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Alternanthera philoxeroides is a perennial amphibious weed native to South America
but has now spread to diverse parts of the world. A. philoxeroides reproduces both
sexually and asexually in its native range, but propagates solely through vegetative
means in its introduced range. Traits associated with sexual reproduction become
degraded for sexual dysfunction, with flowers possessing either pistillate stamens or
male-sterile anthers. Degradations of sexual characters for loss of sexuality commonly
take place in clonal plants. The underlying molecular-genetic processes remain largely
unknown. We compared the gene expression profiles of abnormal stamens with that
of normal stamens by RNA-Seq analysis, and identified a large number of differentially
expressed genes between abnormal and normal stamens. In accordance with flower
morphology, the expression of B-class MADS-box genes (ApAP3, ApTM6, and ApPI)
was markedly reduced in pistillate stamens. However, most of the genes involved in
meiosis were expressed normally in stamens with male-sterile anthers. In addition to
verifying the expression patterns of genes previously known to be related to stamen and
pollen grain development, we also identified previously unknown molecular phenotypes
associated with sexual dysfunction in A. philoxeroides, that is helpful for dissecting the
molecular mechanisms underpinning various male-sterile phenotypes and the molecular
processes underlying the transition from sexuality to asexuality in clonal plants.

Keywords: Alternanthera philoxeroide, sexual dysfunction, aberrant stamen development, male sterility,
molecular phenotypes

Introduction

Alternanthera philoxeroides, commonly known as alligator weed, is a perennial amphibious
weed native to South America, but has now spread to diverse parts of the world, show-
ing up in North and South America, France, Italy, Australia, New Zealand, China, and other
parts of Asia. A. philoxeroides can grow in a variety of habitats, including open lands, water-
way banks, ponds, and lakes. Individuals growing in aquatic and terrestrial habitats showed
extensive variations in leaf size and shape, stem diameter and internode length, but exhib-
ited little genetic differentiation within and among populations (Ye et al., 2003; Geng et al.,
2007). It has thus been proposed that phenotypic plasticity, rather than locally adapted eco-
types, allows A. philoxeroides to colonize a wide range of habitats (Geng et al., 2006, 2007;
Li and Ye, 2006).
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Alternanthera philoxeroides reproduces both sexually and
asexually in its native range, but propagates mainly through veg-
etative means via storage root and stem fragmentation in its
introduced range and does not produce viable seeds (Julien and
Stanley, 1999; Sosa et al., 2007). Extensive field survey of the
introduced A. philoxeroides in China revealed various patterns of
anomalous floral development (Chen, 1964). The most striking
aberration is the homeotic transformation of stamens into pistils
or pistil-like structures (Figure 1). The complete pistillate flow-
ers do not have stamens but five pistil-like structures and one
normal pistil. Unlike the normal pistil, the ‘pistils’ transformed
from stamens often develop ovary-like structures but contain no
ovule inside (Chen, 1964; Hu et al., 2011). Monoclinous flowers
possessing both stamens and pistils are common in natural popu-
lations. However, the anthers of these flowers are often shriveled
bearing no or few non-viable pollen grains (Hu et al., 2011;
Wang et al., 2011). There also exist some incomplete pistillate
flowers with intermediate phenotypes between monoclinous and
complete pistillate plants.

The ABC(DE) model is now widely used as a framework
for understanding the molecular mechanisms controlling flo-
ral organ identity (Coen and Meyerowitz, 1991; Theißen, 2001).
According to the model, the differentiation of floral organs is
controlled by the differential expression of several subsets of
homeotic genes belonging to the MADS-box gene family, except
for the A-class gene APETALA2 (Riechmann and Meyerowitz,
1997; Vandenbussche et al., 2003). The co-expression of B- and
C-class MADS-box genes establishes the identity of the sta-
mens (Coen and Meyerowitz, 1991; Jack et al., 1992). B-function
mutants produce homeotic transformation of stamens into
carpels (Jack et al., 1992; Goto and Meyerowitz, 1994). It is
unclear whether pistillody in A. philoxeroides was caused by
altering the expression pattern of the B-class MADS-box genes.
Additionally, the cytotype of A. philoxeroides found in China
is a hexaploid (Cai et al., 2009). Sosa et al. (2007) suggested
a hybrid origin of the invasive hexaploid of A. philoxeroides,
and that meiotic abnormalities due to the formation of univa-
lents/multivalents led to microspore degeneration which resulted
in anthers bearing no pollen grains. Hu et al. (2011) found, how-
ever, that the microspore tetrads were formed and separated
normally in the anthers of the hexaploid A. philoxeroides, but

