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Mitochondria and chloroplasts are two distinct organelles essential for plant viability. They evolved
from prokaryotic endosymbionts and share a common ancestor with extant Gram-negative bac-
teria (Gray et al., 1999; Gould et al., 2008). Successful conversion of the free-living prokaryotes to
the cytoplasmic organelles via endosymbiosis required conservation and adaptation of the outer
membranes to the dramatic change of surroundings. In prokaryotes, the outer membrane serves as
a physical barrier that protects cells from the extracellular environment and allows import of nec-
essary nutrients, and also directly participates in interaction with other organisms (Nikaido, 2003).
As part of the semi-autonomous organelles, by contrast, the outer membranes of mitochondria and
chloroplasts have gained ability to participate in intracellular communication and organelle biogen-
esis, i.e., import and export of various ions and metabolites, import of nuclear-encoded proteins,
various metabolic processes including the biosynthesis of membrane lipids, and division andmove-
ment of the organelles that require physical interaction with cytoplasmic components (Breuers
et al., 2011; Inoue, 2011; Duncan et al., 2013). Our understanding of the organelle outer mem-
branes have been advanced greatly in the last decade or so, and the last eight years have seen about
a three-fold increase in the number of proteins identified or predicted to be in the chloroplast outer
envelope of Arabidopsis thaliana (Arabidopsis) [total 117 proteins listed in Table 1; compare 34
proteins in Inoue (2007)]. This Research Topic is intended to provide snapshots of recent research
on the organelle outer membranes. It collects seven original research, three review and two method
articles, which can be divided into four groups according to the subjects – (1) outer membrane
protein targeting, (2) functions, targeting and evolution of protein import components, (3) lipid
metabolism, and (4) method development.

1. Protein Targeting to the Organelle Outer Membranes

All proteins identified so far in the organelle outer membranes are encoded in the nucleus
(e.g., Table 1), and most of them use internal signals for targeting. This is distinct from
the case for most nuclear-encoded proteins found inside the organelles: they are synthe-
sized with N-terminal extensions, which are necessary and sufficient for proper targeting
via the general pathway and cleaved upon import in the matrix (mitochondria) or stroma
(chloroplasts). Lee et al. (2014) review the current knowledge of pathways and signals
needed for targeting of three types of outer membrane proteins – signal-anchored (SA),
tail-anchored (TA), and β-barrel proteins. SA and TA proteins are anchored to the mem-
brane via a single transmembrane (TM) α-helix with either Nintermembrane space-Ccytosol (for
SA) or Ncytosol-Cintermembrane space (for TA) orientation. β-Barrel proteins are integrated into
the membrane via multiple TM-β-strands, whose formation appears to require evolutionar-
ily conserved machinery in the membrane. Marty et al. (2014) have used a transient expres-
sion system with Nicotiana tabacum Bright Yellow-2 suspension cells to identify two types of
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Inoue Organelle outer membranes

TABLE 1 | One hundred and seventeen proteins identified or predicted to

be in the outer membrane of the Arabidopsis chloroplast envelope.a

AGI no.b Name Referencesc Enveloped MitoOMe

SOLUTE/ION TRANSPORT

At1g20816 OEP21-1 (i)(ii)(iii) YES

At1g45170 OEP24-1 (i)(ii)(iii)(iv)

At1g76405 OEP21-2 (i)(ii)(iv) YES

At2g01320 WBC7 (ii)(iii)(iv) YES

At2g17695 OEP23/DUF1990 (vii) YES

At2g28900 OEP16-1 (i)(ii)(iii)(iv) YES

At2g43950 OEP37 (i)(ii)(iii)(iv) YES

At3g51870 PAPST1 homolog (viii) YES

At3g62880 OEP16-4 (i)(ii)

At4g16160 OEP16-2 (i)(ii)

At5g42960 OEP24-2 (i)(ii) YES

PROTEIN IMPORT COMPONENTS AND THEIR HOMOLOGS

At1g02280 Toc33 (i)(ii) YES

At2g16640 Toc132 (i)(ii)(iii)(iv) YES

At2g17390 AKR2B (iii)

At3g16620 Toc120 (i)(ii)(iii)(iv)

