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To cope with the dual nature of copper as being essential and toxic for cells, plants
temporarily adapt the expression of copper homeostasis components to assure its
delivery to cuproproteins while avoiding the interference of potential oxidative damage
derived from both copper uptake and photosynthetic reactions during light hours. The
circadian clock participates in the temporal organization of coordination of plant nutrition
adapting metabolic responses to the daily oscillations. This timely control improves
plant fitness and reproduction and holds biotechnological potential to drive increased
crop yields. Hormonal pathways, including those of abscisic acid, gibberellins, ethylene,
auxins, and jasmonates are also under direct clock and light control, both in mono
and dicotyledons. In this review, we focus on copper transport in Arabidopsis thaliana
and Oryza sativa and the presumable role of hormones in metal homeostasis matching
nutrient availability to growth requirements and preventing metal toxicity. The presence
of putative hormone-dependent regulatory elements in the promoters of copper
transporters genes suggests hormonal regulation to match special copper requirements
during plant development. Spatial and temporal processes that can be affected by
hormones include the regulation of copper uptake into roots, intracellular trafficking
and compartmentalization, and long-distance transport to developing vegetative and
reproductive tissues. In turn, hormone biosynthesis and signaling are also influenced by
copper availability, which suggests reciprocal regulation subjected to temporal control
by the central oscillator of the circadian clock. This transcriptional regulatory network,
coordinates environmental and hormonal signaling with developmental pathways to
allow enhanced micronutrient acquisition efficiency.

Keywords: Arabidopsis thaliana, Oryza sativa, copper homeostasis, copper transporters, hormone biosynthesis,
hormone signaling, circadian clock, oxidative stress

Introduction

Mineral nutrition is an important environmental constraint that influences diverse developmental
processes in plants. Both deficient and excess nutrient availability are considered abiotic stresses
that can cause deleterious effects on plant physiology and metabolism. Plants employ complex
homeostatic networks to increase uptake and cope with non-optimal nutrient supply. These
mechanisms are especially relevant for transition metal nutrients, such as copper (Cu), since
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this metal acts as a double-edged sword in living beings. Cu is
essential as a redox-active cofactor in multiple biological pro-
cesses, but is toxic in excess given its role in the production
of highly reactive oxygen species (ROS; Puig and Peñarrubia,
2009; Ravet and Pilon, 2013). Both local root responses and
systemic signaling have to be integrated in order to drive opti-
mized metal nutrient acquisition under changing environmental
conditions which, in many cases, alter the whole plant mor-
phology and metabolism (López-Bucio et al., 2003). In order to
orchestrate morphological, physiological, and molecular adap-
tive responses to soil mineral bioavailabilities, phytohormones act
as major endogenous cues. Nutrients affect multiple levels and
components in hormone biosynthesis, perception, and signal-
ing pathways. In turn, hormones influence root growth, stomatal
movements and stress tolerance, among other processes, and
have a huge impact on plant mineral nutrition. Thus, there is
a close interrelation between hormonal stimuli and nutritional
homeostasis (Rubio et al., 2009) which underlies current strate-
gies based on co-application of hormones and mineral fertilizers
to increase crop yield (Zaman et al., 2014).

Widespread inappropriate agricultural practices, such as
overusing fungicides with high Cu concentrations, release of
industrial wastewater and mining activities, have caused Cu con-
tamination in cultivated soils and irrigating waters at specific
locations (Marschner and Marschner, 2012). On the opposite
side, the boost of carbohydrate synthesis in plants, due to the
growing levels of atmospheric CO2, results in a general loss of
the mineral nutritional quality of vegetable food. Indeed recent
meta-analyses have indicated that Cu and other metal deficiencies
would be exacerbated in forthcoming years due to a rise in CO2,
with increasing obesity and “hidden hunger” problems in the
world (Loladze, 2014; Myers et al., 2014). Since plants constitute
one of the main entrances of micronutrients into trophic chains,
deciphering the regulatory mechanisms underlying dynamical
hormonal interactions with Cu uptake and distribution to edible
plant parts is relevant for optimal plant development and to avoid
plant nutritional deficiencies or excesses from being transferred
to consumers.

Environmental factors, mainly light and temperature, show
daily and seasonal variations, which impose a specific tempo-
ral order to the plant’s biological functions orchestrated by the
circadian clock. Thus, hormone biosynthesis, perception and sig-
naling pathways are under the control of the circadian clock,
which explains its pervasive effects on plant growth and devel-
opment (Robertson et al., 2009). Many abiotic stresses, such as
cold, salt, drought and heat, result from daily light/dark cycles
and the circadian clock influences responses to such stresses
(Sanchez et al., 2011). Abiotic stress signaling pathways are highly
interconnected because of common concurrent processes, where
stress-related hormones are major components (Fujita et al.,
2006). Plant nutrient requirements vary along daily cycles with
plant development stages and during stress responses (Marschner
and Marschner, 2012). The circadian regulation of ion channels
and nutrient transporters involved in the transport of carbo-
hydrates, nitrogen, sulfate, phosphate, and micronutrients is a
pervasive phenomenon. These processes have been proposed to
regulate downstream targets to further spread circadian signaling

while, in turn, these processes provide feedback to the cen-
tral oscillator (Ko et al., 2009; Haydon et al., 2011). Hormones
can also affect time-of-day-dependent changes in metal fluxes,
a phenomenon known as metal muffling. This term refers to
the non-steady state dynamics of metal ions that involves tem-
poral expression changes in homeostatic components, affecting
uptake, efflux, and intracellular compartmentalization (Colvin
et al., 2010). Due to its role in the basic metabolic processes
determining the energy status of the plant (photosynthesis and
respiration) Cu deficiency results in decreased plant growth. But
its effects on reproductive growth are even more important. In
cereals it leads to reduced pollen viability and increase in spikelet
sterility, thus developing many unfilled grains and yield losses
(Azouaou and Souvré, 1993; Dobermann and Fairhurst, 2000;
Marschner and Marschner, 2012). But as increasing Cu con-
centrations may easily result in toxic effects, understanding the
mechanisms that may optimize Cu use by the plant is a need.
The study of those involved in achieving a coherent tempo-
ral integration of nutrient homeostasis and hormone responses
will become increasingly relevant for food production. This is
particularly important under the predicted effects of climate
change on agriculture. Indeed it is around temperate agricultural
where environmental stress conditions areas could have amassive
impact on food production.

We herein collect disperse data on the interaction between
Cu homeostasis and plant hormones, mainly abscisic acid (ABA)
and ethylene which are related to abiotic stress. Besides, an
in silico search for the previously described hormone-responsive
cis-regulatory elements has been performed among the promot-
ers of the family members from the high-affinity Cu transporters,
termed COPT, in Arabidopsis thaliana and Oryza sativa. Finally,
a model of the effect of putative modulators on target expression
has been developed as a first step for deciphering the spatiotem-
poral codes for metalloprotein regulation in plants.

