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Proanthocyanidins (PAs) are the major component of phenalics in apple, but mechanisms
involved in PA biosynthesis remain unclear. Here, the relationship between the PA
biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR)
and anthocyanidin reductase (ANR) was investigated in fruit skin of one apple cultivar
and three crabapples. Transcript levels of LART and ANR2 genes were significantly
correlated with the contents of catechin and epicatechin, respectively, which suggests
their active roles in PA synthesis. Surprisingly, transcript levels for both LART and LAR2
genes were almost undetectable in two crabapples that accumulated both flavan-3-ols
and PAs. This contradicts the previous finding that LAR7 gene is a strong candidate
regulating the accumulation of metabolites such as epicatechin and PAs in apple.
Ectopic expression of apple MdLART gene in tobacco suppresses expression of the
late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in
flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of
transgenic tobacco plants overexpressing the MdLART gene, which could be attributed
to decreased expression of both the NtANRT and NtANR2 genes. Our study not only
confirms the in vivo function of apple LART gene, but it is also helpful for understanding
the mechanism of PA biosynthesis.

Keywords: apple, anthocyanin, proanthocyanidin, leucoanthocyanidin reductase, anthocyanidin reductase

Introduction

Apple (Malus x domestica Borkh.), a member of the Rosaceae family, is one of the most widely cul-
tivated fruit crops in the world. The apple is a diploid (2n = 34), with an autopolyploidy origin and
a relatively small genome size of 750 Mb per haploid (Velasco et al., 2010). Apple fruits are rich in
antioxidants such as proanthocyanidins and anthocyanins. Since anthocyanins play a critical role
in fruit coloration, molecular mechanism underlying anthocyanin accumulation has recently been
extensively studied in apple (Takos et al., 2006a; Ban et al., 2007; Espley et al., 2007; Li et al., 2012;
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Xie et al., 2012; Chagné et al., 2013; Dare et al., 2013; Vimol-
mangkang et al., 2013). In contrast, only a few studies have
been conducted to investigate molecular basis of proanthocyani-
din biosynthesis in apple (Chagné et al., 2012; Han et al., 2012;
Henry-Kirk et al., 2012; Verdu et al., 2014).

Proanthocyanidins (PAs), also called condensed tannins,
are phenolic polymers formed by condensation of flavan-3-
ol monomeric units such as catechin and epicatechin, which
are synthesized via a branch of anthocyanin biosynthesis path-
way under the catalyzation of two enzymes, leucoanthocyanidin
reductase (LAR) and anthocyanidin reductase (ANR). Namely,
LAR catalyzes the conversion of leucoanthocyanidin (flavan-
3,4-diol) to catechin, while ANR catalyzes the synthesis of epi-
catechin from anthocyanidin (Tanner et al, 2003; Xie et al,
2003, 2004). However, a more recent study indicates that ectopic
expression of the tea CsLAR gene in tobacco results in the accu-
mulation of higher level of epicatechin than that of catechin,
suggesting that LAR may be also involved in the biosynthesis of
epicatechin (Pang et al., 2013). Similarly, ANRs from grapevine
and tea are proven to have epimerase activity and thus can con-
vert anthocyanidin to a mixture of epicatechin and catechin (Gar-
gouri et al,, 2010; Pang et al., 2013). In cells, PAs are synthesized
in the cytoplasm and accumulated into the vacuole. To date, the
biosynthesis and accumulation of PAs have been reported in a
variety of plant species (Matsui et al., 2004; Paolocci et al., 2007;
Pang et al., 2008; Zhao and Dixon, 2009; Kitamura et al., 2010;
Hammerbacher et al., 2014; Liu et al,, 2014). However, many
questions regarding the transport of PAs from cytosol to vacuoles
and the polymerization of flavan-3-ol monomers are still open
(Zhao et al., 2010).