At3g17970 Toc64-III (i)(ii)(iii)(iv) YES

At3g44160 P39/OEP80tr1 (ii)

At3g46740 Toc75-III (i)(ii)(iii)(iv) YES

At3g48620 P36/OEP80tr2 (ii)

At4g02510 Toc159 (i)(ii)(iii)(iv) YES

At4g09080 Toc75-IV (i)(ii)

At5g05000 Toc34 (i)(ii)(iii)(iv) YES

At5g19620 OEP80/Toc75-V (i)(ii)(iv) YES

At5g20300 Toc90 (i)(ii)(iv)

PROTEIN TURNOVER AND MODIFICATION

At1g02560 ClpP5 (proteolysis) (iv) YES

At1g07930 E-Tu (protein synthesis) (iii)

At1g09340 HIP1.3/Rap38/CSP41B

(protein synthesis)

(iv) YES

At1g63900 SP1 (proteolysis) (vi)

At1g67690 M3 protease (iv)

At3g46780 pTAC16 (transcription) (iv) YES

At4g05050 UBQ11 (proteolysis) (iii)(iv)

At4g32250 Tyrosine kinase (iii)(iv) YES

At4g36650 pBrP (transcription) (ix)

At5g16870 PTH2 family (protein

synthesis)

(iii)(iv) (x)

At5g35210 PTM (transcription) (ii) YES

At5g56730 peptidase M16 family (iv) YES (xi)

LIPID METABOLISM

At1g77590 LACS9 (i)(ii)(iii)(iv) YES

At2g11810 MGD3 (i)(ii)

At2g27490 ATCOAE (iii)(iv) YES

At2g38670 PECT1 (iv) (x)

At3g06510 SFR2/GGGT (ii)(iii)(iv) YES

At3g06960 TGD4 (ii) YES

At3g11670 DGD1 (i)(ii)

At3g26070 PAP/FBN3a (iv) YES

(Continued)

TABLE 1 | Continued

AGI no.b Name Referencesc Enveloped MitoOMe

At3g63170 FAP1 (iii) YES

At4g00550 DGD2 (i)(ii)

At4g15440 HPL homolg (i)(ii) YES

At5g20410 MGD2 (i)(ii)

CARBOHYDRATE METABOLISM AND REGULATION

At1g12230 transaldolase (iv) YES

At1g13900 PAP2 (v) (x)(xi)

At2g19860 HXK2 (iv) (x)

At4g29130 HXK1 (iii)(iv) YES (x)

OTHER METABOLISM AND REGULATION

At1g34430 PDC E2 (iv) YES

At1g44170 ALDH3H1 (iv)

At2g34590 PDC E1beta (iv) YES

At2g47770 TSPO (ii)

At3g01500 beta CA1 (iv) YES

At3g16950 PDC E3 (iv) YES

At3g25860 PDC E2 (iv) YES

At3g27820 MDAR4 (iii)(iv) YES

At5g17770 CBR (iii)(iv) (x)

At5g23190 CYP86B1 (i)

At5g25900 KO1/GA3 (ii)

INTRACELLULAR COMMUNICATION

At2g16070 PDV2 (division) (i)(ii)(iii) YES

At2g20890 THF1/PSB29 (plasma

membrane)

(i) YES

At3g25690 CHUP1

(actin-dependent

movement))

(ii) YES

At5g53280 PDV1 (division) (i)(ii)

At5g58140 PHOT2

(actin-dependent

movement)

(iii)(iv) YES

FUNCTIONS/LOCATIONS DEFINED IN COMPARTMENTS

OTHER THAN THE CHLOROPLAST OUTER ENVELOPE

At1g27390 Tom20-2 (mito) (iii) (x)(xi)

At3g01280 VDAC1 (mito) (i) YES (x)

At3g12580 Hsc70-4 (cytosol) (iv)

At3g21865 PEX22 (peroxisome) (iv)

At3g46030 histone H2B (nucleus) (iii)

At3g63150 MIRO2 (mito) (iv) (x)(xi)

At4g14430 enoyl-CoA isomerase

(peroxisome)

(iii)

At4g16450 Complex I subunit

(mito)

(iii)

