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The plant is an attractive versatile home for diverse associated microbes. A subset
of these microbes produces a diversity of anti-microbial natural products including
polyketides, non-ribosomal peptides, terpenoids, heterocylic nitrogenous compounds,
volatile compounds, bacteriocins, and lytic enzymes. In recent years, detailed molecular
analysis has led to a better understanding of the underlying genetic mechanisms. New
genomic and bioinformatic tools have permitted comparisons of orthologous genes
between species, leading to predictions of the associated evolutionary mechanisms
responsible for diversification at the genetic and corresponding biochemical levels.
The purpose of this review is to describe the biodiversity of biosynthetic genes of
plant-associated bacteria and fungi that encode selected examples of antimicrobial
natural products. For each compound, the target pathogen and biochemical mode of
action are described, in order to draw attention to the complexity of these phenomena.
We review recent information of the underlying molecular diversity and draw lessons
through comparative genomic analysis of the orthologous coding sequences (CDS). We
conclude by discussing emerging themes and gaps, discuss the metabolic pathways in
the context of the phylogeny and ecology of their microbial hosts, and discuss potential
evolutionary mechanisms that led to the diversification of biosynthetic gene clusters.

Keywords: genes, biodiversity, evolution, plant associated microbes, rhizosphere, endophyte, antimicrobial
secondary metabolites

Introduction

The plant is an attractive versatile home for diverse microbes that can colonize internal plant tissues
(endophytes), live on the surface (epiphytes) or in the soil surrounding the root system (rhizosphere
microbiota) (Barea et al., 2005; Johnston-Monje and Raizada, 2011). Plant associated microbes
have the potential to be used as biocontrol, the use of living organisms to suppress crop disease
(Eilenberg, 2006) through various mechanisms including the production of antibiotics (Compant
et al., 2005). Diverse classes of antimicrobial secondary metabolites of microbial origin have been
reported (Mousa and Raizada, 2013), including polyketides, non-ribosomal peptides, terpenoids,
heterocylic nitrogenous compounds, volatile compounds, bacteriocins as well as lytic enzymes.
Polyketides and non-ribosomal peptides constitute the majority of microbial derived natural prod-
ucts (Cane, 1997). Interestingly, the tremendous structural diversity of antimicrobial secondary
metabolites originated via limited metabolic pathways utilizing few primary metabolites as pre-
cursors (Keller et al., 2005). Underlying the diversification of antimicrobial metabolites must have
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been a corresponding genetic diversification of ancestral genes
driven by co-evolutionary pressures (Vining, 1992).

The revolution in genomics, genome mining tools and
bioinformatics offers a new opportunity to connect biochemical
diversity to the underlying genetic diversity and to analyze the
evolutionary events leading to biodiversity (Zotchev et al., 2012;
Scheffler et al., 2013; Deane and Mitchell, 2014).

The scope of this review is to describe the biodiversity
of biosynthetic coding sequences (CDS) of plant-associated
microbes (bacteria and fungi) that encode selected examples of
antimicrobial secondary metabolites and lytic enzymes. For each
example, the target pathogen(s) andmode of action are described
where known, in order to highlight the diversity of biochemi-
cal targets. Out of necessity, the review focuses on compounds
for which in depth molecular analysis has been conducted. We
review data pertaining to the underlying molecular diversity and
highlight comparative genomic data of the orthologous genes.
The review concludes with a discussion of common themes and
gaps in the literature, and discusses the role of evolution in the
diversification of biosynthetic gene clusters including horizontal
gene transfer (HGT).

Biosynthetic Genes Encode Diverse
Chemical Classes of Anti-Microbial
Compounds

The diversity of compounds described in this review, the under-
lying genes, microbes, and pathogenic targets are summarized
(Tables 1, 2).

Polyketides
The structures of Polyketides described in this review are shown
(Figure 1)

2,4-Diacetylphloroglucinol
2,4-diacetylphloroglucinol (2,4-DAPG) is a well-studied fluores-
cent polyketide metabolite produced by many strains of fluores-
cent Pseudomonas spp. that contributes to disease-suppressive
soils of crops (McSpadden Gardener et al., 2000; Mavrodi et al.,
2001). 2,4-DAPG is synthesized by the condensation of three
molecules of acetyl coenzyme A and one molecule of malonyl
coenzyme A to produce the precursor monoacetylphloroglucinol
(MAPG) (Shanahan et al., 1992). In P. fluorescens strain Q2-87,
four coding sequences (CDS) within the phl operon are responsi-
ble for biosynthesis of 2,4-DAPG: a single CDS (phlD) encoding
a type III polyketide synthase is responsible for the production of
phloroglucinol from the condensation of three acetyl-CoAs, and
then three CDS (phlACB) encoding acetyltransferases are suffi-
cient to convert phloroglucinol to 2,4-DAPG viaMAPG (Bangera
and Thomashow, 1999; Yang and Cao, 2012). It was suggested
that the peptides encoded by phlACBmay exist as amulti-enzyme
complex (Bangera and Thomashow, 1999). phlD has been the
subject of interest, because it has homology to chalcone and
stilbene synthases from plants, which suggests horizontal gene
transfer (HGT) between plants and their rhizosphere microbial
populations (Bangera and Thomashow, 1999). Whereas, phlACB
coding sequences are highly conserved between eubacteria and

archaebacteria (Picard et al., 2000), a considerable degree of
polymorphism was reported for phlD (Mavrodi et al., 2001).
phlA transcription is negatively regulated by the product of phlF
(Delany et al., 2000) which also appears to mediate repression
by fusaric acid (Delany et al., 2000), a metabolite of pathogenic
fungi of plants, that has previously been implicated in repres-
sion of biosynthesis of the anti-fungal compound, phenazine (see
above) (van Rij et al., 2005). These observations demonstrate the
ongoing arms race between plants, their fungal pathogens and
associated anti-fungal antagonists, leading to gene diversification.

Mupirocin
The polyketide mupirocin or pseudomonic acid is one of the
major antibacterial metabolites produced by Pseudomonas flu-
orescens (Fuller et al., 1971) and is widely used as a clinical
antibiotic (Gurney and Thomas, 2011). Mupirocin can inhibit
the growth of methicillin resistant Staphylococci, Streptococci,
Haemophilus influenza, and Neisseria gonorrheae (Sutherland
et al., 1985). In terms of the mode of action, mupirocin inhibits
isoleucyl-tRNA synthetase, and hence prevents incorporation
of isoleucine into newly synthesized proteins, thus terminating
protein synthesis (Hughes and Mellows, 1980). Biochemically,
mupirocin has a unique chemical structure that contains a C9 sat-
urated fatty acid (9-hydroxynonanoic acid) linked to C17 monic
acid A (a heptaketide) by an ester linkage (Whatling et al., 1995).
Mupirocin is derived from acetate units incorporated into monic
acid A and 9—hydroxynonanoic acid via polyketide synthesis
(Whatling et al., 1995). At the molecular level, the mupirocin
biosynthetic gene cluster (mup operon) in P. fluorescens is com-
plex, and includes 6 Type I polyketide synthases that are multi-
functional as well as 29 proteins of single function within a 65 kb
region, which are incorporated into 6 larger coding sequences
(modules mmpA-F) (El-Sayed et al., 2003; Gurney and Thomas,
2011).The gene cluster is non-standard as the CDS are not in
the same order as the biosynthetic steps (El-Sayed et al., 2003;
Gurney and Thomas, 2011). The acyltransferase (AT) domains of
the polyketide synthases (PKS) are not present in each genetic
module but are instead encoded by a separate CDS (from the
mmpC module) and this classifies these PKS as in-trans AT PKSs
(El-Sayed et al., 2003). With respect to gene regulation, two puta-
tive regulatory genes, mupR and mupI, were identified within
the cluster that are involved in quorum sensing (QS) dependent
regulation (El-Sayed et al., 2001).

An interesting feature of this system in P. fluorescens is that
self-resistance to mupirocin is also encoded by a CDS (mupM)
within the biosynthetic gene cluster (El-Sayed et al., 2003).mupM
encodes a resistant Ile t-RNA synthetase (IleS) due to polymor-
phisms within the binding site of mupirocin (El-Sayed et al.,
2003; Gurney and Thomas, 2011). A second resistant IleS was
cloned from P. fluorescens NCIMB 10586 outside of the mup
gene cluster which showed 28% similarity to the mupM product
(Yanagisawa et al., 1994). Human pathogens that have high level
mupirocin-resistance are associated with an additional gene that
encode a novel IleS with similarity to eukaryotic counterparts;
this resistance gene is associated with transposable elements and
is carried on plasmids, facilitating its rapid spread (Eltringham,
1997; Gurney and Thomas, 2011).
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There is also genetic evidence that the entiremup gene cluster
in Pseudomonas arose by horizontal gene transfer; specifically the
genes encoding tRNAVal and tRNAAsp were found upstream of
the mupA promoter region leading to speculation that the mup
cluster arose from homologous recombination between chromo-
somal tRNA genes and possibly a plasmid containing the mup
cluster (El-Sayed et al., 2003). The inclusion of a resistant IleS
(mupM) within the mup biosynthetic cluster might have facili-
tated such horizontal gene transfer, as otherwise uptake of the
mupirocin gene cluster would have been immediately suicidal.