FIGURE 1 | Images of representative Alternanthera philoxeroides
flowers: normal flowers (left), pistillate flowers (middle), and
male-sterile flowers (right).

the protoplasm of most pollen grains disintegrated at the post-
maturation stage and pollen grains became empty, with only a
few non-viable pollen grains left in the anthers.

Male sterility in plants has received considerable attention
because of its potential value in breeding and hybrid seed pro-
duction. It is also of great importance in evolutionary studies
on the origin of dioecy (Sawhney and Shukla, 1994; Singh et al.,
2012). The phenotypic manifestations of male sterility are diverse
in plants, including the complete absence of male organs, the
failure to develop normal sporogenous tissues (no meiosis), the
abortion of pollen at any step of its development, and the inabil-
ity of mature pollen to germinate on compatible stigma (Budar
and Pelletier, 2001; Singh et al., 2012). The conversion of stamens
to different type of floral organs also represents a male-sterile
condition (Sawhney and Shukla, 1994). Although multiple genes
and proteins related to microspore and pollen abortion have
been characterized (Yang et al., 2003a; Jung et al., 2006; de
Azevedo Souza et al., 2009), the genetic and molecular mech-
anisms underpinning various male-sterile phenotypes are still
poorly understood. Furthermore, loss of sexuality is common in
invasive clonal plants (Eckert and Barrett, 1993; Eckert, 2002;
Barrett et al., 2008). Degeneration of sex can be caused by envi-
ronmental and/or genetic factors. It is possible that the sexual
infertility in sterile polyploids is due to polyploidy per se (Eckert,
2002). Traits associated with sexual reproduction may become
degraded for sexual dysfunction, especially in plants that are sex-
ually infertile and reproduction is solely clonal. However, there
seems to have been a general lack of interest in dissecting the
molecular-genetic processes associated with sexual infertility and
degradation of sexual characters in clonal plants, even though
they have arisen repeatedly in many groups of plants (Eckert,
2002). Investigation of the genetic architecture and molecular
mechanisms underlying the transition from sexuality to asexual-
ity in clonal plants will not only extend our understanding of the
genetic control of reproductive organ development, but may also
provide insights into the mechanisms and evolutionary pathways
of sexual sterility in clonal plants.

Molecular phenotypes are important links between genomic
information and organismic functions, fitness, and evolution
(Held et al., 2014). In this study, we compared the gene expres-
sion profiles of abnormal stamens with that of normal stamens
by RNA-Seq analysis. A large number of differentially expressed
genes between abnormal and normal stamens were captured. The
pistillate stamens exhibited a molecular phenotype distinct from
that of the stamens with male-sterile anthers. In addition to ver-
ifying the expression patterns of genes previously known to be
related to stamen and pollen grain development, we identified
molecular phenotypes previously unknown to be associated with
sexual dysfunction inA. philoxeroides that will be helpful in future
analyses.

Materials and Methods

Plant Materials
Plants producing normal fertile flowers were collected from
Argentina and maintained in the botanical garden of Yunnan
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University (E102◦42′, N25◦03′, Kunming, China). Pistillate flow-
ers and male-sterile flowers were collected from plants growing
in natural habitats close to the botanical garden. Flower heads
containing flowers at different developmental stages were col-
lected and preserved in RNAlater solution (Life Technologies,
Gaithersburg, MD, USA). Five individuals were sampled from
each type of flowers.