At4g31780 MGD1 (IEM) (iii) YES

At4g35000 APX3 (peroxisome) (iii)(iv) YES (xi)

At4g38920 vacuolar ATPase sub (iii)

At5g02500 HSC70-1

(cytosol/nucleus)

(iv) YES

At5g06290 Prx B (stroma) (iv) YES

At5g15090 VDAC3 (mito) (i) YES (x)

(Continued)
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TABLE 1 | Continued

AGI no.b Name Referencesc Enveloped MitoOMe

At5g27540 EMB2473/MIRO1

(mito)

(iv) (x)(xi)

At5g35360 CAC2/BC (IEM) (iv) YES

FUNCTIONS UNKNOWN/UNCLEAR

At1g09920 (iii) (xi)

At1g16000 OEP9 (ii)

At1g27300 (iii)

At1g64850 (iv) YES

At1g68680 (iii) YES

At1g70480 DUF220 (iii)(iv)

At1g80890 OEP9.2 (ii)

At2g06010 (iv)

At2g24440 (iii)

At2g32240 DUF869 (iii)(iv) (xi)

At2g32650 PTAC18 like (iv)

At2g44640 (iii) YES

At3g26740 CCL (iii)

At3g49350 (iii)

At3g52230 OMP24 homolog (i)(ii)(iii) YES

At3g52420 OEP7 (i)(ii)

At3g53560 TPR protein (iii) YES

At3g63160 OEP6 (ii) YES

At4g02482 putative GTPase (ii)

At4g15810 NTPase (ii)

At4g17170 RAB2 (iv) YES

At4g27680 NTPase (iii)(iv)

At4g27990 YGGT-B protein (iii) YES

At5g11560 (iv)

At5g20520 WAV2 (iv) (x)

At5g21920 YGGT-A (iii)

At5g21990 OEP61-TPR (ii)

At5g27330 (iii)

At5g42070 (iv) YES

At5g43070 WPP1 (iii)

At5g51020 CRL (ii)(iii)(iv) YES

At5g59840 RAB8A-like (iv)

At5g64816 (iii) YES

aNames and functional categories are based on literatures cited in this work and

databases. See Supplementary Material Table S1 for the extended name (if any), the

location curated by various databases, and other predicted properties based on the pri-

mary sequence for each protein.
bArabidopsis gene identifier (AGI) number, which represents the systematic designation

given to each locus, gene, and its corresponding protein product by The Arabidopsis

Information Resource (TAIR: https://www.arabidopsis.org/).
cThis list includes in total 117 proteins from two earlier review articles [32 from (i) Inoue

(2007) and 44 from (ii) Breuers et al. (2011)], two recent chloroplast outer envelope pro-

teomics studies [50 from (iii) Simm et al. (2013) and 58 from (iv) Gutierrez-Carbonell et al.

(2014),] and five reports on individual outer envelope proteins [(v) PAP2 by Sun et al.

(2012), (vi) SP1 by Ling et al. (2012), (vii) OEP23 by Goetze et al. (2015), (viii) PAPST1

by Xu et al. (2013), and (ix) pBrP by Lagrange et al. (2003)]. Note that Gigolashvili et al.

(2012) predicts inner-envelope localization of PAPST1, and that the AGI number for pBrP

was updated from At4g36655.
dYES indicates that the given protein was found in the chloroplast envelope proteomic

studies (Ferro et al., 2003, 2010; Froehlich et al., 2003), which are listed in The Plant Pro-

teome Database (PPDB: http://ppdb.tc.cornell.edu/) (Sun et al., 2009).
eProteins found in the mitochondrial outer membrane by (x) Duncan et al. (2013) or (xi)

Marty et al. (2014).

targeting signals for mitochondria TA proteins. They have then
performed database search, increasing the number of mitochon-
dria TA proteins from 20 to 54. Interestingly, 16 of the mito-
chondria outer membrane proteins identified by the previous
work (Duncan et al., 2013) and Marty et al. (2014) are also
found in the chloroplast outer envelope membrane (Table 1).
This may suggest the presence of targeting mechanisms and
functions shared between the outer membranes of the two
organelles.

