea that nitro-
gen cycles in tropical forests are generally shifting to more open
systems.

Anthropogenic nitrogen deposition is expected to increase
dramatically in the near future in most tropical forests due to
increased land-use intensification, forest fragmentation, biomass
burning, and fossil fuel emissions (Galloway, 2004; Galloway
et al., 2008). Most tropical forests are hypothesized to be par-
ticularly sensitive to extra nitrogen inputs (Matson et al., 1999,
2002). Tree-ring δ

15N values are a very useful and relatively cheap
tool to study changes in nitrogen cycling in tropical forests. This
study shows the presence of ontogenetic changes in tree-ring
δ
15N values. We therefore strongly recommend accounting for
tree ontogeny before temporal trends in δ

15N can be properly
interpreted. Possible tree-size corrections include: analyzing only
tree rings in the adult stage (e.g., when a tree reached the canopy);
including tree-size as a covariate in statistical analyses (sensu
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Hietz et al., 2011) or, more strictly, by the fixed-diameter method
outlined in this study.
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