High-Affinity Copper Influx in Plants

Under aerobic conditions, Cu2+ is the most abundant form
of copper in soil solution and probably enters plant root cells
through divalent cation low-affinity transporters, such as some
members of the ZIP family (ZIP2 and ZIP4; Wintz et al., 2003).
However, this still has to be proven in vivo. Under metal deficien-
cies, plants acidify the external medium by using H+-ATPases
(AHA; Santi and Schmidt, 2009). When Cu is scarce, plants use
a Cu+-specific transport system based on Cu2+ reduction by
plasma membrane NADPH-dependent cupric reductases FRO4
and FRO5 (Bernal et al., 2012) and on cytosolic uptake by
high-affinity CTR-like transporters, denoted COPTs in plants
(Sancenón et al., 2003; Figure 1). COPT substrate availabil-
ity depends on both free external Cu (not bound to inorganic
and organic complexes) and the Cu+/Cu2+ ratio according
to external redox status conditions and the enzymatic activity
of cuprooxidoreductases. The energetically expensive reductive
strategy used for Cu+ uptake has been shown to be the predom-
inant and ubiquitous mechanism for Cu acquisition in dicotyle-
dons (Jouvin et al., 2012; Ryan et al., 2013). This redox strategy
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FIGURE 1 | Overview of Arabidopsis thaliana cellular Cu homeostasis.
Cu+ uptake through plasma membrane transporters COPT1/COPT2/COPT6
depends on the activity of AHA H+-ATPase and FRO cuproreductases.
COPT-mediated Cu+ transport is coupled to metallochaperones transfer and its
delivery to targets. Cuprochaperone CCS provides Cu+ to cytosolic superoxide
dismutase CSD1. ATX1 transfers Cu+ to P-type ATPase RAN1, located at the
ER, where Cu+ is probably acquired by cuproproteins, such as multicopper

oxidases (MCOs), the ethylene receptor (ETR1), and the molybdenum cofactor
(MoCo). The Cu resulting from recycling and from the secretory pathway
leftovers converges into the vacuole or into vacuolar-related organelles (VROs).
The Cu+ supply to chloroplasts and mitochondria can take place from the
lumen through the COPT5 efflux function. See the main text for details. The
direction of Cu+ traffic is indicated by arrows and Cu content is indicated by
different intensities of blue.
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in Cu+ uptake could be an adaptation possibly required for spe-
cific high-affinity monovalent cation selection or/and for meeting
specific Cu+ intracellular needs.

CTR-like Cu+ permeases function as trimers of small polypep-
tides. They have three transmembrane domains that contain the
different conserved motifs involved in Cu+ binding from the
extracytosolic compartment, translocation through the pore they
form across the membrane and modulation of Cu+ delivery to
metallochaperones for targeted distribution (Puig and Thiele,
2002; Pope et al., 2012). The aim of the present work is not
to review currently available data on Arabidopsis COPT fam-
ily members since they have been recently revised elsewhere
(Peñarrubia et al., 2010; Puig, 2014). Briefly,Arabidopsis has a six-
member family of COPTs (COPT1-COPT6). Each family member
shows a tissue-specific expression pattern and performs special-
ized functions, as denoted by the phenotypes associated with
copt mutant plants. Certain COPT proteins are regulated by Cu
deficiency and are located in the plasma membrane (COPT1,
COPT2, and COPT6), where they mediate Cu uptake from the
external medium. COPT1 is expressed mostly in the root apex
and pollen, where it participates in Cu+ uptake from soil and in
Cu redistribution to reproductive organs (Sancenón et al., 2004).
COPT2 is the most expressed member of the family, is present
in the root elongation zone and responds to both Cu and iron
(Fe) deficiencies. copt2mutants are more resistant to double defi-
ciency in Cu and Fe than wild type. The involvement of COPT2
in Fe metabolism could not result from a presumptive role in
transporting Cu for a putative Cu-containing ferroxidase, which
constitutes a common Fe–Cu connection in other organisms
(Puig, 2014). Instead, a new and uncharacterized Cu–Fe crosstalk
process has been suggested, where phosphate metabolism is also
involved (Perea-García et al., 2013). COPT6 has been localized
mainly at the vasculature of green tissues and reproductive organs
where it can facilitate Cu redistribution under Cu scarcity (Jung
et al., 2012; Garcia-Molina et al., 2013). Another COPT-type
protein (COPT5) has been localized in the membrane of the
prevacuolar/vacuolar compartment, where it is involved in the
mobilization of Cu+ from the lumen to the cytosol in response
to extreme Cu deficiency conditions (Garcia-Molina et al., 2011;
Klaumann et al., 2011). COPT4 lacks the keymethionine residues
that are essential for Cu+ transport, which questions a possible
role in Cu homeostasis. COPT3 is expressed at low levels and its
function remains unsolved.

The characterization of the COPT family in rice (O. sativa),
composed of seven members (OsCOPT1–OsCOPT7), uncovers
the co-expression requirement of at least two family members
to fully complement the yeast ctr1�ctr3� defect in high-affinity
Cu uptake, except for OsCOPT7 (Yuan et al., 2011). OsCOPT2,
OsCOPT3, or OsCOPT4 have to cooperate with OsCOPT6
to mediate an efficient Cu transport, which is consistent with
their physical interactions analyzed by the split-ubiquitin system
(Yuan et al., 2011). On the other hand, with proteins OsCOPT1
and OsCOPT5, the cooperation with a third component, the
MtN3/saliva-type protein XA13, is required to mediate the low-
affinity Cu transport both in yeast and rice (Yuan et al., 2010).
OsCOPT6 and OsCOPT7 relate more to Arabidopsis tonoplast
located COPT5. However, the regulation of the different rice

members by Cu deficiency and their tissue expression patterns
do not allow predicting their intracellular locations. Bimolecular
fluorescence complementation (BiFC) demonstrated that the
Vitis viniferaAtCOPT5 homolog VvCTr1monomers self-interact
(Martins et al., 2014). Since according to the Irving–Williams
series Cu has the highest capacity for binding to organic com-
pounds, the endogenous concentrations of other metals, such
as Fe, manganese (Mn), or zinc (Zn), may also influence Cu
homeostasis by affecting OsCOPTs expression (Yuan et al., 2011),
probably aimed at avoiding Cu competence under other met-
als scarcity. In this sense, during Zn limitation Chlamydomonas
reinhardtii sequesters Cu in lysosome-related compartments and
this strategy has been suggested to prevent Zn protein mis-
metallation by Cu when Zn is scarce (Hong-Hermesdorf et al.,
2014).

Despite the prevailing dogma of protein–protein interactions
mediating Cu+ delivery from transporters to target cupropro-
teins, under specific situations, such as adaptation to variable
metal environmental levels or during diurnal fluctuations in
transporters expression (see the Temporal aspects in hormone and
metal homeostasis section), the OH· damage derived from Cu+
traffic could affect the molecules adjacent to Cu+ transporters.
Thus, COPT-mediated Cu+ traffic has been shown to produce
rapid increases in Ca2+ influx and K+-efflux (Rodrigo-Moreno
et al., 2013). Membranes and/or directly Ca2+/K+ channels could
be OH· targets, and could rapidly respond to Cu+ entrance and
initiate subsequent signaling pathways where Ca2+, ROS and
ABA play crucial roles (Gilroy et al., 2014). As a result, plants
incorporate Cu+ under Cu deficiency by paying both a high
energy cost and the subsequent damage caused by high Cu+ reac-
tivity (Ravet and Pilon, 2013). Cu deficiency also causes increased
oxidative stress in plants through photosynthetic electron trans-
port chain (PETC) blockage at the essential cuproprotein plasto-
cyanin level (Ravet and Pilon, 2013; Yruela, 2013). Although the
specific signaling pathways of the diverse ROS produced at dif-
ferent cellular locations are starting to be identified (Gilroy et al.,
2014), a complex scenario is envisaged under Cu deficiency since
plant cells would experience the ROS signaling crosstalk deriv-
ing from both the metal scarcity at chloroplasts and that caused
by an increased COPT-mediated Cu+-entrance to the plasma
membrane.