2. Functions, Targeting and Evolution of
Protein Import Components

The most-studied chloroplast outer membrane proteins are sub-
units of the TOC (translocon at the outer-envelope-membrane
of chloroplasts) machinery, which catalyzes the general path-
way to import nuclear-encoded precursor proteins from the
cytosol. Among the TOC components are homologous GTPases
Toc159 and Toc34, which recognize the precursors and regu-
late their import, and Toc75, which forms a protein conducting
channel. In Arabidopsis, there are four Toc159 isoforms which
show substrate selectivity, two catalytically redundant Toc34
isoforms, and one functional Toc75 encoded on chromosome
III (Table 1). Demarsy et al. (2014) review the current knowl-
edge about how these subunits function and regulate protein
import. Richardson et al. (2014) summarize available results
and discuss functions, targeting and assembly of TOC sub-
units. Importantly, both review articles recognize outstanding
questions about the TOC components, including the mech-
anisms of precursor recognition and their insertion into the
membrane. By biochemical assays using chloroplasts isolated
from pea seedlings, radiolabeled precursor proteins and recom-
binant proteins, Chang et al. (2014) demonstrate interaction
of Toc159 isoforms called Toc132/Toc120 with a chloroplast
superoxide dismutase (FSD1) that was predicted to comprise
an exceptionally short import signal but has been shown oth-
erwise, and also map the interaction domains beyond the N
terminus. The interaction of FSD1 with Toc132, but not with
Toc159, was also demonstrated by a split-ubiquitin yeast two-
hybrid assay (Dutta et al., 2014). Grimmer et al. (2014) have used
an in vivo approach, transiently producing GFP-tagged proteins
in protoplasts of various Arabidopsis mutants and determining
their N-terminal sequences by mass spectrometry analyses, and
demonstrate that a plastid RNA binding protein is a substrate of
Toc159. The Arabidopsis protoplast transient expression assay
has also been used to define sequences required for targeting
and membrane integration of a Toc159 ortholog (Lung et al.,
2014). A previous genetic screening had demonstrated that
Toc132 and Toc75 enhance root gravitropism signal transduc-
tion (Stanga et al., 2009). Strohm et al. (2014) now provide evi-
dence supporting the involvement of plastids, instead of direct
participation of TOC subunits, in the gravitropism signal trans-
duction. Finally, Day et al. (2014) report phylogenetic relation-
ships and in vitro targeting of the Toc75 homologs including
the truncated forms of OEP80/Toc75-V, which are also known
as P39 (Hsueh et al., 2014) and P36 (Nicolaisen et al., 2015)
(Table 1).
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3. Lipid Metabolism

Under phosphate starvation, phospholipids in the cell mem-
branes, mainly those in extraplastidic compartments, are used
as the source of free phosphates and substituted by galactolipids
made in the chloroplast outer envelope. Murakawa et al. (2014)
have used Arabidopsis mutants and feeding assays to show that
the outer-envelope-dependent galactolipid synthesis is stimu-
lated by sucrose supplementation and this stimulation in turn
enhances utilization of the added sucrose for plant growth.
This work nicely illustrates the physiological significance of the
metabolic activity localized in the chloroplast outer envelope for
plant growth and development.

4. Method Development

Hardre et al. (2014) report an attempt to apply biotin tagging
and proteolysis to examine topology and membrane associa-
tion of proteins in the spinach chloroplast. Although the work
requires further refinement to achieve the desired specificity, the

idea behind this approach is quite interesting. The toc159-null
mutant is seedling-lethal thus has been examined as progenies
of heterozygous parents. Tada et al. (2014) have established a
method using Ziploc R© container to grow the homozygous toc159
mutants on the sucrose-supplemented media to the point that
viable seeds can be obtained. This cost-effective method should

be useful to study not only the toc159-null plant but also other
recessive lethal mutants of photosynthesis.

In summary, the collection highlights various questions about
the organelle outer membranes and interdisciplinary approaches
employed to address them. The future research should use these
and other strategies to answer questions about the proteins of
known functions, in particular those involved in protein home-
ostasis, as well as those of unknown functions (Table 1). The
editor greatly acknowledges the excellent contributions of all the
authors and constructive comments by expert reviewers to each
of the articles.
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