PAs are very powerful antioxidants that can remove harmful
free oxygen radicals from cells, and their antioxidant power is 20
times higher than that of vitamin C and 50 times higher than vita-
min E (Shi et al., 2003). Since fruits are one of the main sources
of PAs in our diets, many studies have been conducted to iden-
tify genes involved in PA biosynthesis and accumulation in fruit
crops. Initially, structural genes of the PA-specific branch path-
way, including LAR and ANR, were characterized in grapevine
(Bogs et al., 2005; Pfeiffer et al., 2006; Maugé et al., 2010) and
strawberry (Almeida et al., 2007). Subsequently, anthocyanidin
synthase (ANS), which catalyzes the conversion of leucoantho-
cyanidin to anthocyanidin, is also proven to play an impor-
tant role in the biosynthesis of PAs in apple fruit (Szankowski
et al., 2009). However, increasing evidence shows PA accumula-
tion is regulated at the transcriptional level by MYB TFs, includ-
ing positive MYB regulators such as VwMybPA1, VvMYB5b, and
VwMybPA2 in grapevine (Bogs et al., 2007; Deluc et al., 2008;
Terrier et al., 2009), FaMYB9/FaMYBI1I in strawberry (Schaart
et al., 2013), and DkMyb4 in persimmon (Akagi et al., 2009)
and negative MYB regulators such as VvMYBC2-L1 in grapevine
(Huang et al., 2014). In addition, a basic leucine zipper tran-
scription factor in persimmon, DkbZIP5, can bind to ABA-
responsive elements in the promoter region of DkMyb4 and
thus induces the up-regulation of DkMyb4 and the resultant PA
biosynthesis (Akagi et al., 2012). In addition, two MATE (mul-
tidrug and toxic compound extrusion) genes, VWMATEI and
VWMATE?2, which is likely involved in transport of PAs from

cytosol to vacuoles, are also reported in grapevine (Pérez-Diaz
etal, 2014).

In apple, the predominant anthocyanin is cyanidin 3-
galactoside (Tsao et al., 2003), which suggests that LAR and ANR
enzymes act on leucocyanidin and cyanidin, respectively, to pro-
duce catechin and epicatechin (Figure S1). PAs account for up
80% of the total phenolic compounds in apple, and thus repre-
sent the predominant apple antioxidants (Wojdylo et al., 2008).
More recently, a limited number of quantitative trait locus (QTL)
mapping studies have been conducted to understand the genetic
basis of PA accumulation in apple, and a major QTL together
with several minor QTLs for the content of flavanol monomers
and procyanidins and the average polymerization degree of pro-
cyanidins have been identified (Chagné et al., 2012; Khan et al,,
2012; Verdu et al, 2014). A LAR gene within the major QTL
interval is considered as a strong candidate controlling the accu-
mulation of both flavanols and procyanidins (Chagné et al,
2012; Khan et al,, 2012). However, an apple WD40-repeat gene,
a homolog of Arabidopsis TRANSPARENT TESTA GLABRA1
(TTGL), was shown to activate the AtBAN promoter in coopera-
tion with Arabidopsis TT2 and TT8 (Brueggemann et al., 2010).
This finding suggests that PA accumulation in apple is probably
regulated at the transcriptional level although no TFs in apple
have to date been identified to be involved in regulation of PA
biosynthesis.

We previously investigated the functionality of ANR gene
family in apple, which is composed of one MdANRI gene on
chromosome 10 and two allelic MdANR2 genes (MdANR2a and
MdANR2b) on chromosome 5 (Han et al., 2012). In this study,
we further report on the role of LAR genes in PA biosynthe-
sis in apple. Expression profiles of both LAR and ANR genes
were investigated in cultivated and wild apple fruits, and func-
tional characterization was conducted for an apple LARI gene
via ectopic expression in tobacco. Our study indicates that the
apple LARI and ANR2 genes probably play an important role
in the biosynthesis of catechin and epicatechin, respectively, and
ectopic expression of apple LARI genes in tobacco causes a sig-
nificant decrease in both anthocyanin and PA accumulation in
flowers. This finding is not only helpful for understanding the
mechanism of the PA biosynthesis, but it will also aid in future
attempts to manipulate PA biosynthesis in apple as well as in
other plants.