Intracellular Copper Traffic

Under non-stressed conditions, COPT-mediated Cu+ uptake is
tightly coupled to its subsequent metabolic use. During this pro-
cess, metallochaperones play an important role in transferring
the metal between molecules, a process that kinetically competes
with Cu+ dissociation in the solvent, which results in its imme-
diate toxicity (Robinson and Winge, 2010; Figure 1). ATX1 is
the cuprochaperone that delivers Cu+ to P-type ATPases (Cu+-
ATPases), such as RAN1 located at the endoplasmic reticulum
(ER). Subsequently, RAN1 pumps Cu+ into the lumen, where it
is acquired by ER cuproproteins (Hirayama et al., 1999). Most
extracellular and endomembrane cuproproteins follow the endo-
cytic pathway to their final destinations and probably incorporate
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Cu upon transiting through the ER lumen or the trans-Golgi
network. Thus, based on the relative abundance of cupropro-
teins, endocytic compartments are expected to display higher Cu
levels than the nucleo-cytoplasmic space and, consequently, the
main Cu+ flux should follow the COPT-ATX1-RAN1 pathway.
In line with this, Cu delivery to cytosolic superoxide dismu-
tase (Cu/ZnSOD) by the CCS cuprochaperone could represent
a quantitatively minor Cu route (Robinson and Winge, 2010).
Another Cu+-ATPase is HMA5. It is located at the plasma
membrane, where it loads Cu+ into the xylem in roots and
other organs which, under Cu excess conditions, functions in
metal detoxification in both Arabidopsis and rice (Andrés-Colás
et al., 2006; Kobayashi et al., 2008; Deng et al., 2013; Figure 1).
Taken together, these facts predictably lead to Cu+ distribution
between the nucleo-cytoplasmic and endocytic compartments
by one or the other being favored, depending on the rela-
tive influx–efflux transport activity of COPT and Cu+-ATPases,
respectively.

Chloroplasts are major consumers of Cu in plants, where it
is incorporated into plastocyanin and Cu/ZnSOD, among other
proteins (Ravet and Pilon, 2013). Once inside the chloroplast
intermembrane space, the Cu+-loaded PCH1 cuprochaperone
delivers Cu+ to the internal membrane-located P-type ATPase
PAA1 (Blaby-Haas et al., 2014), which pumps Cu+ into the
stroma (Shikanai and Fujii, 2013). PCH1 evolves by an alterna-
tive splicing event of the pre-mRNA encoding PAA1 (Blaby-Haas
et al., 2014). Once inside the stroma, the CCS chaperone delivers
Cu to chloroplastic Cu/ZnSOD and also to PAA2, which is the
Cu+ P-type ATPase that delivers Cu to the thylakoids for plasto-
cyanin supply (Abdel-Ghany et al., 2005; Blaby-Haas et al., 2014).
The chloroplast caseinolytic protease (Clp) system is involved in
specific PAA2 turnover under Cu excess in the stroma (Tapken
et al., 2015). In mitochondria, Cu is required mainly for the
assembly and activity of cytochrome c oxidase (COX) of the res-
piratory chain (Garcia et al., 2014). Cu delivery and insertion into
COX is a complex process mediated by different metallochap-
erones present in the mitochondrial intermembrane space, such
as COX17 (Balandin and Castresana, 2002; Attallah et al., 2007;
Figure 1).

How Cu reaches organelles from an endosymbiotic origin,
such as mitochondria and chloroplasts, is a poorly understood
process. Since free Cu+ levels are extremely low in the cytosol
(Rae et al., 1999), at least under Cu-limiting conditions, there
must be other intracellular sources of Cu to ensure the arrival
of Cu to organelles. Thus under nutrient deprivation, a putative
Cu source could be the vacuole or vacuolar-related organelles
(VROs). In these compartments, the valued metal arising from
recycling metalloproteins and the scarce leftovers from secre-
tory/endocytic pathways would converge (Figure 1). In addition,
these compartments have been recently shown to participate
in dynamic intracellular metal homeostasis (Blaby-Haas and
Merchant, 2014; Hong-Hermesdorf et al., 2014). An increase in
interorganellar communications with the membrane contact sites
between mitochondria and the vacuole under nutrient depriva-
tion stress has been recently described in yeast, which mainly
serves for lipid and ion exchanges (Elbaz-Alon et al., 2014). If
this were also the case in plants, organelles would be at “the

end of the line” of the secretory pathway to acquire Cu which,
under Cu deficiency, could lead to a competitive balance between
previous Cu incorporation by in transit cuproproteins on the
secretory pathway and the Cu leftovers available for the Cu supply
of organelles.

Regulation of Gene Expression under
Copper Deficiency

Cu deficiency in plants induces the reprogramming of a num-
ber of metabolic processes, which represent an adaptive mech-
anism that has developed to survive under adverse conditions.
The transcriptional response to Cu deficiency in Arabidopsis is
mediated by a Zn finger transcription factor family member
named SQUAMOSA-PROMOTERBINDING-LIKE PROTEIN 7
(SPL7). SPL7 is essential for the response to Cu deficiency in vivo
through its binding to GTAC motifs in the promoters of target
genes (Yamasaki et al., 2009; Bernal et al., 2012). The repres-
sion mechanism in the presence of Cu could be mediated by
the displacement of Zn2+ by Cu2+ from the Zn fingers of the
SPL7 transcription factor (Sommer et al., 2010). SPL7 has been
recently shown to interact with KIN17, a conserved curved DNA-
binding domain protein that promotes Cu-deficiency responses
and alleviates oxidative stress responses, perhaps by preserving
cell integrity and plant growth under Cu scarcity (Garcia-Molina
et al., 2014a). SPL7 displays an operative transmembrane domain
that has been shown to insert the protein into endomembranes,
most probably at the ER. ER stress, as a result of Cu defi-
ciency, also activates the SPL7 function by changing its location
to the nucleus through its functional bipartite nuclear localiza-
tion sequence (NLS) overlapping zinc-finger2 (ZF2) within the
SPL7 SBP-domain. SPL7 dimerization adds another regulatory
feedback mechanism to the ER-stress and SPL7-mediated Cu
homeostasis response since it could affect its nuclear localiza-
tion (Garcia-Molina et al., 2014b). These processes render SPL7
a crucial Cu sensor molecule in two topological spaces where Cu
is initially distributed (the nucleo-cytoplasmic and the lumen of
secretory pathway compartments). Thus, SPL7 could be able to
perceive both ER stress, mediated by Cu deficiency through its
C-terminal part, and Cu status in the nucleo-cytoplasmic space,
through its SBP domain, maybe driving a converging and reg-
ulated response under Cu scarcity. This response could be even
more complex if other components of the 16 SPL family mem-
bers participate in the heterodimerization regulatory mechanism
with SPL7 (Garcia-Molina et al., 2014b).

It is worth mentioning that the SPL7-mediated miRNA
expression serves Cu redistribution in order to establish a priority
ranking for Cu delivery to essential cuproproteins by avoid-
ing Cu incorporation in non-essential proteins. Hence, one of
the SPL7-mediated strategies used when Cu is limiting consists
in replacing non-essential cuproproteins by other metallopro-
teins, usually Fe proteins, which play a similar role, probably
in order to save Cu for essential cuproproteins, such as plasto-
cyanin. With superoxide dismutases (SODs), substituting the Cu
form (Cu/ZnSOD) with the Fe counterpart (FeSOD) is done by
SPL7 under Cu-limited conditions by expressing FeSOD mRNA
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(FSD1) and miR398, since miR398 targets Cu/ZnSOD mRNAs
(CSD1 and CSD2) for degradation (Abdel-Ghany et al., 2005;
Ravet and Pilon, 2013). Apart from metalloprotein substitution,
another strategy for establishing priority ranking in Cu deliv-
ery under deficiency is the miRNA-mediated elimination of the
first located cuproproteins on the pathway of Cu incorporation.
In this case, other denoted Cu-miRNAs, such as miR408, tar-
get laccases (LAC3, LAC12, and LAC13; Yamasaki et al., 2007;
Abdel-Ghany and Pilon, 2008). These cuproproteins predictably
acquire Cu in the secretory pathway when transiting to their final
destinations. Strikingly, miR408 accumulation and the subse-
quent down-regulation of the miR408 target genes in transgenic
plants rescue developmental defects of the spl7mutant. This indi-
cates that diminished Cu delivery to the endomembrane system
to en route laccases redounds in increased Cu acquisition by
plastocyanin at chloroplasts (Zhang and Li, 2013; Zhang et al.,
2014). These results further reinforce the suggested hypothesis for
chloroplasts’ Cu supply dependency on secretory pathway left-
overs under Cu deficiency conditions. Accordingly, the miR408
strategy could consist in shortening “the Cu metallation line” by
eliminating cuproproteins, located at the beginning of the spa-
tiotemporal Cu delivery pathway, in order to allow further Cu
delivery to other cuproproteins. Thus in this way, the scarce
Cu atoms would arrive at the essential cuproproteins in the
organelles situated later in the intracellular Cu delivery path-
way. Besides acting at the intracellular level,miRNA-mediatedCu
redistribution also affects the extracellular Cu content through
changes in laccase expression and it could even act at the sys-
temic level as a phloem-mobile long-distance signals in response
to nutrient deprivation (Buhtz et al., 2010).