RNA Extraction, cDNA Library Construction
and Illumina Sequencing
RNAs of normal flowers, male-sterile flowers, and pistillate flow-
ers were extracted using the RNeasy Plant Mini Kit (Qiagen,
Valencia, CA, USA) and purified with the on-column DNase
I digestion (Qiagen) following the manufacturer’s instructions.
RNA quality was visually checked on a 1% agarose gel and by a
Nanodrop 2000c Spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA). RNA integrity was further verified by an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA).

cDNA libraries were constructed following the High-
Throughput Illumina Strand-Specific RNA Sequencing Library
protocol (Zhong et al., 2011). Briefly, poly A containing mRNA
was purified from total RNA and then fragmented into small
pieces. Double-stranded cDNA was synthesized from the frag-
mented cDNA, and Illumina sequencing adapters were ligated
to the ends of the fragments. Libraries were sequenced using the
HiSeq 2000 System (Illumina, San Diego, CA, USA).

De novo Transcriptome Assembly and Gene
Annotation
Raw reads generated by the sequencing machine were filtered to
obtain high-quality reads. Reads containing adaptor sequences
were discarded. Read with a PHRED quality score below 20 were
also removed.De novo assembly was carried out using the Trinity
software with default settings and a minimum contig length of
200 bp (Grabherr et al., 2011). Assembled contigs were used
as input for a second assembly made with CAP3 (Huang and
Madan, 1999). Redundancy was reduced using CD-HIT with a
sequence similarity threshold of 95% (Li and Godzik, 2006). De
novo assembled sequences were annotated using BLASTX against
the Arabidopsis thaliana protein database1 (TAIR10_peptide),
with an e-value cut-off of 10−10. BLAST searches against the
Phytozome database2 were then done for unannotated sequences.

Clean reads from each sample were mapped back to the de
novo assembled reference transcriptome. Gene expression levels
were calculated from the number of uniquely aligned clean reads
and then normalized into units of Reads Per Kilobase per Million
reads mapped (RPKM; Mortazavi et al., 2008). Differentially
expressed transcripts were detected using an False Discovery
Rate (FDR) value cut-off ≤0.001 and the absolute value of log2
ratio ≥1. GO enrichment analysis for biological processes was
carried out utilizing Fisher’s exact test with default parameters
(p < 0.01) by the R package topGO (Alexa and Rahnenfuhrer,

1http://www.arabidopsis.org/
2http://www.phytozome.net/

2010). The REViGO web server3 was used to reduce the redun-
dancy and visualize the overrepresented GO terms based on
semantic similarity (Supek et al., 2011).

Identification and Cloning of B-class
MADS-Box Genes and Meiotic Genes
in A. philoxeroides
Putative A. philoxeroides AP3, TM6, and PI sequences were
used as queries to conduct BLAST searches against the NCBI
databases4 to find homologous sequences. Multiple alignments
of the retrieved sequences were constructed using ClustalW 2.0
(Larkin et al., 2007). A neighbor-joining tree was reconstructed
by MEGA 6.0 (Tamura et al., 2013) using the Jones–Taylor–
Thornton (JTT) model. Support for each node was tested using
bootstrap method with 1000 replicates. Gene-specific primers
were designed for amplifying conserved motif of each gene. PCR
products were cloned into pMD 19-T vector (TaKaRa, Dalian,
China) and confirmed by Sanger sequencing. Based on con-
served motif sequences, gene-specific primers (Supplementary
Table S1) were designed for conducting RACE-PCR to amplify
target 5′and 3′cDNA ends, using SMARTer RACE cDNA ampli-
fication kit (Clontech, Mountain View, CA, USA). Amplification
products of 5′and 3′ RACE were then cloned and sequenced to
get full-length cDNAs. Four meiotic genes identified from A.
philoxeroides, ApASY1, ApMLH3, ApMPK4, and ApMMD1, were
also cloned and sequenced. They are responsible for homologous
chromosome synapsis (Armstrong et al., 2002), crossover forma-
tion (Jackson et al., 2006), male-specific meiotic cytokinesis (Zeng
et al., 2011) and general meiotic cell cycle progression (Yang et al.,
2003b), respectively.