Materials and Methods

Plant Material

Apple fruits at enlargement and mature stages were collected. To
facilitate description, fruit at enlargement stage was referred to
as immature fruit (hereinafter the same). Apple accessions were
Aihuahong (Malus asiatica Nakai var. nana Li.), Xijinhaitang
[Malus sikkihensis (wenzig) Koehne ex Schneid.], Xiongyuehai-
tang [Malus prunifolia (Willd.) Borkh.], and Fuji (Malus domes-
tica Borkh.). The maturity of the fruits was assessed by checking
the color of the peel and a confirmation of the seed color chang-
ing to brown. Each accession had three replicates, consisting of
five fruits. Fruit skins were peeled off and used for the stud-
ies. Nicotiana tabacum cv. Petite Havana SR1 was selected for
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gene functional study. Tobacco flowers at full-bloom stage were
harvested for gene expression analysis and chemical analysis.

Quantitative PCR for Gene Expression Analysis
Total RNA was extracted using ZP401 kit (Beijing Zoman
Biotechnology Co., Ltd., Beijing, China) following the manu-
facture’s protocol. Total RNR were then treated with DNase I
(Takara, Dalian, China) to remove any contamination of genomic
DNA. Approximately 2 pug of total RNA was used for cDNA
synthesis using PrimeScript™ RT-PCR Kit (Takara).

The qPCRs were performed in 96-well plates using a 7500
Real Time PCR System (Applied Biosystems). All analyses were
repeated three times using biological replicates. The SYBR Green
real-time PCR assay was carried out in a total volume of 20 nL
reaction mixture containing 10 L of 2 x SYBR Green I Mas-
ter Mix (Takara, Dalian, China), 0.2 uM of each primer, and 100
ng of template cDNA. An apple actin gene (GenBank accession
no. CN938023) and a tobacco actin gene (GenBank accession no.
AY179605) were used as a constitutive control. The amplification
program consisted of 1 cycle of 95°C for 3 min, followed by 40
cycles of 95°C for 30s and 60°C for 30 s. Melting curve analysis
was performed at the end of 40 cycles to ensure the proper ampli-
fication of target fragments. Fluorescence readings were consecu-
tively collected during the melting process from 60 to 90°C at the
heating rate of 0.5°C/s. Primer sequences used for real-time PCR
analysis were listed in Tables S1.

Expression Vector Construction and Tobacco
Transformation

A pair of primers (5-TGACGAGCTCATGACCGTTTCATC
TTCTCTTTCTG-3'/5-ATACGGATCCTCAAGCACAAGTGG
CAGTGACAG-3') was designed to amplify the full coding
sequences of the MdLARI gene using cDNA from fruits of cv.
Fuji as templates. The forward and reverse primers contain
Sacl/BamHLI sites at the 5" end, respectively. The PCR ampli-
fication was conducted using proofreading DNA polymerase
Pfu (Takara, Dalian, China), and PCR products, digested with
BamHI and Sacl, were ligated into Sacl/BamHI-digested pCAM-
BIA1301s binary vector. The gene construct was introduced into
Agrobacterium tumefaciens strain GV3101 by electroporation.
Agrobacterium-mediated transformation in tobacco was con-
ducted according to our previously reported protocol (Han et al.,
2012).

Measurement of Proanthocyanidin and
Anthocyanin Contents

Tissue samples, tobacco flowers or apple skins, were ground to
fine power and then subjected to analysis of proanthocyanidin
and anthocyanin contents. Soluble PAs were extracted and quan-
tified using the DMACA-HCI Protocol (Li et al., 1996). Antho-
cyanin content was assayed following our previously reported
protocol (Zhou et al., 2014), with some modification. Briefly,
approximately 0.1 g of finely-ground tissues was extracted twice
with 1 ml extraction solution (0.1% HCI in methanol) and the
supernatants were combined and diluted to 3-mL final vol-
ume. Then, 200 pL supernatant was mixed with 2.8 ml of buffer
A (0.4M KCI, adjusted to pH 1.0 with HCI) or buffer B (1.2

N citric acid, adjusted to pH 4.5 with NaH,PO4 and NaOH).
Absorbance of the mixture was measured at 510 and 700 nm.
The anthocyanin content was calculated using the following for-
mula: TA = A x MW x 15 x 1000 x V/e, where TA stands
for total anthocyanin content as cyanidin-3-O-glucose equiva-
lent (mg/100g), V for final volume (ml), and A = [(As;o -
A700) at pH1.0] - [(As10 — Aygo) at pH 4.5], e is absorbance
of cyanindin-3-glucoside (26,900), MW is molecular weight of
cyanindin-3-glucoside (449.2). All analyses were repeated three
times using biological replicates.