Role of Copper Homeostasis in
Hormone Biosynthesis and Perception

The role of Cu in hormone biosynthesis and perception has
long since been known, mainly for its structural role in ethylene
receptors (Rodríguez et al., 1999), and for molybdenum cofac-
tor (MoCo) formation (Kuper et al., 2004) which is required
for the biosynthesis of ABA and auxin indol-3-acetic (IAA) via
indol-3-aldehyde, and because it is involved in the degradation
of polyamines (PAs). More recent evidence has shown that Cu
homeostasis also plays a prominent role on the salicylic acid (SA)
signaling pathway (Wu et al., 2012; Yan and Dong, 2014) and is
involved in ABA signal transduction as well as in the induction
of nitric oxide (NO;Wimalasekera et al., 2011), an important and
almost universal signaling molecule in plants.

As for other hormone-biosynthetic genes, data on the effect
of Cu on ethylene production are accumulating. Thus, Cu excess
has been reported to induce ethylene biosynthesis in broccoli
seedlings (Jakubowicz et al., 2010) and in different organs of
Arabidopsis plants (Arteca and Arteca, 2007), though this effect
was not observed in the oldest leaves (Arteca and Arteca, 2007)
or in seedlings (Lequeux et al., 2010). The Cu-inducible expres-
sion of ACC synthase (ACS) genes has been described in sev-
eral species, such as potatoes, garden geraniums, and different
tobacco cultivars (Schlagnhaufer et al., 1997). A range of Cu

concentrations have also produced high ethylene levels, accom-
panied by toxicity symptoms in leaves and adventitious root
formation in white poplars (Franchin et al., 2007). Therefore,
in spite of some contrasting results, which may depend on the
species or the organ studied, as well as on other factor such as the
dosage and timing of the metal applied, it can be concluded that
ethylene evolution is observed generally in response to Cu and
other metals within a wide range of plant species (Maksymiec,
2007).

Five types of enzymes containing molybdenum (Mo) have
been identified in plants to date. Among the plant enzymes con-
taining MoCo, aldehyde oxidases merit special mention because
several isoenzymes present a wide range of specificity for different
aldehydes, and are also involved in the metabolism and signal-
ing of different plant regulators. Thus Arabidopsis ALDEHYDE
OXIDASE3 (AAO3) catalyzes the last step of ABA biosynthesis
in conjunction with MoCo sulfurase (ABA3) and ALDEHYDE
OXIDASE1 (AAO1) is involved in the biosynthetic pathway of
auxins (Schwarz and Mendel, 2006). In these proteins, metal
is bonded to pterins to form MoCo, whose biosynthesis has
been widely studied and is closely related to the homeostasis
of other metallic elements, such as Cu (Tejada-Jiménez et al.,
2013). Although the role of Cu has not been fully elucidated, it
is required for the activity of Cnx1G, an enzyme that catalyzes
the insertion of Mo into molybdopterin. To date, this step of
exchanging Cu and Mo appears to depend on unidentified cyto-
plasmic chaperones (Mendel and Kruse, 2012). In agreementwith
the Cu requirement for MoCo biosynthesis, increased Mo uptake
has been observed under Cu deficiency in Brassica napus (Billard
et al., 2014), although Cu treatment has been reported to inhibit
in vitro MoCo biosynthesis (Kuper et al., 2004). This adds a sec-
ond aspect to the interrelationship of Mo and Cu metabolisms,
with Cu acting both positively and negatively during this process.
In contrast, Cu-containing amine oxidases (CuAO) catalyze the
oxidative de-amination of PA, such as putrescine and cadaverine,
hence, degrading these plant regulators and affecting a number
of the physiological processes they are involved in Cona et al.
(2006).

In relation to the role of Cu in hormone perception and
signaling, different components on both the ethylene biosyn-
thesis and signal transduction pathways have been identified,
some of which are differentially regulated depending on metal
homeostasis, mainly Fe and Cu (Iqbal et al., 2013). The fam-
ily of ethylene receptors (one of its members is ETR1) are
cuproproteins where the Cu cofactor is necessary for hor-
mone perception (Rodríguez et al., 1999). Further evidence for
the importance of this metal on the ethylene-signaling path-
way emerged with the discovery that EIN2, a central signal
transducer on the ethylene-signaling pathway, has a signifi-
cant homology to NRAMP divalent cation transporters (Alonso
et al., 1999). It has been shown that both ETR1 and EIN2 are
also involved in some ABA responses, and serve as integration
nodes between both hormones signaling pathways (Wilkinson
and Davies, 2010). In this context, it is also interesting to note
that CuAO1 contributes to ABA- and PA-induced NO biosynthe-
sis, and also influences ABA signal transduction (Wimalasekera
et al., 2011).
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In turn, SA is involved mainly in the systemic-acquired
response (SAR), which is considered a plant immune response
to pathogens. Transcriptional coregulator NONEXPRESSOR
OF PATHOGENESIS-RELATED GENES1 (NPR1) activates the
expression of SA-dependent defense genes, and Cu ions have
been reported to be involved in its binding to SA in plants (Wu
et al., 2012). NPR1 is a redox-regulated signaling protein and SA
activates thioredoxin, which leads to NPR1 reduction, thus con-
verting it into active monomers that are translocated from the
cytosol to the nucleus by activating the defense gene expression
(Tada et al., 2008). NPR1 and its homologs NPR3 and NPR4 are
SA receptors (Pajerowska-Mukhtar et al., 2013). NPR1 functions
in the crosstalk between SA and jasmonic acid (JA) signaling and
is modulated by ethylene (Leon-Reyes et al., 2009), which indi-
cates that NPR1 is a key player in integrating redox, metal and
hormonal signaling (see the Putative modulators of the hormonal
and copper homeostasis crosstalk section).

As previously indicated, although Cu is required for hormone
biosynthesis and perception, an excess of this metal is not always
associated with an increased accumulation or a higher sensitiv-
ity to the hormone but with toxicity symptoms. Indeed, under
Cu excess, complex signal transduction networks produced by
different hormonal interactions are involved in the morpholog-
ical responses induced by Cu and other heavy metals. Auxins,
ethylene, and ROS have been identified as major components
of these morphological alterations (Potters et al., 2009) and in
Arabidopsis, NO has been also shown to participate in the Cu
excess-induced responses (Xiong et al., 2010; Peto et al., 2011).
However, some results contradict one another probably due to
differences in the concentration of the heavy metal applied, the
treatment conditions, the age of the plant and the variety of tis-
sues examined. In this sense, our current understanding of the
molecular mechanisms involved in heavy metal toxicity and their
interactions with phytohormones is quite limited and requires
further studies.

Effects of Phytohormones on the
Copper High Affinity COPT
Transporters

Little is known about how hormones influence Cu homeosta-
sis to adapt nutrient availability to the growth requirements
while avoiding its toxic effects. Due to the scarce literature at
this respect, as an approach to address hormone influence on
Cu homeostasis we have undertaken an in silico search of the
putative hormone-responsive elements in the promoters of the
high-affinity COPT transporters in both A. thaliana andO. sativa
(Table 1). The most abundant hormone-responsive elements
present in the promoters from COPT family members were
those involved in ABA and gibberellin (GA) signaling. While in
Arabidopsis the highest number corresponded to GA-related ele-
ments, the opposite occurred in Oryza, in which the number of
ABA-related elements was highest. Ethylene and auxin presented
a lower number of cis-elements, similar in both species. JA-related
elements were the less abundant in both Arabidopsis and Oryza,
although this number was larger in rice (Table 1).