Quantitative Real-Time PCR (qRT-PCR)
Analysis
The expression patterns of B-class MADS-box genes and genes
involved in meiosis were analyzed by quantitative real-time PCR
(qRT-PCR). For B-class gene analysis, total RNAs were isolated
from leaves, sepals, stamens, and carpels of normal and pistillate
flowers, respectively. For meiotic gene analysis, total RNAs were
isolated from the stamens at early developmental stages of nor-
mal and sterile flowers. The first-strand cDNA was made from
2 µg of total RNA using PrimeScriptTM RT Master Mix Perfect
Real Time (TaKaRa, Dalian, China) following the manufacturer’s
recommendations. The gene-specific primers used for qRT-PCR
(Supplementary Table S1) were designed using PRIMERS35. Real-
time PCR was performed on a Roche LightCycler R©2.0 machine
(Roche diagnostics, Mannheim, Germany) using SYBR R© Premix
Ex TaqTM II (TliRNaseH Plus; TaKaRa, Dalian, China). The
cycling parameters are as follows: initial denaturation (95◦C for
30 s), 40 amplification cycles (95◦C for 5 s and 60◦C for 20 s),
and followed by a melt cycle (60◦C for 15 s). All reactions were
run with three biological replicates and each with three techni-
cal replicates. UBC10was used as the reference gene to normalize
the gene expression level. Quantification of the relative changes

3http://revigo.irb.hr/
4http://www.ncbi.nlm.nih.gov/
5http://bioinfo.ut.ee/primer3/
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in gene expression was performed using the 2−��CT method
(Livak and Schmittgen, 2001). Data represented three biolog-
ical replicates with three technical replicates and were shown
as average, with error bars representing standard deviations.
Duncan’s test was used to determine the statistical significance
of differences.

Results

De novo Transcriptome Assembly and
Annotation
cDNA libraries were constructed and sequenced for the normal
flower, male-sterile flower, and pistillate flower, respectively. A
total of 107,160,189 raw reads accounting for 21.6 Gb of raw data
were generated for the three libraries. After filtering, 104,487,087
clean reads (20.1 Gb) were retained and used for de novo assembly
(Table 1). Each library was assembled independently, and then
merged to generate the final assembly. After redundancy removal,
a final set of 208,082 transcripts (≥200 bp) were obtained, with a
mean length of 870 bp and N50 of 1,514 bp (Table 2). Of the tran-
scripts retained, 169,183 (81.3%) transcripts were expressed in all
three samples and 4.3% only in normal flowers.

A total of 83,878 (40.3%) transcripts were matched to 15,273
A. thaliana genes, covering 56.4% of A. thaliana genome. 3,980
(1.9%) transcripts were further identified by BLAST searches
against the Phytozome database. Among the annotated tran-
scripts, 56 were associated with A-, B-, C-, and E-classMADS-box
genes (Supplementary Table S2), and 168 associated with 31 know
meiotic genes responsible for homologous chromosome synap-
sis (Armstrong et al., 2002), male-specific meiotic cytokinesis
(Zeng et al., 2011), general meiotic cell cycle progression (Yang
et al., 2003b), and meiotic recombination (Osman et al., 2011),
respectively (Supplementary Table S3).

Detection of Differentially Expressed Genes
To identify molecular phenotypes associated with different pat-
terns of anomalous stamen development in A. philoxeroides,
expression patterns of annotated transcripts were compared
between different types of flowers. Comparison between nor-
mal and pistillate flowers revealed 11,015 up-regulated and 8,591
down-regulated transcripts in the pistillate flower, using a FDR
of 0.1% (Figure 2). 12,761 and 12,364 transcripts were up- and
down-regulated, respectively, in the male-sterile flower compared
to the normal flower. Transcripts associated with B-class MADS-
box genes exhibited lower expression in the pistillate flower, while
transcripts associated with A-, C-, and E-class genes showing
no significant differences between normal and pistillate flowers

(Supplementary Table S2). Transcripts associated with meiotic
genes did not show significant decreases in male-sterile flowers
compared with normal flowers, with the exception of transcripts
associated with AtMSH5 that showed decreased expression in the
male-sterile flower (Supplementary Table S3).