LC-MS/MS Analysis of Flavan-3-ol Monomers

PAs were extracted from finely-ground tissues of tobacco flow-
ers and apple skins according to our previously reported proto-
col (Han et al., 2012), with some modification. Briefly, the tissue
was soaked in 1 mL of 70% (v/v) acetone containing 0.1% (w/v)
ascorbate, and incubated for 24 h in darkness. The extract was
centrifuged and the supernatant was transferred to a new 1.5ml
microcentrifuge tube. The extract was partially purified by adding
equal amount of chloroform and the supernatant was collected.
The solvent was evaporated, and the extract was resuspended in
500 L of water/methanol (1:1, v/v).

PAs were identified using liquid chromatography-tandem
mass spectrometry (LC-MS/MS) and their contents were
calculated by comparison with commercial standards, including
catechin and epicatechin (Sigma). The ESI-MS/MS system (Ther-
moFisher Scientific, Pittsburgh, PA) equipped with a Thermo Sci-
entific Accela 1250 HPLC was used. The HPLC Separation was
performed on a Hisep C18-T column (5 um, 4.6 x 150 mm; Wel-
tech Co., Ltd., Wuhan, China). HPLC mobile phase consisted of
A (0.2% acetonitrile in H,O) and B (Methanol) and the flow rate
was set at 1.2 mL min~!. The gradient for catechin and epicate-
chin was as follows: 0 min, 100% A; 12 min, 50% A; 13-20 min,
50% A; and 21-30min, 100% A. The injection volumes were
20 uL for samples and 10 pL for PA standards. The PAs were
observed under UV detector at 280 nm and determined accord-
ing to retention time of standards (Figure S2). Mass spectra were
acquired in positive ion mode and multiple reaction monitoring
was used to identify and quantify catechin and epicatechin (m/z
291.0/139.2/123.1). All analyses were repeated three times using
biological replicates.

Results

Flavonoid Content in Wild and Cultivated Apples

Flavonoid content was investigated in four Malus accessions,
including an apple cultivar Fuji (F]) and three crabapples, Aihua-
hong (AH), Xjjinhaitang (XJ), and Xiongyuehaitang (XY). The
mature fruit skin of all the four apple accessions showed a sig-
nificant increase in anthocyanin content when compared with
immature fruit skin (P < 0.025, Figure 1). Anthocyanin con-
tent ranged from 0.56 to 7.28 mg/g in mature fruit skin, and from
0.36 to 1.97 mg/g in immature fruit skin. The crabapple X]J had
the highest level of anthocyanins in both immature and mature
fruit skins, followed by XY, AH, and FJ accessions. In contrast, the
PA content showed no significant change in fruit skin between
enlargement and mature stages (P > 0.05). The PA content
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FIGURE 1 | Fruit skin color of four Malus accessions and the proanthocyanidin and anthocyanin content in the skin. Fruits were collected at enlargement
(Ft1) and mature (Ft2) stages. Abbreviations for Malus accessions are as follows: AH, Aihuahong; XJ, Xijinhaitang; XY, Xiongyuehaitang; FJ, Fuji.
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ranged from 0.74 to 3.31 mg/g in immature fruit skin, and from
0.87 to 3.23 mg/g in mature fruit skin. The crabapple XY and the
cultivar FJ had the highest and lowest levels of the PAs in fruit
skins, respectively.

For flavan-3-ols, fruit skin of all the four apple accessions
contained both catechin and epicatechin, with epicatechin being
predominant (Figure 2). Epicatechin content ranged from 10.19
to 385.50 ug/g in immature fruit skin, and from 19.98 to
331.38 pug/g in mature fruit skin. The crabapple XJ had the high-
est level of epicatechin content in both immature and mature
fruit skins, followed by FJ, XJ, and AH accessions. Catechin con-
tent ranged from 1.24 to 5.62 ug/g in immature fruit skin, and
from 2.01 to 5.77 wg/g in mature fruit skin. The crabapple XY
and cv. FJ had the highest level of catechin content in mature
fruit skin, followed by XJ and AH accessions. Overall, all the four
Malus accessions showed a great variation in the flavan-3-ol and
PA content.