The cis-acting elements and trans-acting factors involved in
ABA-induced gene expression have been extensively analyzed
and the main ABA responsive cis-elements are ABRE (ABA-
responsive element), MYB/MYC and DPBF (Dc3-Promoter
Binding Factor; Nakashima et al., 2014). The ABRE motifs have
been identified in the promoter region of ABA-inducible genes
and several basic leucine zipper (bZIP) proteins have been shown
to bind these motifs (Fujita et al., 2011). The presence of ABRE
motifs in the Arabidopsis COPTs promoters of the members
located at the plasma membrane (Table 1) could be related to
an early response to dehydration in vegetative parts with dark-
induced senescence, as suggested by Simpson et al. (2003). The
presence of drought- and ABA-related MYB and MYC motifs,
mostly in the COPTs promoter members of the Arabidopsis
plasma membrane-located transporters (Table 1), also suggests
that these transporters could be regulated under developmen-
tal or stressful conditions by increasing ABA content. DPBF
and DREB (dehydration responsive element binding) motifs,
which have been described to play an important role in the ABA
response in seeds and during early seedling establishment stages
(Lopez-Molina and Chua, 2000), though scarce, are present in
most Arabidopsis COPTsmembers (Table 1).

In the dehydration response context, it is worth noting that
ABA plays an important role in the regulation of the stom-
atal behavior and gas exchange of dehydrated plants and, hence,
in long-distance transport of nutrients. The effects of ABA on
H+-ATPases in guard cells are well-known during stomata clo-
sure, and may involve Ca2+, light and ROS signaling (Brault
et al., 2004; Zhang et al., 2004a). Ca2+ is located both up- and
downstream of ABA signaling in guard cells, and Cu induces
a peak in Ca2+ uptake and an increase in ROS (Rodrigo-
Moreno et al., 2013). The convergence of both signaling pathways
suggests that the ABA-mediated drought response and long-
distance transport of nutrients might influence Cu homeostasis
to some extent. Romero et al. (2012) reported that an ABA-
deficient orange mutant, which is prone to fruit dehydration,
was unable to induce early molecular responses to moderate
water stress observed in wild-type fruit. Among the transcrip-
tomic responses described, Citrus COPT1, COPT2, and COPT5
transporters were induced in parental, but not in the ABA-
deficient fruit. Other di- and trivalent inorganic cation trans-
porters were also induced only in parental fruit under those
conditions, such as the Citrus Fe transporters IRT1, NRAMP1,
NRAMP3, and FERRITIN. These results support the idea of
an ABA/drought-mediated regulation of the genes involved in
these metals homeostasis. Further research would be necessary to
unravel whether the response to stresses increasing endogenous
ABA levels in Arabidopsis plants also involves the regulation of
these metal transporters. Within this context, studies including
ABA-deficient plants, such as the aba2 mutant, would be even
more explanatory. Nevertheless, the presence of ABA-related ele-
ments in the promoter sequences of COPTs in both Arabidopsis
andOryza (Table 1) points to a common regulation of these genes
among different species.

Gibberellin is an essential phytohormone that controls many
aspects of plant development and its antagonist role with ABA
is well-known (Weiss and Ori, 2007). The WRKY family is one
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of the largest transcription factor families involved in GA and
ABA responses, and in defense against pathogens and senes-
cence in Arabidopsis (Eulgem et al., 2000). Accordingly, many
putative cis-elements are present in COPTs promoters in both
Arabidopsis and Oryza (Table 1). Most published WRKY pro-
teins bind to the cognate cis-acting element containing theW-box
in the promoter (Xie et al., 2005). For instance, OsWRKY71 is
highly expressed in rice aleurone cells, where it represses the
GA-induced Amy32bα-amylase promoter (Zhang et al., 2004b).
The GA response GARE cis-element and the pyrimidine box
(included in “Others”; Table 1) are partially involved in sugar
repression in rice embryos (Morita et al., 1998). These GARE
elements are required in Arabidopsis to modulate endogenous
GA concentrations during seed germination (Ogawa et al.,
2003).

ETHYLENE INSENSITIVE3 (EIN3) is a transcription fac-
tor that binds to the promoters of the target genes denoted
ETHYLENE RESPONSIVE FACTORS (ERFs). ERFs might also
play a role in ABA signaling, and they encode transcription
factors that bind to the promoters containing a GCC motif
by either activating or repressing target genes (Nakano et al.,
2006). Ethylene WBOX ERF3 is the prevalent cis-element in
COPTs promoters (Table 1). ERFs are often involved in the
transcription of the defense genes that encode antifungal pro-
teins, including chitinases and glucanases, in response to ethylene
and fungal elicitors (Nishiuchi et al., 2004). Since differential
Cu sensitivity between plants and fungal pathogens is often
used for Cu-based fungicide treatments, the characterization of
the interaction between ethylene signaling and Cu homeostasis
could be relevant for optimizing fungal infected crops defense
responses.

Among other environmental stimuli, root growth and devel-
opment is highly dependent on nutrient availability. Changes in
the root architecture have been reported at different nutrient lev-
els, mainly phosphate, sulfate and nitrate, with specific effects on
primary and lateral roots that are dependent on each nutrient
(López-Bucio et al., 2003; Tian et al., 2014). However, responses
to micronutrient levels, such as Cu, have also been observed
(Kazan, 2013). Available data indicate that auxins seem to be the
main hormonal mediators of root responses at soil nutrient lev-
els. According to Lequeux et al. (2010), Cu excess remodelates
root auxin distribution, and thus affects the mitotic activity of
the meristem. Yuan et al. (2013) reported that this Cu-induced
auxin redistribution involves the efflux carrier PIN1, which is
responsible for root acropetal auxin transport. Spatio-temporal
asymmetric auxin distribution has been indicated as a means
of coordinating plant development (Tanaka et al., 2006). Auxin
cis-elements have a similar distribution in both Arabidopsis and
Oryza. SURE and ASF1 are the prevalent elements (Table 1) and
are related to sulfur transport in the root epidermis and cortex
cells (Maruyama-Nakashita et al., 2005). The SAUR motif is fre-
quent inOryza, but not in Arabidopsis (Table 1). This cis-element
may play a significant role in secondary growth, especially sec-
ondary phloem and bark formation (Oh et al., 2003).

Cu is an essential nutrient for reproductive development,
mainly due to diminished pollen viability under Cu scarcity,
considered a typical symptom of Cu deficiency (Marschner

and Marschner, 2012), although other effects, such as anther
dehiscence and filament elongation, contribute to male fertil-
ity decrease. Accordingly, COPTs have been shown to be highly
expressed in pollen and the anther filament (Sancenón et al., 2004;
Garcia-Molina et al., 2011; Jung et al., 2012; Gayomba et al., 2013;
Perea-García et al., 2013), and lack of COPT1 produces pollen
defects (Sancenón et al., 2004). JA appears to be a critical signal
for anther dehiscence, but other hormones, such as auxins and
gibberellins, are also involved (Wilson et al., 2011). The JA recep-
tor degrades a jasmonate-ZIM domain protein repressor (JAZ)
of the JA responsive genes (Wasternack and Hause, 2013). This
repressor binds to specific MYC and MYB transcription factors
(Wager and Browse, 2012). Thus MYB21 and MYB24 function
as direct targets of JAZs to regulate male fertility in A. thaliana
(Song et al., 2011). Despite JA motifs being scarce in COPTs pro-
moters, a GCC core element is present in four genes of the Oryza
transporters, although not in Arabidopsis. This element, origi-
nally described in a gene encoding a plant defensin, is commonly
used as amarker for the characterization of JA-dependent defense
responses (Brown et al., 2003). JA, together with SA and ethy-
lene, constitutes the main defense line against biotic stresses in
plants. JA has been shown to act as a potent inducer of the expres-
sion of CuAO, induced by wounding and antagonizing with
SA and ABA. Their action is mediated by oxidative stress since
the wounding induction of CuAO leads to H2O2 production
(Rea et al., 2002). Interestingly, the Cu-sensitive rice pathogen
Xanthomonas oryzae pv oryzae (Xoo) strain exploits O. sativa
Cu+- transport mechanisms through COPT1 and COPT5 to
remove Cu from xylem vessels, where Xoomultiplies and spreads
to cause disease (Yuan et al., 2010). So the different Cu sensitivity
exhibited by distinct organisms suggests that modification of Cu
homeostasis can be used by plants to fight pathogens.