Difficidin
Difficidin is a polyketide with an interesting geometry that
involves four double bonds in the Z configuration (Chen et al.,
2006). Difficidin is produced by various Bacillus species such as B.
subtilis and B. amyloliquefaciens FZB 42 with broad antibacterial
activity against human and crop pathogens (Zimmerman et al.,
1987; Chen et al., 2006, 2009). A large gene cluster (pks3) encod-
ing difficidin (and oxydifficidin) was characterized in B. amy-
loliquefaciens (Chen et al., 2006). This compound is included in
this review, because pks3 is adjacent to other polyketide synthesis
gene clusters, pks1 and pks2, that encode bacillaene and macro-
lactin, respectively (Chen et al., 2006; Schneider et al., 2007). All
three gene clusters share sequence homology, a similar order of
CDS and are located close to another on the chromosome, lead-
ing Chen et al. (2006) to hypothesize that they emerged from
homologous recombination from a common ancestral gene clus-
ter resulting in gene duplication. This system provides insights
into the diversification of polyketides.

Pyoluteorin
Pyoluteorin (PLt) is a phenolic polyketide with bactericidal, her-
bicidal, and fungicidal properties. Plt can suppress damping-off
disease in cotton caused by the fungus, Pythium ultimum (Howell
and Stipanovic, 1980). Both PLt and phenazine (see below) may
act synergistically to suppress such soil-borne fungal diseases in
plants, as some studies have suggested that the two biosynthetic
pathway interact with one another (Ge et al., 2007; Lu et al., 2009).
The biosynthesis of Plt involves condensation of proline with
three acetate equivalents through chlorination and oxidation.
The carbon skeleton is built up by the action of a single multien-
zyme complex (Nowak-Thompson et al., 1999). In Pseudomonas
fluorescens Pf-5, a 24 kb segment contains the PLt biosynthetic
operon (pltABCDEFG). PLt biosynthesis is catalyzed by type I
polyketide synthases (pltB, pltC), an acyl-CoA dehydrogenase
(pltE), an acyl-CoA synthetase (pltF), a thioesterase (pltG), and
halogenases (pltA, pltD, pltM) with pltM located adjacent to the
gene cluster (Nowak-Thompson et al., 1999). A significant delay
in the expression of the PLt biosynthetic operon was reported
in the cucumber spermosphere compared to cotton, which cor-
related to the timing of infection with the fungal root pathogen
Pythium ultimum (Kraus and Loper, 1995). The authors suggest
that such temporal differences may be responsible for differential
disease suppression in diverse plant hosts.

The plt biosynthetic operon has been shown to be regulated by
a LysR family transcriptional activator, encoded by pltR (Nowak-
Thompson et al., 1999). Interestingly, pltR is tightly linked and
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transcribed divergently to the biosynthetic gene cluster (Nowak-
Thompson et al., 1999). In earlier studies involving the biosyn-
thetic operon of phenazine, its LysR transcriptional regulator
gene (phzR) was also shown to be tightly linked to its corre-
sponding biosynthesis gene cluster (Pierson et al., 1998). As both
phenazine and PLt combat soil-borne fungal diseases in plants,
we speculate that strong evolutionary pressures in the rhizo-
sphere may have promoted HGT of the biosynthetic operons to
new rhizosphere microbial hosts; the activator-cluster gene mod-
ule would facilitate activation of the biosynthetic CDS following
such gene transfer.

Jadomycin
Jadomycin is a member of angucycline antibiotics produced by
Streptomyces species such as S.venezuelae. Jadomycin (jad) pro-
duction is induced under stress conditions such as phage infec-
tion or heat shock (Doull et al., 1994; Jakeman et al., 2009). The
jad biosynthetic gene cluster in S. venezuelae is closely related
to type II polyketide synthase genes (Han et al., 1994) with a
complex biosynthetic gene cluster (Zou et al., 2014). Jadomycin
is of interest here because upstream of the jad operon are sets
of negative regulatory genes including jadR1R2R3 and jadW123
(Yang et al., 1995; Zou et al., 2014). jadW123 encodes enzymes
for the biosynthesis of gamma-butyrolactones (GBL), whereas
JadR2 is a pseudoreceptor for GBL which upon its binding acti-
vates JadR1 and JadR3 that subsequently act as positive and neg-
ative transcriptional regulators of the jad biosynthetic operon,
respectively (Zou et al., 2014). GBLs are becoming well known
as regulators of secondary metabolism in gram positive bacte-
ria, analogous to the related acyl homoserine lactone compounds
which mediate QS in gram negative bacteria (Nodwell, 2014).
QS is a method of communication between bacterial populations
that activates genes based on high cell density through the signal
molecule N-acyl-homoserine lactone (AHL) (Whitehead et al.,
2001). Whereas, QS signaling molecules are thought to be syn-
thesized and sensed by the same species (Nodwell, 2014), the
GBL/jad system is interesting, because recent data suggests that
GBL can signal across different Streptomyces species to activate
different polyketide biosynthetic pathways (Nodwell, 2014; Zou
et al., 2014). Biologically, it has been shown that different Strepto-
myces species, which are soil microbes, can live on the same grain
of soil alongside a diversity of bacteria (Keller and Surette, 2006;
Vetsigian et al., 2011), suggesting there may have been evolution-
ary selection for inter-species coordination for antibiotic produc-
tion (Nodwell, 2014), resulting in enhanced genetic complexity
associated with the jad locus.

Non-Ribosomal Peptides
The structures of non-ribosomal peptides described in this review
are shown (Figure 2).

Zwittermicin A
Zwittermicin A is a polyketide/nonribosomal peptide hybrid
antibiotic produced by B. cereus and B. thuringiensis (Raffel et al.,
1996) with activity against oomycetes such as Phytophthora med-
icaginis and some other pathogenic fungi (Silo-Suh et al., 1998).
Zwittermicin A has a unique structure that includes glycolyl
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FIGURE 1 | Structures of polyketide compounds featured in this review.

moieties, D amino acid, and ethanolamine in addition to the
unusual terminal amide produced from the ureidoalanine (non-
proteinogenic amino acid) (Kevany et al., 2009). Zwittermicin A
is thought to be biosynthesized as part of a larger metabolite that
is processed twice to form zwittermicin A and two other metabo-
lites (Kevany et al., 2009). The complete biosynthetic operon
encoding zwittermicin A includes 27 open reading frames (CDS,
zmaA, and zmaV) that extend over 62.5 kb of the Bacillus cereus
UW85 genome, in addition to five individual genes (kabR and
kabA—kabD) (Kevany et al., 2009). In this study, support was
gained for the hypothesis that the skeleton of zwittermicin A is
catalyzed by a megasynthase enzyme involving multiple nonri-
bosomal peptide synthetases (NRPS) and PKS; the megasynthase
has multiple modules containing distinct domains that catalyze
the different steps in the pathway (Emmert et al., 2004; Kevany
et al., 2009). Evidence suggested that the CDS included 5 NRPS
modules (Kevany et al., 2009). It is noteworthy that a similar gene
cluster was characterized on a plasmid in B. cereus AH1134, sug-
gesting that the pathway can be transferred horizontally (Kevany
et al., 2009). Consistent with the mobility of this operon, an
orthologous 72-kb region encoding for zwittermicin A in Bacil-
lus thuringiensis, was shown to be flanked by putative transposase
genes on both edges, suggesting that it may be a mobile element
that was gained by B. cereus through horizontal gene transfer.
Since zwittermicin A has been reported to enhance the activity
of protein toxins that attack insects (Broderick et al., 2000), it
was hypothesized that transfer of this operon into B. thuringien-
sis permitted the microbe to gain insecticide-promoting factors
to combat insects during co-evolution (Luo et al., 2011).

Fusaricidins A–D
Fusaricidins are guanidinylated ß-hydroxy fatty acids attached
to a cyclic hexapeptide including four D-amino acids (Kajimura
and Kaneda, 1997; Schwarzer et al., 2003). These antibiotics are
produced by Paenibacillus polymyxa strains and exhibit antifun-
gal activity against diverse plant pathogens including, Aspergillus
niger, Aspergillus oryzae, Fusarium oxysporum, and Penicillium
thomii (Kajimura and Kaneda, 1996, 1997) as well as Lep-
tosphaeria maculans, the causal agent of black root rot in canola
(Beatty and Jensen, 2002). The amino acid chains of fusaricidins
are linked together and modified by a non-ribosomal peptide
synthetase (NRPS). The multi-domain NRPS consists of up to
15,000 amino acids and is therefore considered among the longest
proteins in nature (Schwarzer et al., 2003). NRPS incorporation
is not limited to the 21 standard amino acids translated by the
ribosome, and this promiscuity contributes to the great struc-
tural diversity and biological activity of non-ribosomal peptides
(Li and Jensen, 2008).

In P. polymyxa E68, the fusaricidin biosynthetic gene cluster
(fusGFEDCBA) has been characterized in which the NRPS cod-
ing sequence, the largest CDS in the cluster, was observed to
encode a six-module peptide (Choi et al., 2008; Li and Jensen,
2008; Li et al., 2013). The biosynthetic cluster includes other CDS
responsible for biosynthesis of the lipid moiety but does not con-
tain transporter genes (Li and Jensen, 2008). In P. polymyxa,
a promoter for the fus operon was identified and shown to be
bound by a transcriptional repressor (AbrB) which previous stud-
ies implicated as a regulator of sporulation; this is of interest since
fusaricidin was observed to be synthesized during sporulation,
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FIGURE 2 | Structures of non-ribosomal peptide compounds featured in this review.

thus coordinating the microbe’s secondary metabolism with its
life cycle (Li et al., 2013).