Expression Profile of PA Biosynthesis Genes in
Apple

Genes encoding LAR, ANR, and ANS are closely related to
PA biosynthesis (Figure S1). Two apple LAR genes, designated
MdALARI and MdLAR2, have been reported in previous study
(Takos et al., 2006b). Comparison of their DNA sequences with
the apple reference genome (Velasco et al., 2010) revealed that
MdALARI and MdLAR2 are located on linkage groups (LG) 16 and
13, respectively. MALARI and MdLAR2 share 93 and 91% iden-
tity in coding DNA and amino acid sequences, respectively, and
the RFLP, ICCN, and THD motifs are identical between MdLAR1
and MdLAR?2 proteins (Figure 3). Likewise, we previously iden-
tified two ANR genes, termed MdANRI and MdANR?2, in the
apple genome (Han et al., 2012). However, only one copy of the
ANS gene is present in the apple genome (Velasco et al., 2010).

Thus, the expression profile of these five PA biosynthesis genes
was investigated in the fruit skin of the four Malus accessions as
mentioned above and the result is shown in Figure 4.

LARI was highly expressed in immature and mature fruit
skins of cv. FJ and the crabapple XY, while its transcript level was
almost undetectable in immature and mature fruit skins of the
two crabapples AH and XJ. LAR2 was highly expressed in mature
fruit skin of cv. FJ and the crabapple XY, but weakly expressed
in immature fruit skin. Transcript accumulation of LAR2 was
almost undetectable or extremely low in immature and mature
fruit skins of the two crabapples AH and X]J. Both ANRI and
ANR2 were expressed in immature and mature fruit skins of all
the tested accessions. Transcript accumulation of ANRI showed
the highest level in fruit skin of cv. FJ, whereas, transcript accu-
mulation of ANR2 showed the highest level in fruit skin of the
crabapple XY. To confirm the reliability of gene expression pro-
filing result, the qRT-PCR products were cloned and sequenced.
The DNA fragments of both LARI and LAR2 are identical among
the four Malus accessions (Figure S3). In contrast, three single
nucleotide polymorphisms were detected for the DNA fragments
both ANRI and ANR2, but no DNA polymorphism at the primer
binding sites. In addition, the ANS gene was expressed in imma-
ture and mature fruit skins of all the three crabapples, but its
transcript level was extremely low in mature fruit skin of the wild
accession XJ. In contrast, transcript accumulation of ANS gene
was extremely lower in mature and immature fruit skins of cv. FJ.

Relationship between the PA Biosynthesis Gene
Expression and the Flavan-3-ol and PA
Accumulation

We initially investigated the relationship between the expres-
sion levels of LAR and ANR genes and the concentrations of
catechin and epicatechin, respectively, in fruit skins of four Malus
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accessions (Figure 5). The LARI expression level was signifi-
cantly correlated with the catechin content in both immature and
mature fruit skins, with the Spearman correlation coeflicients (r)
0.99 (P < 0.05) and 0.98 (P < 0.05), respectively. Likewise,
the ANR2 expression level was significantly correlated with the
epicatechin content in both immature (r = 0.95, P < 0.05)
and mature (r = 0.96, P < 0.05) fruit skins. However, the
expression level of LAR2 or ANRI showed no significant corre-
lation with the content of catechin or epicatechin, respectively, in
both immature and mature fruit skins. Subsequently, we inves-
tigated the relationship between the expression level of LAR and
ANR genes and the PA concentration (Figure S4). The highest
level of correlation was observed between the expression level
of ANR2 and the PA concentration in immature (r = 0.80,
P > 0.05) and mature (r = 0.87, P > 0.05) fruit skins,
but the Spearman correlation coefficients did not reach statisti-
cal significance. This indicates that there is no significant cor-
relation between the expression level of both LAR and ANR
and the PA concentration in both immature and mature fruit
skins.