Temporal Aspects in Hormone and
Metal Homeostasis

Plant growth and development are regulated by the clock,
hormonal changes and nutrient signals, suggesting a complex
reciprocal relationship between the clock and metabolic signal-
ing processes (Bolouri Moghaddam and Van den Ende, 2013).
Understanding temporary regulation is essential to highlight the
dynamic aspects in the homeostasis of transition metals and their
integration with other processes. The central oscillator temporar-
ily orders biological processes to adapt them to daily environ-
mental cycles of light and temperature through a wide variety
of regulatory mechanisms (Seo and Mas, 2014). Ninety percent
of Arabidopsis genes exhibit diurnal or circadian regulation, and
at least 30% of the transcriptome is regulated by the circadian
clock (Michael et al., 2008). Most hormones fluctuate during
light/dark cycles, which leads to a significant enrichment of
circadian-regulated hormone-responsive genes (Nováková et al.,
2005). Microarray analyses indicate that the transcripts involved
in hormonal metabolism, perception and signaling are regulated
by the circadian clock, which gates hormonal signals to better
adapt daily physiological changes (Robertson et al., 2009). In
turn, different phytohormones influence distinct plant circadian
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clock parameters, a fact that evidences a reciprocal interaction
between hormone signaling and the clock. Whereas brassinos-
teroid shortens clock periodicity, ABA prolongs the circadian
period in a light-dependent manner. Cytokinins delay the cir-
cadian phase and auxins regulate circadian amplitude and clock
precision. Accordingly, hormone mutants exhibited predictable
clock phenotypes (Hanano et al., 2006).

Ethylene biosynthesis is clock-regulated and peaks at the sub-
jective day, which correlates with increased ACC SYNTHASE
8 (ACS8) transcript levels, subjected to circadian clock con-
trol. However, ethylene mutants do not alter circadian rhythms
(Thain et al., 2004). Certain ACS and ACC OXIDASE (ACO)
genes, which participate in ethylene biosynthesis, are circadianly
regulated with a similar phase to ethylene emissions. Ethylene
signaling components, such as EIN3, also display a similar oscil-
latory pattern of expression in response to light and sugar
availability (Yanagisawa et al., 2003; Lee et al., 2006). XAP5
CIRCADIAN TIMEKEEPER (XCT) is also involved in blue light-
dependent ethylene responses inArabidopsis shoots (Ellison et al.,
2011).

The expression of ABA- and JA-responsive genes also oscil-
lates diurnally (Mizuno and Yamashino, 2008). The genes impli-
cated in the synthesis of geranylgeranyl diphosphate (GGDP),
an intermediate metabolite in isoprenoids synthesis, which leads
to the production of chlorophylls, carotenoids, tocopherols,
ABA and GA, are clock-regulated. Five of these genes peak
in the subjective morning, as do ABA metabolic genes NINE-
CIS-EPOXYCAROTENOID DIOXYGENASE3 (NCED3) and ABA
DEFICIENT2 (ABA2). ABA levels fluctuate with diurnal rhythms
in different species, and a significant overlap has been reported
between the genes induced by either ABA or JA and the genes
that oscillate with light/dark cycles. More than 40% of ABA-
induced genes are circadianly regulated, and most peak in the
subjective morning, in accordance with ABA levels (Covington
et al., 2008). A number of ABA signaling genes also fluctuate
during the day cycle. Thus several ABA receptors, some PP2CA-
type constitutive repressors, the positive effectors of the ABA
signaling pathway, such as SnRK2s and some members of the
canonical ABF transcription factors, display diurnal cycles (Seung
et al., 2012). It is noteworthy that unlike the above-described ABA
biosynthetic genes, those involved in ABA signaling rarely peak
at the same time, not even those that belong to the same pro-
tein family, and they display overlapping functions (Seung et al.,
2012). The circadian clock regulates the diurnal expression of
ABA-related gene ABAR/CHLH/GUN5 through TOC1 directly
binding to its promoter (Legnaioli et al., 2009). TOC1 is a key
repressor of gene expression (Huang et al., 2012). Conversely,
ABA treatment induces TOC1 at midday, the subsequent down-
regulation of clock gene expression and the lengthening of the
free running clock period reveal a feedback loop that recipro-
cally links ABAR and TOC1 expressions (Legnaioli et al., 2009;
Pokhilko et al., 2013). ABI3 also physically interacts with TOC1
(Kurup et al., 2000; Dekkers et al., 2008). Taken together, these
results suggest that the ABA response is gated by the circa-
dian clock for the fine tuning of environmental fluctuations in
water availability, which occur mainly at midday (Seung et al.,
2012).

The temporal aspects of Cu homeostasis are starting to be
elucidated (Andrés-Colás et al., 2010; Peñarrubia et al., 2010;
Perea-García et al., 2010). The requirements of metals vary dur-
ing the diurnal cycles of light and darkness since photosynthesis
is the process with the greatest metals requirements. To reconcile
the dynamic changes between supply and demand, there are com-
plex homeostasis networks whose aim is to maintain adequate
metal levels in different tissues and developmental stages (Puig
et al., 2007; Palmer and Guerinot, 2009; Puig and Peñarrubia,
2009). The fact that plasmamembraneCOPTs are regulated by Cu
status through SPL7 has led to hypothesize that an intracellular
oscillation of Cu is feasible since, under Cu-deficient conditions,
induced plasmamembrane COPTmembers are involved inmetal
uptake until sufficient Cu levels are reached and their expressions
are inhibited. This self-regulatory feedback loop of Cu on its own
transporters expression can cause oscillation in COPT expression
driving to a cycling Cu concentration (Peñarrubia et al., 2010).
Accordingly, Arabidopsis COPT1 and COPT2 transcripts are cir-
cadianly regulated (Haydon et al., 2011). If, as recently suggested,
SPL7-mediated Cu deficiency stress responses can be perceived
in the ER lumen (Garcia-Molina et al., 2014b), oscillations in Cu
levels can take place in this compartment and perhaps at other
subcellular locations, which depend on the endomembrane sys-
tem for Cu supply. In this sense, cycling Cu uptake fluxes might
drive the complex Cu muffling processes that take place in the
entire cell.

Experimental data reinforce the interconnection between Cu
homeostasis and the circadian rhythms in organisms other than
plants (Perea-García et al., 2010). Recently, Yamada and Prosser
(2014) reported the effects of Cu availability on the circadian
clock of suprachiasmatic nuclei (SCN) in humans, where it
appears to modulate the phase through glutamate signaling. In
several animal systems, hormones, such as pineal-secreted mela-
tonin, are connected with the circadian clock (Gamble et al.,
2014). Melatonin has metal-chelating properties, which may con-
tribute to reduce metal-induced toxicity (Romero et al., 2014).
The wide distribution of melatonin in biological systems, includ-
ing plants (Arnao and Hernández-Ruiz, 2014), delineates a puta-
tive hormonal, metal and clock interconnection that deserves
further characterization. On the other hand, although the phys-
iological and molecular mechanisms are obviously different in
each group of organisms, the interconnections of the circadian
clock with metals and hormones seem to be conserved. Plants
are excellent models to study the effects of metal homeostasis on
the circadian rhythms due to the widely presence of clocks in the
different cells and tissues of vegetal organisms and the variety of
well-established circadianly regulated processes.