GO term enrichment analysis of differentially expressed
genes revealed additional enriched functional categories. Genes
involved in polyketide biosynthesis, oligopeptide transport,
anther wall tapetum development, pectin catabolism, and neg-
ative regulation of endopeptidase activity, showed decreased
expressions in the pistillate flower (Figure 3). GO terms associ-
ated with the response to red or far red light, negative regulation
of circadian rhythm, ATP-dependent chromatin remodeling and
protein acetylation were also enriched in the down-regulated
genes of the pistillate flower. In addition, GO term annotation
highlighted that genes involved in the jasmonic acid (JA) medi-
ated signaling pathway were strongly overrepresented among the
differentially expressed genes between normal and male-sterile
flowers (Figure 4), and most of these genes were expressed
decreasely in the male-sterile flower. Genes involved in the
biosynthesis of constituents required for pollen wall develop-
ment and pollen maturation, such as sporopollenin, xanthophyll,
cellulose, pectin, lipid, sugar, and various pollen proteins, were
included in the supercluster of JA mediated signaling pathway
(Figure 4).

Validation the Expression of B-Function and
Meiotic Genes in Anomalous Stamens
Full-length cDNAs of three B-class MADS-box genes were
obtained from A. philoxeroides. They were clustered, respectively,
with the AP3, TM6, and PI orthologs from other plant species in
the phylogenetic tree (Supplementary Figure S1), and were thus
designated, respectively, as ApAP3, ApTM6, and ApPI. ApAP3
was 675 bp in length with an open reading frame correspond-
ing to 224 deduced amino acid residues. ApTM6 was 717 bp
long, encoding a 238 amino acid protein, while ApPI containing
a 654 bp open reading frame. The expression patterns of ApAP3,
ApTM6, and ApPI in normal and pistillate flowers were vali-
dated by qRT-PCR. The results showed that three B-class genes
were all expressed in the sepals of both flowers. However, the
expression levels of ApTM6 and ApPI were very low, and there
were no significant differences in expression levels of three genes
between two types of flowers (Figure 5). Three B-class genes were
all highly expressed in the stamens of normal flowers, but the
expression levels decreased by 73.2, 70.1, and 54.2%, respectively,
in the stamens of pistillate flowers. Expressions of ApAP3 and
ApTM6 were also detected in the carpels of both flowers but not
for ApPI.

TABLE 1 | Summary of sequencing statistics.

Normal flowers Pistillate flowers Male-sterile flowers Total

Total raw reads 49,113,802 34,075,245 23,971,142 107,160,189

Total raw bases (bp) 9,920,988,004 6,883,199,490 4,842,170,684 21,646,358,178

Number of reads after trimming 48,046,265 33,347,238 23,093,584 104,487,087

Number of bases after trimming (bp) 9,286,674,933 6,463,064,464 4,432,813,071 20,182,552,468
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TABLE 2 | Summary of de novo assembly results.

No

Total number of high quality assembled reads 104,487,087

Number of transcripts 208,082

Mean length (bp) 870

N50 (bp) 1,514

Longest transcript (bp) 18,515

Number of transcripts >5 Kb 663

Number of transcripts >10 Kb 23

FIGURE 2 | Overview of differentially (FDR ≤0.001) expressed genes.
Red bars present the number of genes that increased expression while blue
bars present the number of genes that decreased expression in the
corresponding interval.

The expression patterns of four meiotic genes, ApASY1,
ApMLH3, ApMPK4, and ApMMD1 involved in different pro-
cesses of meiosis, were also validated by qRT-PCR. They
were all expressed in the stamens of normal and male-
sterile flowers, and did not show significant differences in
expression levels between normal and male-sterile flowers
(Figure 6).

Discussion

Comparative transcriptome analysis revealed overall differences
in gene expression between normal and anomalous flowers.
Altered expressions of genes associated with stamen develop-
ment were confirmed with qRT-PCR analyses. As revealed in
other plants (de Martino et al., 2006), the expression levels
of B-function MADS-box genes were significantly decreased in
the stamens of A. philoxeroides pistillate flowers. B-function
genes physically interact with C- and E-function genes to form
quaternary complexes to specify stamen development (Airoldi,