Allelic diversity is typically thought to be responsible for pro-
ducing chemical diversity. However, an interesting feature of the
fus cluster is that a diversity of fusaricidins, differing in their
incorporated amino acids (Tyr, Val, Ile, allo-Ile, Phe), can be pro-
duced by a single allele of fusA; the underlying mechanism is that
the NRPS A-domain, responsible for recognition of amino acids,
has relaxed substrate specificity (Figure 3) (Han et al., 2012).

Polymyxins
Polymyxins are a family of non-ribosomal lipopeptide antibi-
otics composed of ten amino acids, a polycationic heptapep-
tide ring and a fatty acid derivative at the N terminus (Storm
et al., 1977). They are produced by Gram positive bacteria
and target Gram negative species, by altering the structure of
the cell membrane. The polymyxin family includes polymyx-
ins A, B, D, E (colistin), andM (mattacin) (Shaheen et al.,
2011). Polymyxin B exhibits potent antibacterial activity against
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FIGURE 3 | Diagram illustrating how a diversity of fusaricidins are
produced from a single allele of fusA which encodes the
non-ribosomal peptide synthase (NRPS) A-domain. (A) Most enzymes
have stringent substrate specificity. (B) By contrast, the NRPS A-domain can
recognize and incorporate different amino acids to create diverse fusaricidins,
and hence it is an example of an enzyme with relaxed substrate specificity
(Han et al., 2012).

Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acineto-
bacter spp. (Gales et al., 2006). However, polymyxins exhibit a
remarkable degree of neurotoxicity and nephrotoxicity which
limit their clinical use (Li et al., 2006).

In Paenibacillus polymyxa PKB1 (the same strain that con-
trols plant fungi by producing fusaricidins, see above), a 40.8 kb
polymyxin biosynthetic gene cluster was shown to encode five
coding sequences, pmxA-E. Three CDS (pmxA, B, E) encode sub-
units of NRPS, each responsible for the modular incorporation
of amino acids, while two genes (pmxC, D) encode a permease
belonging to the ABC-type transporter family (Shaheen et al.,
2011). In both P. polymyxa PKB1 and P. polymyxa E681, the
arrangement of the NRPS coding sequences in the pmx clus-
ter does not match the amino acid sequence in the produced
polymyxin, which is unusual for NRPS-encoded peptides (Choi
et al., 2009; Shaheen et al., 2011).

With respect to the diversity of polymyxins, polymyxins dif-
fer in the amino acid composition of residues 3, 6, and 7, in
the D vs. L stereochemistry of the incorporated amino acids,
as well as in the lipid moiety (Choi et al., 2009; Shaheen et al.,
2011). In P. polymyxa SC2 and P. polymyxa PKB1, an allelic
variant was uncovered within NRPS domain 3 using bioinfor-
matic analysis of the genome which correlated with incorpo-
ration of the D rather than L form of 2,4-diaminobutyrate in
amino acid position 3, explaining the mechanism for the pro-
duction of two subtypes of polymyxin B (Shaheen et al., 2011).
With respect to the diversity of residues 6 and 7, P. polymyxa
E681 and P. polymyxa PKB1 produce polymyxins that differ
in these amino acids, producing polymyxin A and B, respec-
tively (Shaheen et al., 2011). Bioinformatic analysis revealed that
the DNA sequences of the pmx gene clusters were 92% con-
served at the nucleotide level, but differed considerably in the
domains corresponding to modules 6 and 7 (Shaheen et al.,
2011). These two sets of observations led the authors to sug-
gest that the diversity of polymyxins arises from mixing and
matching of alleles of the NRPS modular domains, hence com-
binatorial chemistry, rather than relaxed substrate specificity as
seen in other secondary metabolites such as fusaricidins (see
above).

Another interesting feature of the pmx gene clusters is that the
polymyxin transporters might also transport fusaricidin, since
the fus biosynthetic cluster lacks any transporter genes (see
above), and as both antibiotics are cationic lipopeptides (Sha-
heen et al., 2011). The authors found support for this hypothesis,
as deletion mutations in pmxC and D genes also reduced the
antifungal activity of fusaricidin against Leptosphaeria maculans
although the two biosynthetic gene clusters are not linked. It is
worth noting that there is no evidence yet of genes responsible for
lipidation of the peptide residue in the characterized polymyxin
clusters, suggesting that this function might be encoded else-
where in the genome (Shaheen et al., 2011).

Iturins
Iturins are a family of non-ribosomal cyclolipopeptides consist-
ing of seven α-amino acid residues and one ß-amino acid, the
latter noted as a unique feature compared to other lipopep-
tide antibiotics (Constantinescu, 2001; Leclère et al., 2005; Ham-
dache et al., 2013). The iturin family includes compounds such as
bacillomycins D, F and L, bacillopeptins, iturins A, C, E and E,
and mycosubtilins (Hamdache et al., 2013). Iturins are produced
by different strains of B. subtilis and B. amyloliquefaciens, and
exhibit potent antifungal activity against major phytopathogens
including R. solani, Fusarium oxysporum, and F. graminearum,
the latter responsible for Fusarium head blight in wheat (Gueld-
ner et al., 1988; Constantinescu, 2001; Tsuge et al., 2001; Dun-
lap et al., 2013). The mechanism of action involves disruption
of the target fungal plasma membrane (Thimon et al., 1995).
In both B. subtilis RB14 and B. amyloliquefaciens AS43.3, the
iturin A biosynthetic operons were shown to contain four coding
sequences (ituDABC) coding for: a putative malonyl coenzyme A
transacylase, a protein with three functions (fatty acid synthetase,
amino acid transferase, and peptide synthetase), and two peptide
synthetases, respectively (Tsuge et al., 2001; Dunlap et al., 2013).

Regarding diversification within the chemical family, iturin A
from B. subtilis RB14 has a similar structure as mycosubtilin that
is produced by B. subtilis ATCC 6633 but with inverted amino
acids at the 6th and 7th positions (Tsuge et al., 2001). By compar-
ative analysis of orthologous CDS between these two strains (ituC
and mycC, respectively), it was suggested that the NRPS amino
acid adenylation domain may have been intragenically swapped
during evolution, which would also imply a HGT event (Tsuge
et al., 2001). Comparative genome analysis between at least three
sequenced itu clustersmay reveal further information concerning
the diversification of the iturin family (Tsuge et al., 2001; Blom
et al., 2012; Dunlap et al., 2013).

Bacilysin
Bacilysin is a non-ribosomally produced dipeptide composed of
an L-alanine residue at the N terminus and a non-proteinogenic
amino acid, L-anticapsin, at the C terminus (Walker and Abra-
ham, 1970; Stein, 2005). Compared to the more elaborate non-
ribosomal peptides noted above, bacilysin is noteworthy because
it is amongst the simplest peptides in nature, adding to the struc-
tural diversity of observed non-ribosomal peptides. Bacilysin is
produced by Bacillus species such as B. pumilus, B. amylolique-
faciens, and B. subtilis (Leoffler et al., 1986; Phister et al., 2004)
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FIGURE 4 | Structures of terpenoid compounds featured in this review.

and shown to have antimicrobial activity against various bac-
teria and fungi such as Candida albicans (Kenig and Abraham,
1976). Mechanistically, bacilysin is a prodrug that is activated by
the action of a peptidase enzyme that releases the active moi-
ety, anticapsin (Rajavel et al., 2009). Anticapsin inhibits bacterial
peptidoglycan or fungal protein biosynthesis through blockage of
glucosamine synthetase, resulting in cell lysis (Kenig et al., 1976).
Biosynthesis of bacilysin originates from the prephenate aromatic
amino acid pathway (Hilton et al., 1988; Parker andWalsh, 2012).

In B. subtilis the biosynthesis of bacilysin is encoded by the
operon, bacABCDE (ywfB-G), in addition to a monocistronic
gene (ywfH) (Inaoka et al., 2003). bacABC is likely responsible
for the biosynthesis of anticapsin while bacDE (ywfEF) encodes a
ligase and an efflux transporter protein for self protection, respec-
tively (Steinborn et al., 2005; Rajavel et al., 2009). The bacilysin
biosynthetic operon is positively regulated by QS pheromones,
in particular PhrC (Yazgan et al., 2001; Köroğlu et al., 2011) and
negatively regulated by ScoC, a transition state regulator (Inaoka
et al., 2009). The transition state in bacteria is a period of decision
making.

Terpenoids
The structures of terpenoids described in this review are summa-
rized (Figure 4).

Trichodermin and Harzianum A
Trichothecene mycotoxins are produced by some fungal genera
such as deoxynivalenol (DON) from Fusarium, and harzianum
and trichodermin from Trichoderma arundinaceum and T. bre-
vicompactum, respectively (Cardoza et al., 2011). Trichoder-
min was reported to have antifungal activity against the fungal

pathogens Rhizoctonia solani and Alternaria solani (Chen et al.,
2007) as well as other fungal genera (Tijerino et al., 2011). Tri-
chodermin inhibits protein synthesis in eukaryotes by inhibit-
ing peptidyl transferase that catalyzes translational elongation
and/or termination (Wei et al., 1974) and by inhibiting peptide-
bond formation at the initiation stage of translation (Carter et al.,
1976).