Like hormones, different metals distinctly affect circadian
clock parameters. The oscillation amplitude of the gene expres-
sion of two of the main components of the central oscilla-
tor, CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE
ELONGATED HYPOCOTYL (LHY), increases under Cu defi-
ciency, but their period remains mostly unaffected (Andrés-Colás
et al., 2010). Magnesium (Mg) shortage also affects CCA1 and
LHY1 expression, which increases at the end of the light period
(Hermans et al., 2010). In contrast, Fe deficiency provokes period
lengthening and Fe transport forms an interconnected loop with
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the central oscillator (Chen et al., 2013; Hong et al., 2013; Salomé
et al., 2013; Tissot et al., 2014). It has been suggested that phy-
tochromes and the functional state of chloroplasts would par-
ticipate in a new retrograde Fe sensor-dependent route, which
constitutes a central oscillator loop (Salomé et al., 2013).

Due to the pervasive oscillating nature in the expression of ion
channels and nutrient transporters, the circadian signal spreads
and, in turn, the nutritional status affects the circadian clock
(Ko et al., 2009; Haydon et al., 2011). This mutual interaction
between nutrient homeostasis and circadian clock components
integrates temporary information and rhythmically coordinates,
and also optimizes metabolism and physiology (Sanchez et al.,
2011; Haydon et al., 2013). Therefore, understanding the mech-
anisms that continuously adjust the circadian clock is essential
for improving plant fitness (Hotta et al., 2007). If the mutual
influence between metal homeostasis and circadian rhythms is
a widespread fact among higher eukaryotes, a wide range of
new experimental approaches in plants is foreseen to address
important biological questions, where plant research could facil-
itate the analysis of the temporal dimension contribution to
metal-dependent cell processes.

Putative Modulators of the Hormonal
and Copper Homeostasis Crosstalk

In this section we seek the putative spatiotemporal regulators that
are the best candidates for the integration of signaling from cir-
cadian and/or light cycles, ROS, hormones and Cu homeostasis.
These regulators, either activators or repressors, can respectively
enhance or attenuate the gene expression of multiple target genes
at different levels. Here we emphasize mainly the transcriptional
and post-transcriptional regulation that contributes to temporar-
ily adapt their functions (Figure 2).

In previous sections, some putative modulators, such as NPR1
or melatonin, and their integrative functions in light, metal, hor-
monal and redox processes have been described. Other relevant
candidates for these integrative functions are considered herein.
Among them we find zinc finger (ZF) proteins, both classical
transcriptional regulators, including Cu deficiency master regula-
tor SPL7 and non-classical ZF, that act at the post-transcriptional
level (Lee and Michel, 2014). In these metallo-regulatory pro-
teins, metals ions can serve as “switches” during their nucleic
acid recognition process. In fact, ZF proteins are potential targets
for toxic metals, which may affect their structure and function
(Hartwig, 2001). By way of example, it has been suggested that
excess Cu2+ disrupts the glycine-rich proteins containing the
RNA recognition motifs that are essential for post-transcriptional
regulation and may impair the development of plants or animals
(Qin et al., 2014). Although ZF proteins are usually identified
also by the presence of similar sequence elements, most pro-
vide no in vivo evidence for the native metals ions that they
bind and about the physiological consequences of metal substi-
tution. In certain ZF proteins, transition metal coordination has
been reported to be associated with rapid oxidation through rad-
ical formation by Fenton chemistry (Lee and Michel, 2014). This
fact, in addition to the inability of metal binding by oxidized

Cys residues, makes these proteins putative candidates for inte-
grating metal and oxidative stress responses. ROS produced by
metal deficiencies or during metal trafficking could act as potent
intermediates in the crosstalk between metal homeostasis and
the circadian clock. Indeed photosynthetic organisms cyclically
suffer from the oxidative stress derived from light utilization in
chloroplasts, and ROS cycling is integrated into the circadian
clock. In fact peroxiredoxin oxidation–reduction cycles consti-
tute a universal marker for circadian rhythms in all domains
of life, including Arabidopsis (Edgar et al., 2012), and the genes
involved in the synthesis of those compounds that prevent ROS
production are clock-regulated and peak near subjective dawn
(Lai et al., 2012). Consequently, it is predictable that, whenever
possible, other oxidative processes could be temporarily sepa-
rated from the intense light period in order to avoid both the
saturation of antioxidative plant system capacity and interference
with other ROS signaling pathways.

Recent research is uncovering the key integrators between
light and hormone pathways, which may be also influenced by
metal status. Among the factors that link the light signaling to
GA and ABA antagonistic signaling we find PHYTOCHROME
INTERACTING FACTOR3-LIKE5 (PIL5), a basic helix-loop-
helix protein. The interaction of PIL5with phytochromes induces
its degradation through the 26S proteasome and promotes seed
germination (Oh et al., 2006). PIL5 up-regulates GA and down-
regulates ABA levels by modulating the expression of their
metabolic genes (Seo et al., 2009). This regulation is mediated by
non-classical ZF protein TZP (Tandem Zinc Protein) SOMNUS
(Kim et al., 2008) which could be affected by Cu levels providing a
putative link between metal homeostasis and hormone signaling.
Another TZP protein, termed Cth2, is considered a master reg-
ulator of the stability of many target mRNAs to mediate global
metabolic remodeling in Saccharomyces cerevisiae when Fe is
scarce (Sanvisens et al., 2011). Cth2 is conserved in yeast, human
and plants, which points to TZP proteins as putative mediators
between hormones and metal homeostasis.

bHLH transcription factor ELONGATED HYPOCOTYL 5
(HY5) has been shown to integrate the light, clock and hormones,
mainly auxin and cytokinin, signaling pathways by promoting the
expression of negative regulators and by controlling the protein
stability of HY5, respectively (Cluis et al., 2004; Vandenbussche
et al., 2007). HY5 physically interacts with core clock compo-
nent CCA1 (Andronis et al., 2008). In fact HY5 binds to ∼40%
of the coding loci in the Arabidopsis genome, including miR408,
a Cu-deficiency target involved in the post-transcriptional degra-
dation of its target multicopper oxidases Laccase-type (LAC12
and LAC13; Lee et al., 2007; Zhang et al., 2011). It is notewor-
thy that SPL7 and HY5 have been shown to physically inter-
act and co-regulate the expression of a large cohort of genes,
including miR408, which integrate both transcriptional and post-
transcriptional regulations in response to light and Cu status
(Zhang et al., 2014). In addition, the sulfate assimilation regu-
latory circuit and glutathione accumulation are transcriptionally
regulated by light and cross-interact with ABA (Cao et al., 2014).
A possible interplay of HY5 with another transcription factor has
been shown to participate in the regulation of sulfate assimilation
by light (Koprivova et al., 2014). Interactions between light and
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FIGURE 2 | Signaling crosstalk among circadian clock, hormones and
metal homeostasis. (A) Under optimal conditions (left), light signaling
influences the nutritional responses in roots and signals from adequate nutrient
supply are coordinated with light signaling to drive maximal coherence between
roots and shoots development. Under nutrient deficiency (right), a coherence
perturbation is produced. (B) The circadian clock is a key integrator of
environmental processes, such as light cycles and nutrient availability, and of
endogenous cycles, such as ROS oscillation and hormone metabolism. The aim
of the circadian clock-mediated regulation of spatio-temporal modulators is to
optimize plant growth under both optimal cycles and altered conditions.
(C) Model for the effect of activators and repressors on target gene expression.
The time course of mRNA accumulation from modulators’ (blue lines) target

genes (red lines) under circadian control is shown throughout four daily cycles
(12 h light in white and 12 h dark in gray). The circadian oscillating levels of the
activator (left) and repressor (right), running in phase (upper panel) or in
antiphase (lower panel) with their targets, are shown for two cycles. The dotted
lines indicate lack of modulator activity. The effects on the target expression of
an input (indicated by an arrow) that activates the modulator is shown during the
next two cycles. The changes underwent by the mRNA levels of the target
genes are modeled by the differential equation shown in the main text. The
numerical integration of Eq. 1 (with auxiliary Eq. 2) was performed by the
COPASI program (Hoops et al., 2006) with σ = 0 (q = 0) for time 0–2 (i.e., the
first two cycles) and with σ = 0.125 (q = 1.5) from time 2 onward. The values for
other constants were A = 12, α = 5.

hormone signaling pathways have long been observed, being HY5
one of the main integrators (Lau and Deng, 2010). HY5 binds
the G-box (CACGTG) and G-box-related cis-elements as well as

other factors, some of them related with ABA signaling (Wind
et al., 2013). A competence in binding to G-box-related elements
could drive a crosstalk between light and hormonal signaling.
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In this sense, HY5 interaction with the Cu deficiency master
regulator SPL7 would participate in this competence, where the
arrangement of Cu-deficiency and G-box-like cis-elements in the
promoters of target genes could play an important role. Taken
together, these results indicate that HY5 is a central, tempo-
ral integrator that adapts plant development to cycling nutrient
homeostasis, hormone signaling and light/dark cycles, and that
it is also a spatio-temporal modulator of multiple targets for
oscillatory adaptation to changing environmental cues.