2010). Because the expression levels of C- and E-function genes
remained in A. philoxeroides pistillate flowers, the decreased
expression of B-class genes was evidently responsible for the
homeotic transformation of stamens into carpels in A. philoxe-
roides. Our results are in agreement with previous studies on
homeotic variation in flowers. de Martino et al. (2006) showed
that decreased expression of only one B-class gene could result
in a complete transformation of the stamens into carpel-like
organs in tomato. The deficiency of B-class MADS-box genes
also caused homeotic conversions of stamens into carpels in
Arabidopsis (Jack et al., 1992; Goto and Meyerowitz, 1994),
Antirrhinum (Schwarz-Sommer et al., 1992; Tröbner et al., 1992),
tomato (Rasmussen and Green, 1993; Olimpieri and Mazzucato,
2008) and wheat (Hama et al., 2004; Yamada et al., 2009).
The reduced expression of B-function genes in A. philoxe-
roides seems not to result from the loss-of-function mutation
in B-class genes because, by cloning and sequencing ApAP3,
ApTM6, and ApPI from different plants, we did not find signif-
icant sequence variation between normal and pistillate flowers.
Deng et al. (2011) and Liu et al. (2011) showed that envi-
ronmental variation, especially soil nutrient heterogeneity, can
induce floral gender transformation in A. philoxeroides, with
the stamens of monoclinous flowers being completely or par-
tially transformed into carpels (Deng et al., 2011; Liu et al.,
2011). It is unclear, however, by which mechanisms the change
in environment is sensed, transduced, and finally elicits mod-
ifications to the selective expression of B-class genes in differ-
ent habitats. In addition to B-class genes, transcriptome analy-
sis also revealed other genes that were differentially expressed
between normal and pistillate flowers, and were enriched for
a wide range of molecular function categories. The differential
expression of genes involved in GA signaling and epigenetic
regulation is of special interest. It has been revealed that flo-
ral homeotic genes (AP3 and PI) were targets of GA signaling
in flower development (Yu et al., 2004). GA probably promoted
stamen development by upregulating expression of the floral
meristem identity gene LEAFY (LFY), which in turn upregu-
lates expression of the B-class MADS-box gene AP3 (Plackett
et al., 2011). Reduction in GA synthesis might lead to a reduced
expression of AP3, and thereby produces abnormal flowers with
carpelloid stamens (Kamata et al., 2013). Studies on the sta-
menless mutant also showed evidences that stamen identity in
tomato depended on gene–hormone interactions (Quinet et al.,
2014). Additionally, it has been shown that epigenetically reg-
ulated ectopic expression of flower homeotic genes may alter
floral organ identity (Kapoor et al., 2005; Pu et al., 2013).
Histone modification and ATP-dependent chromatin remodel-
ing are also involved in the regulation of spatiotemporal-specific
expression of genes that lead to patterning, specification, and
morphogenesis of flowers (Gan et al., 2013). Mutation in the
chromatin-remodeling ATPases BRAHMA led to the occurrence
of carpelloid structures in the third whorl of Arabidopsis flow-
ers (Hurtado et al., 2006; Wu et al., 2012). It has been sug-
gested that MADS-domain proteins may closely interact with
chromatin remodeling factors to facilitate chromatin opening
and transcription initiation (Smaczniak et al., 2012; Guo et al.,
2015).
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FIGURE 3 | REVIGO-summarized enriched GO terms among down-regulated genes in pistillated flowers. Similar colors denote semantic similarity in the
supercluster and the area of the rectangles is proportional to the significance of the over-representation of the GO term (−log10 p-value).

FIGURE 4 | REVIGO-summarized enriched GO terms among down-regulated genes in male-sterile flowers. Similar colors denote semantic similarity in the
supercluster and the area of the rectangles is proportional to the significance of the over-representation of the GO term (−log10 p-value).
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FIGURE 5 | Expression patterns of B-function genes in A.
philoxeroides. Relative expression of ApAP3 (A), ApTM6 (B), and ApPI (C) in
tissues from normal flowers (black bars) and pistillate flowers (gray bars), as
revealed by qRT-PCR. Tissues assayed are leaf (le), sepal (se), stamen (st),
and carpel (ca). Error bars represent standard deviations of three replicates.