Comparative analysis has been conducted on the CDS
responsible for trichothecene biosynthesis in Fusarium and Tri-
choderma. In Fusarium, trichothecenes are encoded by a gene
cluster called the TRI cluster; this cluster also encodes regu-
latory and transport proteins (Proctor et al., 2009). In Tricho-
derma, an orthologous TRI cluster was discovered in which 7
CDS were conserved with Fusarium, but the two clusters showed
interesting evolutionary divergence (Cardoza et al., 2011) which
may be informative for understanding the genetics underly-
ing other anti-fungal metabolites. In Fusarium, the TRI cluster
includes tri5 that encodes trichodiene synthase, the first com-
mitted step in trichothecene biosynthesis, which catalyzes the
cyclization of farnesyl pyrophosphate to form trichodiene (Hohn
and Beremand, 1989). In Fusarium, tri5 is located within the
TRI cluster, but surprisingly it is not associated with the orthol-
ogous cluster in Trichoderma. Three additional CDS responsi-
ble for trichothecene biosynthesis in Fusarium (tri7, tri8, tri13)
are missing from the Trichoderma cluster, along with an CDS
of unknown function (tri9) (Cardoza et al., 2011). Interest-
ingly, two of the apparently conserved biosynthetic CDS (tri4
and tri11, based on sequence homology) were demonstrated to
have diverged functionally between Trichoderma and Fusarium
based on heterologous expression analysis: in Trichoderma, tri4
catalyzes three out of four oxygenation reactions carried out
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by its corresponding Fusarium ortholog; tri11 catalyzes distinc-
tive hydroxylation reactions in Fusarium (C-15) and Tricho-
derma (C-4). Finally, amongst the CDS which are conserved
between Fusarium and Trichoderma, head-to-tail vs. head-to-
head rearrangements are observed (e.g., tri3, tri4) (Cardoza et al.,
2011). These results demonstrate multiple evolutionary events
(rearrangement, functional diversification, gene loss, gene gain)
within one biosynthetic gene cluster (Figure 5).

Phomenone
Phomenone is a sesquiterpene synthesized by various fungi
including Xylaria sp., an endophytic fungus isolated from
Piper aduncum, and reported to have antifungal activity against
the pathogen Cladosporium cladosporioides (Silva et al., 2010).
Phomenone is structurally similar to the PR toxin metabolite of
Penicillium roqueforti which functions by inhibiting RNA poly-
merase and thus inhibits protein synthesis at the initiation and
elongation steps (Moule et al., 1976). A biosynthetic precursor
for phomenone A is aristolochene (Proctor and Hohn, 1993).
In P. roqueforti NRRL 849, a gene required for aristolochene
(aril) biosynthesis was characterized and shown to encode a
sesquiterpene cyclase named aristolochene synthase (AS) (Proc-
tor andHohn, 1993). Expression of aril occurs in stationary phase
cultures and is regulated transcriptionally (Proctor and Hohn,
1993).

Paclitaxel (Taxol)
The diterpene paclitaxel (Taxol) is reported to be produced by at
least 20 diverse fungal endophyte genera inhabiting various plant
species (Zhou et al., 2010). Taxol was reported to be produced
by some fungal endophytes that inhabit conifer wood and its
ecological function was suggested to be a fungicide against host
pathogens (Soliman et al., 2013). Taxol acts by stabilizing micro-
tubules and inhibiting spindle function leading to disruptions in
normal cell division (Horwitz, 1994). However, Taxol was origi-
nally purified from Taxus trees (Wani et al., 1971) and shown to
be encoded by plant nuclear genes, apparently redundantly. As

the number of plant genera that produce Taxol is very few, it is
interesting to speculate whether its biosynthetic genes may have
been transferred horizontally from fungi to plants.

The Taxol biosynthetic pathway in plants requires 19 enzy-
matic steps. The first committed step in biosynthesis of plant
Taxol is cyclization of GGDP to taxa-(4,5),(11,12)-diene cat-
alyzed by taxadiene synthase (TS) (Hezari et al., 1995). Thir-
teen plant Taxol biosynthetic genes from Taxus were used in
BLASTP searches to identify potential homologs in Penicillium
aurantiogriseum NRRL 62431 (Yang et al., 2014). Seven puta-
tive homologous genes were identified though the homology
scores were as low as 19%; these genes were claimed to encode:
phenylalanine aminomutase (PAM), geranylgeranyl diphos-
phate synthase (GGPPS), taxane 5α-hydroxylase (T5OH), tax-
ane 13α-hydroxylase (T13OH), taxane 7β-hydroxylase (T7OH),
taxane2α-hydroxylase (T2OH) and taxane 10β-hydroxylase
(T10OH). Another gene encoding an AT (PAU_P11263) was
identified by using BLASTP against the GenBank database. How-
ever, no homologs were identified to plant TS; the authors
claimed that the fungus might catalyze taxadiene synthesis by a
unique enzymatic system (Yang et al., 2014). Position-Specific
Iterative BLAST showed one gene from the bacterial genus
Mycobacterium with potential similarity to plant TS suggesting
lateral gene transfer from plants to mycobacteria (Yang et al.,
2014).

In a parallel study to isolate fungal Taxol biosynthetic genes,
a different approach was taken where PCR primers designed
from the plant genes that encode Taxol were used as a pri-
mary screen against fungi (Xiong et al., 2013). The study iden-
tified putative homologs of fungal TS as well as BAPT (which
encodes the critical C-13 phenylpropanoid side-chain CoA acyl-
transferase) with ∼40% sequence identities to their plant coun-
terparts. Despite this progress, other reports remain skeptical that
fungi actually encode Taxol (Heinig et al., 2013).

Recent studies have demonstrated complex three-way inter-
actions in Taxol biosynthesis between a Taxol-producing fungal
endophyte, other endophytes and the host plant. Host endophytic

FIGURE 5 | Comparative analysis of the trichothecene biosynthetic
gene clusters in (A) Trichoderma arundinaceum, (B) T.
brevicompactum, (C) Fusarium sporotrichioides, and (D) F.
graminearum. The illustration suggests that the ancestral gene cluster

underwent multiple evolutionary events including re-arrangements (blue
arrows), gene gain or loss within the same genus (green arrows) and gene
gain or loss between genera (orange and green arrows) (adapted from
Cardoza et al., 2011).
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fungi appear to elicit plant TS transcription or transcript accumu-
lation. Specifically, TS transcript and the corresponding protein
were reduced upon treating both young plantlets and old Taxus
wood with fungicide (Soliman et al., 2013). In a parallel study,
co-culture of the Taxol-producing endophyte Paraconiothyrium
SSM001 with two presumptive fungal endophytes of the same
yew tree host elicited paclitaxel accumulation from the endo-
phyte, suggesting inter-species interactions between endophytes
inhabiting the same host niche (Soliman and Raizada, 2013).

Helvolic Acid
Helvolic acid is a fusidane triterpene produced by Aspergillus
fumigatus (Lodeiro et al., 2009) and the yeast, Pichia guillier-
mondii Ppf9 (Zhao et al., 2010). Helvolic acid was reported
to inhibit the spore germination of Magnaporthe oryzae, the
causal agent of rice blast disease (Zhao et al., 2010). The
biosynthetic genes for helvolic acid are clustered as nine
genes coding for protostadienol synthase which catalyzes the
precursor (17Z)-protosta-17(20),24-dien-3-ol, along with genes
that encode squalene-hopene cyclase, four cytochrome P450
monooxygenases, short chain dehydrogenase, two transferases
and 3-ketosteroid 1-dehydrogenase (Lodeiro et al., 2009). The
authors reported that the P450 monooxygenases from differ-
ent fungi shared substantial sequence identity across recent evo-
lution, while the transferases duplicated and diversified into
paralogous gene families (Lodeiro et al., 2009). This observa-
tion suggests that even within a single gene cluster, there may
be different selection pressures on adjacent genes belonging to
the same biosynthetic pathway. Interestingly, the helvolic acid
biosynthetic gene cluster in A. fumigates is located in the sub-
telomere chromosome region (Lodeiro et al., 2009) which is asso-
ciated with high rates of evolutionary recombination and diver-
sification. However, the gene cluster lacks introns which is a trait
sometimes associated with subtelomeric regions, but this obser-
vation might also be evidence of HGT from bacteria (Lodeiro
et al., 2009).

Alkaloids
The structures of alkaloids described in this review are summa-
rized (Figure 6).