MicroRNAs are also key candidates for dynamic and
long-distance abiotic stress signaling and ABA induce the accu-
mulation of a number of small RNAs, including miR168. Its
exclusive target is ARGONAUTE1 (AGO1), a key component
of the RNA-inducing silencing complex. AGO1 alterations have
been involved in ABA sensitivity, although the exact mecha-
nism remains unclear (Earley et al., 2010). Nonetheless, much is
known about how AGO1 is regulated by the miR168-mediated
feedback loop during ABA responses. ABRE-binding transcrip-
tion factors ABF (1–4) activate miR168a expression through the
ABRE cis-element present in its promoter (Li et al., 2012). As
mentioned before, several Cu-miRNAs are responsive to Cu-
deficiency and govern the priority ranking for Cu-acquisition that
ABA-dependent AGO1 regulation can alter. Since miR398 con-
trols antioxidant activities, in addition to Cu-deficiency, other
processes involving enhanced ROS regulate its expression (Zhu
et al., 2011). Dynamic miR398 expression regulation under
drought stress remains a controversial matter as it hinders assign-
ing a clear role for ABA during the process (Ding et al., 2013).

Another key issue is how metal status signals, wherever per-
ceived, are intracellularly communicated with the nucleus. A
putative candidate for this communication is AP2-type transcrip-
tion factor ABI4, which plays a central role in mediating mito-
chondrial and chloroplast retrograde signaling (Koussevitzky
et al., 2007; Giraud et al., 2009; Wind et al., 2013). ABI4 was
originally characterized for its role in ABA signaling (Finkelstein
et al., 1998). ABA biosynthesis and signaling extensively interact
with sugars. ABI4 directly regulates plastidial Cu+-ATPase PAA1
through binding to the PAA1 promoter. In fact, PAA1 and ABI4
expressions are mutually affected and lack of the PAA1 func-
tion provokes insensitivity to high glucose. It has been suggested
that PAA1 functions in the bidirectional communication between
the plastid and nucleus due to its essential plastid activity, and
perhaps affects ROS, sugar levels, or even both (Lee et al., 2012).

During the evolution of eukaryotic organisms, including
higher plants, the ability to modulate cycling changes in intracel-
lular compartmentalized metal concentrations and metal traffic
and efflux, denoted as metal muffling, had to be coordinated with
other cyclic responses to environmental and endogenous cues
for a certain developmental coherence to be achieved. Light is
the main environmental signal for plant development, which is
perceived in shoots, but also influences root growth. Nutrient
uptake takes place in roots, but is regulated by light conditions.
During these long-distance signaling processes, the crosstalk
among ROS, hormones and the circadian clock are known to
play a crucial function whose aim is to coordinate a temporary
coherent developmental program between roots and shoots.
Under optimal environmental conditions, global plant growth

presents maximal coherence, whereas non-optimal conditions
drive to different degrees of stress, depending on the severity and
length of stress. Root abiotic stress, such as metal deficiency, can
be considered to distort maximal coherence (Figure 2A).

The interplay among ROS, hormones and the circadian clock,
and metal influence, during all these processes could play a key
role in temporal responses to stress. In order to recover coher-
ence, the effect of spatio-temporal modulators, acting at different
levels of gene expression on their respective targets, should be
considered to understand the dynamics of attaining plant fit-
ness under stress conditions (Figure 2B). Modulators can be
divided into activators and repressors by increasing or decreas-
ing the expression of their target genes, respectively. Frequently,
the expression of both modulators and their target genes are
subjected to circadian regulation. Hence, their expression will
be oscillatory with the same period (i.e., 1 day) but with a cer-
tain phase difference. For simplicity we will consider only two
situations (phase and antiphase) to illustrate these interactions
(Figure 2C). The following differential equation was used to
model the change in the amount of target mRNA (m) in time (t,
in days) when a specific signal or input, such as deficient metal
supply, triggered the expression of the modulator:

dm/dt = A · [1 + sin (2 · π · t)] · M − α · m (1)

where A is a positive constant that represents the circadianly reg-
ulated transcriptional strength, and α is the first-order kinetic
constant for mRNA degradation. The effect of the modulator was
introduced by the factorM. If themodulator is an activator driven
by the circadian clock, then M equals B defined as:

B = 1 + q · [1 + sin(2 · π · t + f)] (2)

where f is the phase-shift with the target (e.g., f = 0 for phase,
f = π for antiphase) and q represents the strength of the mod-
ulator effect on the transcriptional rate of the target. Thereby,
the oscillatory expression of the activator will act as a multi-
plicative factor on the target mRNA synthesis term in Eq. 1. On
the other hand, if the modulator is a repressor, then M equals
1/B and the oscillatory expression of the repressor will atten-
uate the synthesis of the target mRNA. The relative strength
of either modulator may be expressed by σ = q/A, which is
the ratio of the modulator to circadian transcriptional strengths
(see the legend of Figure 2C for further details of the param-
eter values). If the modulator is an activator, the phase syn-
chrony between the activator and its target genes will redound
on “constructive interference,” in analogy to the physical con-
cept of waves adding up their amplitudes when in phase. As
a result, the transcription of a target gene that oscillates with
the same phase as the activator will be enhanced (Figure 2C).
On the other hand, the target genes that oscillate in anti-phase
with activators will display only a moderately increased and
somewhat distorted transcriptional response. In contrast, the
temporal phase synchrony between a repressor and its target
gene will result in “destructive interference” (i.e., waves anni-
hilating each other when interacting with opposite phases),
which will lead to gross attenuation, or even the suppression, of
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the target’s oscillatory behavior, while the genes that shift to anti-
phase will be much less affected by the repressor (Figure 2C).
This oversimplified model emphasizes the importance of the ini-
tial relative phase of modulators and their target genes in the
response to an input that triggers the modulator function. This
mathematical approach can also help understand the differen-
tial target responses based on interactions under the cyclic gene
expression of both modulators and their targets. Moreover, this
model predicts that changes in the modulators phase would pro-
foundly impact on their target responses and consequently these
wave interferences can serve to modulate and integrate endoge-
nous responses in order to improve plant fitness under stress
conditions.

In summary, these observations highlight the importance of
understanding the synchronization of the endogenous circadian
system with environmental, nutritional and hormonal factors.
Disrupted orchestration of circadian, nutritional, and hormonal
rhythms occurs readily through environmental and/or genetic
perturbations, and results in a state of circadian dyssynchrony.
Chronic dyssynchrony ensues if endogenous hormonal or/and

nutritional cycles are frequently altered, and modulators do not
have the time required to complete resynchronization with envi-
ronmental cycles. Impairment of the normal circadian rhythmic-
ity produced by aberrant metabolic homeostasis could negatively
affect a plethora of biological processes and drive to a misalign-
ment of metabolic cycles with the central oscillator. If modulators
of the circadian clock mechanism and their role in the inte-
gration with hormonal and nutrient cycles are identified, the
prospect of targeting these mechanisms in plants offers much
potential.
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