Ectopic Expression of MdLAR1 in Tobacco

As mentioned above, MdALARI and MdLAR?2 share high level
identity in both coding DNA and amino acid sequences and
the conserved LAR motifs, RFLP, ICCN, and THD, are identical
between MdALAR1 and MdLAR?2 proteins. Moreover, MdLARI
is located in the major QTL interval controlling the accumula-
tion of flavanols and procyanidins (Chagné et al., 2012; Khan
et al., 2012). Thus, only the MdLARI gene was selected for
functional analysis. The coding region of MdALARI was trans-
ferred into tobacco under control of the Cauliflower mosaic virus
(CaMV) 35S promoter, and eight T transgenic lines were gener-
ated. During the vegetative growth stage, these transgenic plants
were indistinguishable from wild-type plants. During the flow-
ering stage, however, flower colors of two transgenic lines, TT1
and TT6, were different from those of wild-type plants. Wild-type
plants bore red flowers, whereas, TT1 and TT6 produced pale
pink-colored and pure white flowers, respectively (Figure 6A).

Thus, these two transgenic lines were selected and subjected to
analysis of gene expression and flavonoid content.

The gRT-PCR analysis revealed that the MdLARI gene
showed extremely high levels of expression in flowers of both
TT1 and TT6 transgenic lines (Figure 6B). Pale-pink and white
flowers of the transgenic lines accumulated certain amounts
of anthocyanin, but these levels were significantly lower than
those of wild-type flowers (Table 1). Surprisingly, the PA con-
tents in either white- or pale pink-colored transgenic flowers were
also significantly lower than that of wild-type flowers. In con-
trast, both pale-pink and white flowers of the transgenic lines
accumulated slightly higher levels of epicatechin than did wild-
type flowers, but the changes did not reach statistical signifi-
cance. Likewise, no significant change in catechin content was
observed between wild-type flowers and either white- or pale
pink-colored transgenic flowers. Taken together, ectopic expres-
sion of the MALARI gene in tobacco inhibited the biosynthesis of
both anthocyanins and PAs in flowers, but exhibited no effect on
flavan-3-ol accumulation.

qRT-PCR analysis was also conducted to investigate the coor-
dinate interaction of the MdLARI gene with other flavonoid
pathway genes in transgenic tobacco flowers, including NtCHS,
NtCHI, NtF3H, NtF3'H, NtDFR, NtANS, NtUFGT, NtLAR,
NtANRI, and NtANR2. Overexpression of the MdLARI gene
in tobacco greatly influenced expression of flavonoid structural
genes in flowers (Figure 6C). For example, expression of NtCHI,
NtF3'H, NtDFR, NtANS, NtUFGT, NtANRI, and NtANR2, was
down-regulated in flowers of both TT1 and TT6 transgenic
lines, while expression of NtLAR was up-regulated in flowers of
both transgenic lines. Of all genes investigated, the two genes
NtUFGT and NtDFR showed extremely low levels of expression
in white-colored transgenic flowers.

Discussion

Apple fruits accumulate usually high levels of PAs, which con-
tributes to human health and organoleptic property (Renard
et al., 2007). However, mechanisms involved in the biosynthesis
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FIGURE 3 | Alignment of deduced amino acid sequences of the two
apple LAR genes and their three homologs, including Camellia
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(XP_007046315), Medicago truncatula MtLAR (XP_003591830).
Conserved amino acid sequences are indicated by a black ground and

CYS‘NELASLWENKI ‘
RTINKSVHFRPPSNLYDINELASLWEKKIGRTLPRVTVTENDLLALAAENRIPESIVASFE

GCQVNFKIDGIHDVEISTLYPGESFRSLEDCFESF AMAAPK—-———- HHKGIN

214

‘GSDIGKFTIKTVDDI
NGTDIGKFTMRTVDDI

274

H'KIP‘AIVSEDDLLGIAAENCIPESVVASI

334
€T1YPGDSFRTLDECEDIEF LEKEK DNMMARAILG v o)
€T 1 YPGDSFRTLDECFNDFLEKLK D ESBoy=/Isi - oy
@S 1Y PBE S FRTNDE C FDDF VK MY SalemNsahgs - iyDe]
NS LY PNEEFRTLDBCFYDFLVKMK D\ S eI\