Ergot
Ergot alkaloids are produced from the sexual Epichloe fungi
and their asexual derivatives Neotyphodium within the Clavicip-
itaceae family which inhabit Pooideae grasses (Schardl, 2010).
Ergot alkaloids can interact with receptors of the central nervous
system and exhibit toxic effect on nematodes, insects, and mam-
malian herbivores including livestock which graze these grasses
(de Groot et al., 1998; Gröger and Floss, 1998). In Europe in
the Middle Ages, consumption of ergot-infected grain or grasses
caused convulsions, paranoia and hallucinations in livestock and
humans, known as St. Anthony’s Fire (Dotz, 1980). The diverse
ergot alkaloids share a tetracyclic ergoline backbone derived from
tryptophan and dimethylallyl diphosphate (Flieger et al., 1997).
Gene clusters for ergot alkaloid biosynthesis have been iden-
tified in various Ascomycete species belonging to Aspergillus,
Penicillium, and Claviceps. Seven genes encode the ergoline

scaffold including dimethylallyltryptophan synthase (DMATS)
which catalyzes the first committed step. DMATS is responsi-
ble for the prenylation of L-tryptophan with dimethylallylpy-
rophosphate (DMAPP) to produce 4-dimethylallyltryptophan
(4-DMAT) (Heinstein et al., 1971). Ergots have diversified into
three classes, caused by diverse substituents attached to the car-
boxyl group of the tetracyclic ergoline backbone, in particular
the presence of an amide group (creating ergoamides), a peptide-
like amide moiety (creating ergopeptines) or the absence of these
moieties (creating clavine alkaloids) (Wallwey and Li, 2011).
These structural modifications are responsible for the differen-
tial physiological and pharmacological effects of the ergot fam-
ily, that include treatment of postpartem hemorrhage, leukemia,
and Parkinson’s disease. The genetic basis for ergot diversifica-
tion into these 3 major classes is associated with the presence or
absence of nonribosomal peptide synthases (NRPS) which cat-
alyze the biosynthesis of the peptide moieties on the ergoline
backbone (Wallwey and Li, 2011). For example, four NRPS genes
are present in Claviceps purpurea (which encodes ergopeptines)
but absent in Aspergillus fumigatus (which produces clavine alka-
loids). Inactivation of these genes suggests that two of the NRPS
genes (lpsA and lpsB) are also responsible for synthesis of the
ergoamides (Haarmann et al., 2008). Interestingly, further diver-
sification of the peptide moiety within C. purpurea has been
reported to be caused by fine-scale allelic diversification of the
NRPS genes (Haarmann et al., 2005). There is additional evidence
to suggest that diversification of the ergot alkaloid gene clusters is
associated with DNA transposons and retroelements, which were
observed in the cluster encoding ergovaline, an ergot alkaloid
from Epichloe festucae associated with livestock toxicity (Fleet-
wood et al., 2007). As an interesting note, the genes encoding
ergovaline were highly expressed only during biotrophic growth
of the fungus within the host grass plant not when the mycelia
were cultured in vitro, suggesting that the host might have a regu-
latory role in the expression of the fungal gene cluster (Fleetwood
et al., 2007).

Loline Alkaloid
Loline is an indole alkaloid produced by Neotyphodium uncina-
tum fungus, the asexual mutualistic derivative of Epichloe, which
is known to protect its host plants from insects (Blankenship
et al., 2001; Schardl, 2010). The loline biosynthetic pathway was
suggested to involve proline and homoserine (Spiering et al.,
2005). In N. uncinatum, two homologous gene clusters encod-
ing loline were identified, named LOL-1 and LOL-2 (Spiering
et al., 2005). The cluster LOL-1 involves nine genes-(lolF-1, lolC-
1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, lolE-1) within a
25-kb chromosomal segment, while the LOL-2 cluster contains
the same homologs (except for lolF) ordered and oriented the
same as in LOL-1. This evidence suggests that the loline clus-
ters may represent a recent segmental duplication event (Spiering
et al., 2005).

An interesting ecological situation exists in grasses infected
with Epichloe fungi (sexual form of Neotyphodium): the fungus
reduces the ability of these plants to propagate sexually (they
choke the inflorescences), which, without compensatory mecha-
nisms, would prevent vertical transmission of the fungus (Zhang

Frontiers in Plant Science | www.frontiersin.org 12 April 2015 | Volume 6 | Article 231

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Mousa and Raizada Biosynthetic genes encode antimicrobial traits

FIGURE 6 | Structures of featured alkaloids, heterocyclic nitrogenous compounds and bacteriocin.

et al., 2010). However, to compensate, the fungal stromata attract
fly vectors which transmit the fungal spores to other plants, per-
mitting horizontal transfer of the fungus. Loline accumulates in
young tissues of the grasses, providing insect protection to these
young hosts; however if loline was also to accumulate in the
grass inflorescences, it would kill the fly vector of the fungus.
Upon further investigation, this apparent paradox was resolved:
in these grass inflorescences, transcription of the loline biosyn-
thesis genes was dramatically downregulated compared to plants
with healthy inflorescences (infected with the symbiotic asex-
ual Neotyphodium), permitting the fly vectors to survive (Zhang
et al., 2010). These observations suggest strong selection pressure
to evolve the regulatory elements of these genes.

Heterocyclic Nitrogenous Compounds
The structures of heterocyclic nitrogenous compounds described
in this review are summarized (Figure 6).

Phenazines
Phenazines are a group of naturally occurring heterocyclic
nitrogenous antibiotics produced exclusively by bacteria and
widely reported in fluorescent Pseudomonas (Mavrodi et al.,
2006, 2013). Phenazines are potent antifungal compounds that
can combat soil borne pathogens (Ligon et al., 2000) such as Rhi-
zoctonia solani, Gaeumannomyces graminis var. tritici, Pythium
spp. (Gurusiddaiah et al., 1986) and Fusarium oxysporum (Anja-
iah et al., 1998). Mechanisms of action include: (1) accumulation
of toxic molecules such as hydrogen peroxide and superoxide due

to the redox potential of phenazine (Hassan and Fridovich, 1980;
Hassett et al., 1995); and (2) elicitation of induced host resistance
(Audenaert et al., 2002). Ecologically, the evidence suggests that
the plant rhizosphere promotes phenazine-producing bacteria to
combat pathogens (Mazzola et al., 1992; Mavrodi et al., 2013).

Phenazine is derived from the shikimic acid pathway, with
amino-2-deoxyisochorismic acid (ADIC) as the branchpoint to
phenazine (McDonald et al., 2001). ADIC is then converted
to trans-2, 3-dihydro-3-hydroxy anthranilic acid which under-
goes dimerization to form phenazine-1-carboxylic acid, the first
derivative of the phenazines (McDonald et al., 2001). Phenazine
biosynthesis in Pseudomonas fluorescens is encoded by a sin-
gle or duplicated core of five CDS, phzADEFG, that encode
ketosteroid isomerase, isochorismatase, anthranilate synthase,
trans-2,3-dihydro-3-hydroxyanthranilate isomerase, and pyri-
doxamine oxidase respectively (Mavrodi et al., 2013). In Pseu-
domonas, the core may include other CDS such as phzB which
was duplicated from phzA, and phzC which encodes 3-deoxy-D-
arabino-heptulosonate-7-phosphate synthase that is responsible
for diverting carbon from the shikimate pathway to phenazine
(Pierson and Pierson, 2010).

Comparisons between Pseudomomas species and other genera
have revealed conservation yet diversity of the core phenazine
biosynthetic CDS. For example, the phenazine biosynthesis
operon in Burkholderia cepacia maintains the five core enzymes
observed in Pseudomonas as reviewed (Mavrodi et al., 2006).
However, there is evidence to suggest that these coding sequences
spread to enteric bacteria and Burkholderia species via horizontal
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gene transfer, because these genes can be observed in plasmids
and transposons (Mavrodi et al., 2010). For example, in Erwinia
herbicola, a biosynthetic cluster of 16 CDS (ehp) was isolated
from a plasmid, of which 15 coded for D-alanyl griseoluteic acid
(AGA) while ehpR was observed to encode for resistance to AGA
(Giddens et al., 2002). Other differences in the core have also been
observed between Pseudomonas species and others; for example
in both Burkholderia cepacia and Erwinia herbicola, phzA is not
duplicated (Mavrodi et al., 2006).

Structural diversity of phenazines in different species is
achieved by specific genes that may be located within the clus-
ter or elsewhere in the genome. For example, in P. chloro-
raphi, the phzH gene is located downstream of the phenazine
operon, where it encodes an aminotransferase responsible for
converting phenazine-1-carboxylic acid (PCA) to phenazine-1-
carboxamide, the characteristic green pigment of P. chlororaphis
(Chin-A-Woeng et al., 1998). In P. aureofaciens, phzO was iden-
tified as the gene that encodes an aromatic monooxygenase,
responsible for catalyzing the hydroxylation of PCA to form
the broad spectrum antifungal compound, 2-OH-PCA (Delaney
et al., 2001). In P. aeruginosa (PAO1), two diversification genes
were discovered: phzM was shown to be involved in the synthe-
sis of pyocyanin while phzS gene encodes a monooxygenase that
catalyzes the production of 1-hydroxy phenazine (Mavrodi et al.,
2001).