Most of the meiotic genes investigated in this study were
normally expressed in the male-sterile flower of A. philoxeroides.
This result was inconsistent with our original hypothesis. The
cytotype of A. philoxeroides found in China is a hexaploid,
with approximately 100 chromosomes. Abnormal male meiosis
is often used as a cytological explanation for pollen sterility in
polyploidy plants. The most common meiotic abnormalities were
those related to irregular chromosome segregation due to poly-
ploidy, leading to the formation of chromosomally imbalanced
gametes and aneuploidy. To date, little cytogenetic work has been
done on the meiotic process of the invasive A. philoxeroides,
due to the small size and apparent similarity of the chromo-
somes. It is unclear whether meiosis proceeds normally in the

FIGURE 6 | Expression patterns of meiotic genes in A. philoxeroides.
Relative expression of ApASY1 (A), ApMLH3 (B), ApMPK4 (C), and ApMMD1
(D) in anthers from normal flowers (black bars) and male-sterile flowers (gray
bars), as revealed by qRT-PCR. Error bars represent standard deviations of
three replicates.

A. philoxeroides male-sterile flower. The normal expression of
meiotic genes in the male-sterile flower seems to suggest that
the meiotic abnormality is unlikely responsible for the pollen
sterility observed inA. philoxeroides, or segregation defects some-
times occur during meiosis II after meiosis I has proceeded
normally. Other anther developmental defects may also gen-
erate male-sterile phenotypes (Sanders et al., 1999; Sakata and
Higashitani, 2008). In consistent with this prediction, we found
that many genes involved in the JA mediated signaling path-
way were strongly down-regulated in the male-sterile flower. JA
is critical for late stages of stamen development, regulating fila-
ment elongation, anther opening, and pollenmaturation. (Turner
et al., 2002; Song et al., 2013; Wasternack and Hause, 2013).
Arabidopsis mutants impaired in JA biosynthesis exhibited non-
viable pollen and delayed anther dehiscence (Wasternack and
Hause, 2013). JA signaling also played crucial roles in a vari-
ety of biosynthetic pathways for the components of pollen intine
and exine, and various storage materials accumulated during
pollenmaturation (Mandaokar et al., 2003, 2006;Wasternack and
Hause, 2013). As a result of defects in the JA signaling pathway,
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a lot of genes involved in the biosynthesis of constituents required
for pollen wall development and pollen maturation were also
down-regulated in the male-sterile flower of A. philoxeroides.
Thus, defects in JA synthesis and/or JA signaling, as well as subse-
quent physiological disorders, might be potential causes for male
sterility in A. philoxeroides.

Overall, the invasive A. philoxeroides exhibited a high level
of plasticity in stamen development. This high level of plastic-
ity is clearly resulted from relaxed selective constraints on sexual
reproduction. After being introduced into China, A. philoxe-
roides spreads mainly by vegetative (clonal) propagules, though
it retains the principal ability to reproduce both sexually and
asexually in its native range. Although genetic factors, such as
changes in ploidy, may play a role in causing reduced sexual
fertility, the shift toward asexual reproduction is more likely
promoted by biotic and/or abiotic limiting factors of the environ-
ment in exotic A. philoxeroides populations. Clonal reproduction
probably helps the plants of A. philoxeroides to overcome the
negative effects associated with low population densities dur-
ing colonization and enhances exploitation of ubiquitous envi-
ronmental heterogeneity, facilitating range expansion. Asexual
reproduction is particularly common among introduced species
(Kronauer et al., 2012), and shifts from sexual to asexual repro-
duction in the exotic range have been observed in several clonal
invaders (Sculthorpe, 1967; Ornduff, 1987; Hollingsworth and
Bailey, 2000). Repeated cycles of colonization and low-density
may favor uniparental reproduction because selfing and asexu-
ality provide plants with reproductive assurance (Eckert et al.,
2006; Barrett et al., 2008). Meanwhile, genetic sterility may
be induced by environmental suppression of sexual recruit-
ment because natural selection no longer strongly maintains
the traits involved in sex (Eckert, 2002). As a result, ‘neutral’
sterility mutations and developmental abnormalities accumulate
in highly clonal populations, as shown in exotic A. philoxe-
roides plants. Thus, the occurrence of various types of sta-
men abnormalities could be explained by the hypothesis that
sex were degraded for they no longer increase fitness (Larkin
et al., 2007; Tamura et al., 2013). Sexual sterility may be first

induced by ecological factors, the resulting genetic sterility may,
in turn, further hamper sexual recruitment in clonal popula-
tions, facilitating the evolution of asexual reproduction in clonal
plants.
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