E LQEEE

similar amino acids by a light gray background. The RFLP, ICCN, and THD
motifs are boxed. Amino acids interacting with NADPH in the active site are
highlighted in a black colored triangle and amino acids interacting with
leucoanthocyanidin are highlighted in a black colored dot. The numbering of
amino acids follows the scheme for MALAR1 and MdLAR2.

of PAs remain unclear. We here describe the functional analysis
of a LAR gene in apple. The LAR enzyme is known to compete
with the ANS enzyme to convert leucoanthocyanidin into cate-
chin. The Arabidopsis genome does not contain an LAR ortholog,
and thus catechin is not detected in the seed coat (Abrahams
et al., 2003; Tanner et al., 2003). In this study, transcript accu-
mulation of both LARI and LAR2 genes are almost undetectable
in fruit skin of two wild apple species AH and X]J, which is con-
sistent with the low concentration of catechin in fruit peel. In

contrast, LARI and LAR2 genes are expressed in fruit skin of
the crabapple XY and cv. F]. However, the concentration of cate-
chin is extremely lower than that of epicatechin, with epicatechin
being the predominant flavan-3-ol monomer in fruit skin. This
inconsistency has also been reported in Medicago, in which LAR
is expressed, but the PAs are composed almost entirely of epicat-
echin units (Pang et al., 2007). In the wild apple Malus sieversii,
silencing ANS gene results in an increase in LAR transcript level,
together with a decrease in ANR transcript level (Szankowski
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et al., 2009). Interestingly, an increase in epicatechin accumula-
tion is observed in the ANS-silenced apples. This increase sug-
gests the possibility of an alternative biosynthetic pathway to
epicatechin such as epimerization of catechin to epicatechin and
depolymerization in a non-stereospecific manner from polymeric
epicatechin derivatives (Szankowski et al., 2009). Further studies
are needed to address whether the alternative biosynthetic path-
way to epicatechin is also responsible for the finding that the
flavan-3-ols are composed almost entirely of epicatechin in fruit
skin of the four Malus accessions tested in this study.

The mature fruit skin of the apple cultivar FJ shows a slight
increase in PA accumulation when compared with the imma-
ture fruit skin. In contrast, three crabapples accumulate slightly
lower levels of PAs in the skin of mature fruit than in the skin
of immature fruit. The fruit size of the cultivar FJ shows a sig-
nificant increase in mature stage, but no obvious change for the
three crabapples. Therefore, it seems that fruit enlargement has
little impact on PA accumulation in apple.

There are two copies of both ANR and LAR genes in the
apple genome. MdAANRI and MdANR?2 are located on homolo-
gous chromosome pairs 10 and 5, respectively (Han et al., 2012).
Similarly, MALARI and MdLAR2 are located on homologous
chromosome pairs 16 and 13, respectively. Thus, duplication of

both ANR and LAR genes in apple is attributed to the polyploidy
origin of the apple genome (Velasco et al., 2010; Han et al., 2012).
For the two LAR genes in apple, only LARI shows a significant
correlation between its transcript level and the catechin content.
Likewise, transcript level of the apple ANR2 is significantly cor-
related with the epicatechin content, but not for the apple ANRI.
Thus, the LARI and ANR2 genes are likely crucial for the biosyn-
thesis of catechin and epicatechin in apple peel, respectively. This
in turn suggests that functional divergence between the two apple
duplicated genes encoding both LAR and ANR may occur during
the course of evolutionary development of apple.

Genetic mapping studies indicate that the LARI gene at the
mQTL hotspot on LG16 is considered as a strong candidate reg-
ulating the accumulation of metabolites such as catechin, epi-
catechin, and procyanidins in apple (Chagné et al., 2012; Khan
et al., 2012). However, our result indicates that LARI transcript
level does not show any significant correlation with either the
epicatechin content or the PA content. In the two crabapples
AH and X]J, transcript accumulation of LARI is almost unde-
tectable, whereas both epicatechin and PAs are accumulated in
fruit peel. Moreover, the LARI gene is highly expressed in fruit
skin of cv. FJ. However, the PA content in fruit skin of cv. FJ is
significantly lower than those in fruit skin of the two crabapples
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FIGURE 6 | Ectopic expression of MdLAR1 gene in tobacco. (A) Flower
color of transgenic tobacco (TTl, transgenic tobacco type [; TTlI, transgenic
tobacco type ll) and wild-type tobacco (WT). (B) Gene expression level of
MAdALART in transgenic flowers. (C) Expression profiles of flavonoid-related
biosynthetic genes in transgenic flowers relative to wild-type tobacco flowers.