Pyrrolnitrin
Pyrrolnitrin is a chlorinated phenylpyrrole antibiotic purified
initially from Burkholderia pyrrocinia (Arima et al., 1964)
then subsequently from other species including pseudomonads,
Myxococcus fulvus, Enterobacter agglomerans, and Serratia sp
(Chernin et al., 1996; Kirner et al., 1998; Hammer et al., 1999).
Pyrrolnitrin was initially used for treatment of skin mycoses
caused by Trichophyton fungus, then was developed as an effec-
tive fungicide for crops against Botrytis cinerea (Hammer et al.,
1993), Rhizoctonia solani (El-Banna andWinkelmann, 1998) and
Gaeumannomyces graminis var. tritici (Tazawa et al., 2000). In P.
fluorescens, the pyrrolnitrin biosynthetic operon consists of four
coding sequences (prnABCD) coding for tryptophan halogenase
(prnA), a decarboxylase (prnB), monodechloroaminopyrrolni-
trin halogenase (prnC), and an oxidase (prnD) (Hammer et al.,
1997; Kirner et al., 1998). Comparative analysis indicates that
the pyrrolnitrin biosynthetic operon is differentially conserved
between divergent species with 59% similarity among diverse
bacterial strains such as Pseudomonas, Myxococcus fulvus, and
Burkholderia cepacia, with lower similarity shown for prnA inM.
fulvus (45%) (Hammer et al., 1999). Furthermore, RFLP-based
polymorphisms within a 786 bp prnD fragment suggested that
there may have been lateral gene transfer of the prn operon from
Pseudomonas to Burkholderia pyrrocinia (Souza and Raaijmak-
ers, 2003). Consistent with such mobility, transposase-encoding
genes surrounding the prn biosynthetic operon were observed in
Burkholderia pseudomallei (Costa et al., 2009).

Volatile Compounds
In this section, only the most well studied volatile compound,
hydrogen cyanide, is discussed.

Hydrogen Cyanide (HCN)
Hydrogen cyanide (HCN) is a volatile secondary metabolite pro-
duced by P. aeruginosa, and diverse rhizosophere fluorescent
pseudomonads, where they exhibit biocontrol activity against
pathogenic fungi such as Thielaviopsis basicola, the fungal causal
agent of black root rot of tobacco (Voisard et al., 1989, 1994;
Frapolli et al., 2012). Mechanistically, HCN functions by inhibit-
ing important metalloenzymes such as cytochrome c oxidase
(Blumer and Haas, 2000) and/or by complexing metals in the
soil (Brandl et al., 2008). HCN is biosynthesized from glycine
(Castric, 1977) in an oxidative reaction catalyzed by HCN syn-
thase, a membrane-bound flavoenzyme (Castric, 1994; Blumer
and Haas, 2000). The biosynthesis of HCN occurs in the presence
of an electron acceptor such as phenazine methosulfate (Wissing,
1974).

In P. aeruginosa PAO1, theHCN synthase biosynthetic operon
hcnABC was characterized (Pessi and Haas, 2000). hcnA was
reported to encode a protein similar to formate dehydrogenase
while hcnB and hcnC encode products with similarity to amino
acid oxidases (Laville et al., 1998; Svercel et al., 2007). In a phy-
logenetic analysis of 30 fluorescent pseudomonads, no evidence
was found for HGT of the hcn gene cluster, but rather that the
locus appears to be exclusively inherited vertically (Frapolli et al.,
2012). HCN has also been detected in Chromobacterium vio-
laceum but the underlying genes have not been reported which
might otherwise give new insights into HCN biosynthesis outside
of the pseudomonads (Blom et al., 2011).

Bacteriocin
In this section, only the most well studied compound from this
class is discussed. The structure of agrocin 84 described in this
review is included (Figure 6).

Agrocin 84
Agrocin 84 is a 6-N-phosphoramidate of an adenine nucleotide
analog (Roberts and Tate, 1977). This compound is produced
by non-pathogenic strains of Agrobacterium radiobacter to bio-
control crown gall, a tumorous disease resulting from overpro-
duction of auxin and cytokinin hormones stimulated by the Ti
plasmid after it has transferred from A. radiobacter and inte-
grated within host plant chromosomal DNA (Wang et al., 1994).
Recently, it was shown that agrocin 84 employs a novel mecha-
nism to inhibit leucyl-tRNA synthetases and hence inhibit trans-
lation (Chopra et al., 2013), though it was earlier suggested that
agrocin 84 acts by inhibiting DNA synthesis (Das et al., 1978).

In Agrobacterium radiobacter K84, the biosynthesis and
immunity to agrocin 84 is encoded by 17 coding sequences
(the agn operon) located on a 44-kb conjugal plasmid, pAgK84,
though the plasmid has 36 CDS in total (Kim et al., 2006). The
two most interesting CDS are agnB2 and agnA which encode
aminoacyl tRNA synthetase homologs. The agrocin 84 antibiotic
is essentially a nucleotide attached to an amino acid-like moiety
(methyl pentanamide), and its mode of action was proposed to
involve competitive binding to the active site of leucyl-tRNA syn-
thetases (Reader et al., 2005). agnB2 encodes a leucyl-tRNA syn-
thetase homolog that confers self-immunity to agrocin 84 since
it does not bind the antibiotic (Kim et al., 2006). Normally, a

Frontiers in Plant Science | www.frontiersin.org 14 April 2015 | Volume 6 | Article 231

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Mousa and Raizada Biosynthetic genes encode antimicrobial traits

tRNA synthetase acts as a ligase that catalyzes the attachment of
an amino acid to a tRNA which includes an anticodon; the catal-
ysis results in a phosphoanhydride bond between the amino acid
and ATP as the initial step in the aminoacylation of tRNA (Ibba
and Söll, 2000). Surprisingly, agnA encodes a truncated homolog
of an asparaginyl-tRNA synthetase which lacks the anticodon-
binding domain, but maintains the catalytic domain. Thus, agnA
appears to be a fascinating example of a gene that evolved from
an ancient tRNA synthetase (for arginine), but now is a biosyn-
thetic enzyme for an antibiotic that inhibits a paralogous enzyme
(for leucine attachment) (Kim et al., 2006).

The agn operon may have an evolutionary history of horizon-
tal gene transfer, as pAgK84 is inter and intra species transferable:
Rhizobium that received the pAgK84 plasmid from Agrobac-
terium as trans-conjugates could synthesize agrocin 84 and
received immunity as well (Farrand et al., 1985).

A final fascinating feature of the agn system is an appar-
ent second form of ancient evolutionary pressure on the genes
responsible for the biosynthesis of the antibiotic. Agrocin 84 is
a chemical mimic of agrocinopines, a class of compounds that
is a source of plant-derived nitrogen for the pathogens targeted
by the antibiotic; the pathogens have their own Ti plasmids that
encode for transporters that not only transport agrocinopines but
also agrocin 84 (Ellis and Murphy, 1981; Hayman and Farrand,
1988; Kim and Farrand, 1997). Hence the agn biosynthetic genes
evolved to create a chemical structure that not only mimics the
tRNA synthetase substrate of the pathogen target, but also targets
its nitrogen uptake machinery.

Enzymes
In this section, only the most well studied anti-fungal enzyme,
chitinase, is discussed.

Chitinase
Chitinases are enzymes that break down chitin, one of the fungal
cell wall components composed of repeated units of N-acetyl-D-
glucos-2-amine, linked by β-1,4 glycosidic bonds (Bhattacharya
et al., 2007). Fungi and hence chitin are enriched in soil and
thus soil microbes are abundant sources of chitinases (also
to target insects) (Hjort et al., 2010). Examples of chitinase-
producing microbes include: fluorescent Pseudomonas strains
isolated from the sugarcane rhizosphere that can target Col-
letotrichum falcatum, the causative agent of red rot disease in
this crop (Viswanathan and Samiyappan, 2001); Actinoplanes

missouriensis that antagonizes Plectosporium tabacinum, the
causal agent of lupin root rot in Egypt (El-Tarabily, 2003); and
Stenotrophomonasmaltophilia that suppresses summer patch dis-
ease in Kentucky bluegrass (Kobayashi et al., 2002). Chitinases
are produced by diverse bacterial genera including Pseudomonas,
Streptomyces, Bacillus, and Burkholderia (Quecine et al., 2008).
Chitinases are divided into two major categories, exochitinases
and endochitinases. Of the four reported endochitinase family
members (glycoside hydrolase families 18, 19, 23, and 48), pri-
marily families 18 and 19 have been reported in bacteria, with
only a single example of a family 23 chitinase (Prakash et al.,
2010).

In Stenotrophomonas maltophilia 34S1, the chitinase family 18
gene has one CDS that encodes for a protein with seven domains:
a catalytic domain, a chitin binding domain, three putative bind-
ing domains, a fibronectin type III domain and a polycystic kid-
ney disease domain (Kobayashi et al., 2002). Bacterial chitinase
family 18 has been shown to display different types of diver-
sity. First, sequence analysis has shown that the catalytic domain
and substrate binding domain, which are separated by a linker,
have evolved independently. As the domain sequences do not
match the taxonomies of their hosts, it has been suggested that
domain swapping has been an important generator of diversity in
this family, combined with HGT (Figure 7) (Karlsson and Sten-
lid, 2008). Unusual examples of chitinase genes are those that
contain multiple family 18 catalytic domains within the same
peptide that appear to function independently of one another
(Howard et al., 2004). Additional examples of family 18 biodiver-
sity include genes that contain non-consensus sequences at the
catalytic site, as well as a bacterial subgroup that consists solely of
a catalytic domain (Karlsson and Stenlid, 2008).

Unlike family 18 chitinases that are widely distributed among
the prokaryotes, family 19 chitinases are restricted to green non-
sulfur and purple bacteria, as well as actinobacteria (Prakash
et al., 2010). Based on sequence alignments of family 19 chitinases
in prokaryotes and eukaryotes, strong evidence has emerged that
this gene family in actinobacteria and purple bacteria was derived
from flowering plants by HGT (Prakash et al., 2010). Further-
more, HGT from plants to purple bacteria may have occurred
as two independent events in the distant past, followed more
recently by HGT to actinobacteria (Prakash et al., 2010). The
core architecture and catalytic sites of bacterial and plant family
19 chitinases are nearly identical. The sequence analysis further
suggests that there was subsequent HGT from purple bacteria

FIGURE 7 | An example of intra- coding sequences diversification within an anti-microbial gene cluster: amongst the Family 18 chitinases is an
example of a chitinase in which the catalytic domain has been duplicated (Howard et al., 2004).
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and actinobacteria to nematodes and arthropods, respectively
(Prakash et al., 2010).

Discussion

The objective of this paper was to review the biodiversity of anti-
microbial compounds, their mode(s) of action and underlying
biosynthetic genes within plant associated microbes. This review
covered diverse biosynthetic gene clusters that encode polyke-
tides, non-ribosomal peptides, terpenoids, alkaloids, heterocyclic
nitrogenous compounds, volatile compounds, bacteriocins, and
lytic enzymes. The reviewed evidence suggests that these biosyn-
thetic genes have diversified at different orders, each based on
distinct evolutionary mechanisms:

Species Level Diversification
An emerging theme from the literature is that horizontal gene
transfer (HGT) appears to have played a major role in the evo-
lutionary diversification of plant-associated microbial species
through inheritance of anti-microbial traits. There is evidence
that HGT may have occurred from: bacteria to bacteria such as
those that inhabit the rhizosphere (e.g., phenazine); from bac-
teria to fungi (e.g., helvolic acid); from bacteria to nematodes
and arthropods (e.g., chitinase family 19); possibly from fungi
to plants (e.g., Taxol); from plants to bacteria (e.g., phenazine
and chitinase family 19); and even from higher eukaryotes
to bacteria (e.g., IleS, pseudomonic acid resistance protein)
(Figure 8). As noted in the literature, diverse factors might have
facilitated these remarkable gene transfer events including: (1)
the clustering of genes encoding the secondary metabolite; (2)
homologous recombination between chromosomes and trans-
conjugated plasmids (e.g., phenazine, zwittermicin A); (3) the
presence of mobile elements (DNA transposons and retroele-
ments) flanking the biosynthetic operons (e.g., zwittermicin A,
phenazine and ergovaline); and (4) the presence of genes that

FIGURE 8 | Potential examples of horizontal gene transfer of
anti-microbial gene clusters leading to species level evolutionary
diversification.

encode self-immunity to the antibiotic within the biosynthetic
cluster as otherwise receiving the cluster would have caused
immediate suicide (e.g., mupirocin). It is worth noting that some
gene clusters show no evidence of HGT (e.g., hydrogen cyanide).

Genome Level Diversification
A second emerging theme from the literature is that a subset of
associated plant- associated microbial genomes have diversified
with respect to duplications of entire gene clusters responsible
for the synthesis of antimicrobial compounds. For example, as
noted above, in Neotyphodium uncinatum, there are two homol-
ogous gene clusters that encode loline, LOL-1 and LOL-2, the
likely result of a segmental duplication event within this fun-
gus. Another noted example is from Bacillus species in which
three tandemly duplicated gene clusters, pks1, pks2, and pks3,
encode the polyketides, bacillaene, macrolactin, and difficidin,
respectively, the likely result of a homologous recombination
event.

Intra Gene Cluster Diversification
A third interesting theme from the literature is that gene clusters
encoding anti-microbial compounds have extensively diversified
within, to permit biochemical diversification. The biosynthetic
genes for these compounds are clustered in fungi or organized
into operons in bacteria—in the latter, they are generally located
on chromosomes but occasionally on plasmids (e.g., agrocin 84).
Diversity within each cluster can include varying combinations
of biosynthetic coding sequences (CDS), transporters for the
respective compound, regulatory genes and CDS that confer self-
immunity (e.g., mupirocin, agrocin 84). The biosynthetic oper-
ons vary in how many CDS synthesize the core skeleton (e.g.,
synthetases) as well as in how many encode decoration enzymes
(e.g., hydroxylases, acyltransferases). However, the decoration
enzymesmay be encoded outside the gene cluster (e.g., phenazine
operon). Furthermore, the biosynthetic CDS may be organized
into genetic modules (e.g., NRPS) that vary in number. Each gene
cluster is also associated with distinct DNA regulatory elements,
for example to receive signals such as from quorum sensing. For
example, comparative analysis of the trichothecene biosynthetic
gene clusters (TRI) in Fusarium and Trichoderma showed mul-
tiple evolutionary diversification events within a single biosyn-
thetic gene cluster family (e.g., head-to-tail vs. head-to-head rear-
rangements) (Figure 5). In another example, comparative anal-
yses of the polymyxin operon showed mixing and matching of
CDS, resulting in diversification of the compounds. Similarly,
diversification of the phenazines likely arose through a diversity
of biosynthetic decoration enzymes (e.g., hydroxylases). Another
intriguing observation is from the helvolic acid biosynthetic gene
cluster, in which transferase CDS were shown to have duplicated
and diversified into paralogous gene families. As noted above, an
interesting feature of this gene cluster is that it located in the sub-
telomere chromosome region which is associated with high rates
of evolutionary recombination.

Diversification Within Coding Sequences (CDS)
A final emerging theme from the literature is that diversi-
fication of anti-microbial traits in plant-associated microbes
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arose from allelic diversification. For example, intragenic swap-
ping of domains was observed within the same genetic mod-
ule (e.g., iturin A, mycosubtilins). As another example, whereas
most chitinase genes possess a single catalytic domain, examples
were noted where a single CDS encodes two catalytic domains
(Figure 7). In general, the literature notes that domains within
the same CDS can evolve independently (e.g., catalytic vs. sub-
strate binding domains of chitinase); combined with the exis-
tence of linker peptides between domains as sites of homologous
recombination, these features can result in novel alleles follow-
ing domain swapping (e.g., family18 chitinases). Whereas, such
allelic diversification plays a major role in the diversification of
compound structures, caused for example by DNA mutations
within the substrate binding domain, the literature demonstrates
examples where biochemical diversity has arisen from relaxed
substrate specificity of the biosynthetic enzymes (Figure 3). A
representative example of the latter is the promiscuous fusari-
cidin NRPS in which the same recognition domain in different
species can recognize and incorporate different amino acids, and
furthermore it can recognize amino acids beyond the 21 stan-
dard amino acids translated by the ribosome, which results in
significant structural diversity.

Dynamic Evolutionary Driven by Selection
Pressures
It is interesting to speculate on the evolutionary selection pres-
sures that have led to the diversification at the various biological
levels noted above. At the most basic level, diversification was
likely driven by a three-way co-evolution between the plant-
associated microbe, its target pathogen and the host plant. This
co-evolution may have occurred within a specific plant tis-
sue niche or within soil associated with the rhizosphere (e.g.,
phenazine and PLt to combat soil-borne pathogens). However,
there is also evidence for four-way interactions, to also include
additional microbes (e.g., Taxol, jadomycin) and insects (e.g.,
ergovaline). These complex interactions can be bi-directional
(e.g., loline). Within the producing organism, there is evidence
for selection pressure to coordinate biosynthesis of the anti-
microbial compound with the life cycle of the microbe (e.g., fusa-
ricidins). Theremay also have been selection for genetic efficiency
(e.g., potential sharing of transporter genes between polymyxin
and fusaricidin). These selection pressures have led to fascinating
individual stories, including the evolution of mimicry to facilitate
antibiosis (e.g., agrocin).

Ecological and Evolutionary Lessons

When the examples of anti-microbial pathways were grouped
by the phylogeny of their host microbes, several trends
were observed (Figure 9, Tables 1, 2). Specifically: (1) some
anti-microbial genes are apparently widely distributed among
diverse taxonomic classes of bacteria (e.g., chitinases); (2) some
metabolic pathways are widely distributed within one tax-
onomic class such as pyrrolnitrin that shows up in more
than half of the presented species of Proteobacteria; (3) other
anti-microbial pathways appear to be more restricted (e. g.,
fusaricidin, polymyxin, jadomycin). These results may correlate

to the evolutionary age of these genetic pathways, or may rep-
resent a bias based on how well the pathway has been studied.
More widespread genome sequencing and/or the use of ortholo-
gous gene probes may help to inform the evolutionary origins of
these anti-microbial pathways.

Bacterial Pathway Lessons
The selected examples of anti-microbial pathways from plant-
associated bacteria found in the literature and presented in this
review are distributed across Proteobacteria, Actinobacteria and
Firmicutes (Figure 9). Thismay not be surprising as Proteobacte-
ria and Actinobacteria are among the most widespread bacterial
taxa associated with plants, perhaps because of their saprophytic
capabilities (Bulgarelli et al., 2012).

Within these phyla, P. fluorescens (Proteobacteria) and B. sub-
tilis (Firmicutes) were observed to produce a plethora of diverse
antimicrobial compounds belonging to diverse chemical classes
including polyketides, non-ribosomal peptides, heterocyclic
nitrogenous compounds, volatiles and enzymes which reflect the
diversity of the metabolic machineries of these species. As P. flu-
orescens and B. subtilis are both model systems, these results also
support the above note of the bias within this literature.