AH and X]J. All these results suggest that the apple LARI gene
is unlikely responsible for the epicatechin and PA biosynthe-
sis. Besides the LARI gene, several transcription factor genes
encoding MYB, bHLH, AP2, and bZIP proteins are also located
in the mQTL hotspot. It is worthy of further study to address
whether these transcriptional factors are involved in the regula-
tion of the flavanol and PA biosynthesis in apple. In addition, the
ANS gene also plays an important role in PA biosynthesis as its
silencing causes a decrease in PA biosynthesis in Malus sieversii
(Szankowski et al., 2009). Transcript level of ANS is extremely
low in fruit skin of cv. FJ. It is unclear whether or not the PA
accumulation at low level in cv. FJ could be partially attributed to
the extremely low expression of the ANS gene.

Our previous study indicates that ectopic expression of
MdAANR genes in tobacco inhibits expression of both CHI and
DFR genes in flowers, resulting in a decrease in anthocyanin
accumulation (Han et al., 2012). Similar result is also observed
for the MALARI gene in this study. Overexpression of MdLARI
suppresses expression of anthocyanin pathway genes in flowers,
including CHI, F3’'H, DFR, ANS, and UFGT, leading to a signif-
icant loss of anthocyanin. Thus, it is clear that loss of color in
transgenic tobacco flowers may be due to inhibition of expression
of the late genes in anthocyanin biosynthetic pathway. Decreased
expression of all the late anthocyanin biosynthetic genes also
suggests that pathway flux tends to be shifted away from antho-
cyanin toward PAs. Like transgenic tobacco plants overexpress-
ing MdANR genes, transgenic tobacco lines overexpressing the
MALARI gene accumulate slightly higher levels of catechin and
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TABLE 1 | HPLC analysis of flavonoid in wild-type and transgenic tobacco flowers”.

Tobacco Anthocyanin (mg/g) Proanthocyanidin (mg/g) Epicatechin (ng/g) Catechin (ng/g)
WT 3.16 £0.072 0.76 + 0.052 2.33+0.512 3.67 £0.752
TTH 0.62 & 0.05° 0.56 + 0.04P 2.47 £0.140 4.49 £ 0.65°
TT6 0.51 +0.07° 0.56 + 0.03° 2.36 + 0.232 4.33 +0.822

*All data correspond to mean values of three biological replicates. Values with different letters (a and b) within the same column are significantly different at the 0.05 level of probability.

epicatechin in flowers when compared with wild-type plants.
What is unexpected is a decrease in the PA content in flowers of
transgenic tobacco plants overexpressing the MdLARI gene. This
is somewhat consistent with the finding that introduction of the
tea LAR gene in the PAPI-expressing tobacco does not increase
the soluble PA accumulation (Pang et al., 2013).

Ectopic expression of MdANR genes in tobacco suppresses
expression of NtLAR, and increases expression of NtANRI,
NtANR2, and NtANS (Han et al., 2012). In turn, ectopic expres-
sion of MdLARI in tobacco suppresses expression of NtANRI,
NtANR2, and NtANS, and increases expression of NtLAR. Flow-
ers of transgenic tobacco lines overexpressing the MdLARI gene
accumulate higher levels of catechin than of epicatechin, whereas,
flowers of transgenic tobacco lines overexpressing the MdANR
genes accumulate higher levels of epicatechin than of catechin
(Han et al., 2012). These results indicate the transcription of
LAR, ANR, and ANS might be regulated by the feedback mecha-
nism (Tanner et al., 2003; Liu et al., 2013). In other words, high
concentrations of catechin stimulate the LAR expression, whilst
high concentrations of epicatechin stimulate the ANS and ANR
expression. This is similar to a previous report in which high
concentrations of trans-p-coumaric acid can stimulate the CHS
expression (Loake et al., 1991). In addition, there is a potential
competition between LAR and ANR enzymes as reported in our
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