Bacillus sp. and Pseudomonas sp. are ubiquitous microbes that
can survive in diverse ecological niches (Compant et al., 2005).
Both have elegant survival strategies that involve the production
of antibiotics, surfactin, cyanide, biofilms, and induction of host
resistance (Espinosa-Urgel, 2004; Dini-Andreote and van Elsas,
2013). These unique adaptations have led to their widespread
study and use as biocontrol agents (Santoyo et al., 2012).

Genome analysis of P. fluorescens has provided insight into its
ecological competency and evolutionary mechanisms. The ver-
satile and rapid adaptability of P. fluorescens to diverse environ-
mental clues may be attributed to over 200 characterized signal
transduction proteins which enhance its sensing capability (Gar-
beva and de Boer, 2009; Humair et al., 2010). With respect to
co-evolution, the P. fluorescens genome is exceptionally rich in
repetitive extragenic palindromic (REP) elements, target sites for
transposases and recombinases, with 1052 REP elements identi-
fied in P. fluorescens Pf-5 (compared to 21 in P. aeruginosa PAO1
and 365 in P. syringae DC 3000) (Tobes and Pareja, 2005, 2006).
REPs likely affected genome evolution either by gene gain, loss
or rearrangement (Silby et al., 2011). The latest version of the
genome sequence and annotation of P. fluorescens was recently
released (Martínez-García et al., 2015).

B. subtilis is naturally competent genetically, with a cascade of
competence-specific DNA-uptake proteins that bind and trans-
port DNA, in addition to a dynamic recombination mechanism
which transforms chromosomal or plasmid DNA via different
pathways (Chen and Dubnau, 2004; Kidane et al., 2009). Addi-
tionally, the B. subtilis genome encodes integrative and con-
jugative element binding (ICEBs1) proteins responsible for exci-
sion, integration, transfer of DNA (Lee et al., 2007) that likely
have facilitated HGT. Comparative genomic analysis of B. subtilis
strains revealed 298 accessory segments that potentially origi-
nated frommobile elements including plasmids, transposons and
phages. This implies extensive HGT events that lead to diversifi-
cation of the arsenal of anti-microbial pathways within Bacillus
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FIGURE 9 | The anti-microbial compounds reviewed in this study
grouped by the phylogeny of their microbial hosts, for bacteria (A)
and fungi (B). The phylogenetic trees were generated using the interactive

Tree of Life website (Letunic and Bork, 2011). The anti-microbial compounds
produced by these species color coded, panel of color coded as indicated
(C). The scale bar represents the number of nucleotide substitutions per site.

(Zeigler, 2011). The complete genome sequence and genome
annotation of B. subtilis is available (Barbe et al., 2009; Belda et al.,
2013).

Fungal Pathway Lessons
In contrast to bacteria, all the fungal examples presented in the
review belong to a single classification—the Pezizomycotina (fila-
mentous fungi), a subdivision of Ascomycota, the largest phylum
of fungi (Blackwell, 2011) including representatives from Euro-
tiomycetes and Sordariomycetes (Figure 9). Pezizomycotina has
an ancient origin in the Cambrian period, ca 530Mya (Prieto and
Wedin, 2013).

Pezizomycotina species are the most ubiquitous fungi with
extremely diverse lifestyles, suggesting a corresponding diver-
sity of ecological strategies (Spatafora et al., 2006; Beimforde
et al., 2014) reflected in their production of a range of anti-
microbial metabolites. There may be at least two reasons for
this metabolic diversity, HGT and recombination. First, HGT
from bacteria to fungi was previously reported in Ascomy-
cota, of which 65% were observed in Pezizomycotina (Marcet-
Houben and Gabaldón, 2010). Second, secondary metabolism

gene clusters in Pezizomycotina show evidence of recent gene
expansion (Arvas et al., 2007). Interestingly, most of these genes
are located in the sub-telomere region (Rehmeyer et al., 2006)
that is associated with a considerable high rate of recombina-
tion and correspondingly rapid evolution compared to other
regions in the genome (Freitas-Junior et al., 2000), an example
represented in this review by helvolic acid (Table 1).

Gaps and Future Perspectives

Despite the apparent progress in understanding the genetic
mechanisms underlying the diversity of anti-microbial com-
pounds produced by plant-associated microbes, significant gaps
and opportunities remain. The major challenge is that a vast
majority of plant associated microbes are unculturable, a phe-
nomena that, to a far extent, limits our understanding of species
diversification and evolution. It is worth noting that consider-
able progress toward cultivation of unculturable microbes has
started to be achieved (Pham and Kim, 2012; Stewart, 2012).
The modified cultivation methods attempt to simulate the nat-
ural environment, and include community culturing, and the
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use of high-throughput microbioreactors and laser microdissec-
tion (Pham and Kim, 2012). Another challenge is that the lit-
erature appears to be biased for model organisms, with insuf-
ficient data from other organisms in the phylogenetic tree for
comparative genomics and evolutionary studies. For example,
despite our efforts to originally focus this review only on anti-
microbial pathways from endophytes, it became clear that the
number of associated genes from endophytes has largely been
unexplored, compared to free living rhizosphere model species.
Indeed, there remains a lack of detailed genetic analysis under-
lying many anti-microbial compounds across microbes (endo-
phytic and non-endophytic) and a lack of information to connect
allelic diversity with compound diversity.

With respect to understanding the biosynthetic pathways
of these metabolites, more information is needed as to the
extent that diverse anti-microbial pathways coordinate and
share biosynthetic enzymes. An important question in metabolic
biosynthesis is understanding how chemical substrates are chan-
neled along metabolic pathways from one enzyme to the next;
from this review, it appears that some anti-microbial pathways
solve this problem by using mega-synthase enzymes (e.g., zwit-
termicin A), but for other pathways, investigation of enzyme-
enzyme interactions will be informative. An interesting future
area of study will be to investigate the subcellular location of
biosynthetic and storage proteins, especially of self-toxic com-
pounds that may need to be sequestered. To that end, there
have been advances in studying compartmentalization and sec-
ondary metabolite trafficking machinery (Roze et al., 2011; Lim
and Keller, 2014; Kistler and Broz, 2015), which offer strategies
to move forward.

A significant challenge in this discipline is the study of anti-
microbial compounds in their native ecological context, as most
reports are based only on in vitro studies. In particular, because
the target pathogen affects the host plant, more information is
needed as to how the plant and the anti-pathogenicmicrobe coor-
dinate and regulate one another. For example, in the jadomycin
pathway, evidence suggests that the plant sensing of the pathogen
stimulates the anti-pathogen pathway in the associated benefi-
cial microbe. The potential complexity of plant-microbe interac-
tions and associated signaling networks are well studied in model
systems such as Rhizobium (Janczarek et al., 2015). Though Rhi-
zobium is a symbiotic microbe of legume plants, these studies
suggest that a wealth of information remains to be explored
for other plant-associated microbes, in particular endophytes
(Kusari et al., 2012).

Also within the ecological context, basic biochemical ques-
tions are raised such as whether the anti-microbial pathway is
regulated by the target pathogen, for example feedback inhibition
once the pathogen has been eliminated. To help understand the
genetic regulation of these anti-microbial pathways, analysis of
gene expression with respect to the microbial life cycle would be a

useful avenue of investigation, similar to the interesting findings
from the fusaricidin pathway. An interesting study concerning
aflatoxin, a polyketide mycotoxin, revealed strong evidence for
the potential link between the fungal growth stage and polyke-
tide biosynthesis (Zhou et al., 2000). Furthermore, intracellular
tracking of aflatoxin biosynthetic enzymes in Aspergillus parasiti-
cus showed significant accumulation in the vacuoles of specific
cells but its absence in neighboring ones (Hong and Linz, 2008).
This surprising result led Roze et al. (2011) to hypothesize the
possibility of special and temporal gene expression of the associ-
ated biosynthetic pathway, at different developmental resolutions
ranging from a single cell to fungal colony.

A related major challenge is that there are many natural prod-
ucts that exist in the literature that were initially isolated as part
of screens for new compounds from total extracts, and hence
the ecological functions of these compounds, as well as their
underlying genes, remain unknown.

As anti-pathogenic metabolites may be self-toxic, the evo-
lution of self-resistance is a particularly fascinating avenue of
study, which this review demonstrates has been investigated for
a limited number of pathways (e.g., mupirocin). Diverse self-
resistancemechanisms have been reported in themicrobial litera-
ture (Schäberle et al., 2011; Westman et al., 2013; Stegmann et al.,
2015), suggesting that each plant-asssociated microbe with anti-
microbial activity may employ unique self-protection strategies.

The recent advances in genome sequencing combined with
gene editing tools will facilitate more in-depth analysis of
orthologous biosynthetic genes in diverse species. Bioinformatic
genome mining of biosynthetic gene clusters, combined with
new advances in metabolomics, may also lead to the discovery
of a diverse array of novel bio-active natural products. More-
over, merging these techniques with knowledge of microbial co-
evolution and ecology (Vizcaino et al., 2014) along with advanced
microscopy and imaging techniques will open a new era of dis-
covery to harvest the diversity of natural products to combat
evolving pathogens.
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