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Grape berry composition mainly consists of primary and secondary metabolites. Both
are sensitive to environment and viticultural management. As a consequence, climate
change can affect berry composition and modify wine quality and typicity. Leaf removal
techniques can impact berry composition by modulating the source-to-sink balance
and, in turn, may mitigate some undesired effects due to climate change. The present
study investigated the balance between technological maturity parameters such as
sugars and organic acids, and phenolic maturity parameters such as anthocyanins
in response to source-sink modulation. Sugar, organic acid, and anthocyanin profiles
were compared under two contrasting carbon supply levels in berries of cv. Cabernet
Sauvignon and Sangiovese collected at 9 and 14 developmental stages respectively.
In addition, whole-canopy net carbon exchange rate was monitored for Sangiovese
vines and a mathematic model was used to calculate the balance between carbon
fixation and berry sugar accumulation. Carbon limitation affected neither berry size nor
the concentration of organic acids at harvest. However, it significantly reduced the
accumulation of sugars and total anthocyanins in both cultivars. Most interestingly,
carbon limitation decreased total anthocyanin concentration by 84.3% as compared
to the non source-limited control, whereas it decreased sugar concentration only by
27.1%. This suggests that carbon limitation led to a strong imbalance between sugars
and anthocyanins. Moreover, carbon limitation affected anthocyanin profiles in a cultivar
dependent manner. Mathematical analysis of carbon-balance indicated that berries used
a higher proportion of fixed carbon for sugar accumulation under carbon limitation
(76.9%) than under carbon sufficiency (48%). Thus, under carbon limitation, the grape
berry can manage the metabolic fate of carbon in such a way that sugar accumulation
is maintained at the expense of secondary metabolites.
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Introduction

Grapevine is an important perennial crop cultivated in many
countries (7519 mha in 2013; OIV, 2014). Its fruits are used
predominantly for wine making, yet also for juice, raisins and
fresh consumption. Grape berry composition, which is important
for the grape growers and the wine industry, is mainly determined
by sugars, organic acids, and various secondary metabolites (e.g.,
tannins, flavonols, anthocyanins, aroma precursors, and volatile
compounds; Conde et al., 2007). The accumulation of these
components along berry development and ripening depends on
the genotype and on the environment (Jackson and Lombard,
1993).

Climate change already affects the physiology of the grapevine
(Schultz, 2000), causing increased sugar concentration and,
consequently, higher alcohol content in wines (Duchêne and
Schneider, 2005; Bock et al., 2013), reduced organic acids and
anthocyanins (Barnuud et al., 2013, 2014), and modified aroma
profiles (Keller, 2010a). In the long term, the sustainability
of wine production in several viticultural regions may be
threatened by climate change (Schultz and Jones, 2010;
Hannah et al., 2013). To face such challenges, the mechanisms
controlling the accumulation of quality-related metabolites in
grapes must be better understood. This will allow promoting
innovative viticultural practices resulting in easier adaptation
of wine production to climate change (van Leeuwen et al.,
2013).

Among the different viticultural practices affecting berry
composition (Keller, 2010a; Dai et al., 2011; Kuhn et al., 2014),
source-sink modulation by summer pruning (i.e., leaf removal
or shoot and cluster thinning) is an important tool that may
control the relationship between yield and quality, and adjust
the complex chemical composition of grape berry (Kliewer and
Dokoozlian, 2005). For example, the berry sugar concentration is
often positively correlated with leaf area-to-yield ratio when the
ratio is below a threshold value of about 1 m2/Kg of fruit mass
(Kliewer and Dokoozlian, 2005; Duchêne et al., 2012). Above
this value, the sugar concentration usually reaches a plateau and
becomes less responsive to source-sink modulation (Kliewer and
Dokoozlian, 2005). The responses of organic acids to source-sink
modulation have been less thoroughly studied, and contradictory
reports showed that a lower leaf area-to-yield ratio caused either
an increase (Wolpert et al., 1983; Ollat and Gaudillere, 1998; Wu
et al., 2013), decline (Bravdo et al., 1985), or lack of response
(Reynolds et al., 1994; Parker et al., 2015) of organic acids
compared with a high leaf to yield ratio.

In addition to primary metabolites, secondary metabolites
(e.g., tannins, flavonols, anthocyanins, aroma precursors, and
volatile compounds) also play an essential role in shaping wine
quality and typicity. Particularly, anthocyanins are responsible
for grape color, which is an important determinant of wine
color. Grape anthocyanins derive from five anthocyanidins:
cyanidin (Cy), delphinidin (Dp), peonidin (Pn), petunidin
(Pt) and malvidin (Mv). They have different patterns of
hydroxylation (di- or tri-hydroxylated forms), methylation, and
can be further modified by acylation (Mazza, 1995). The fine-
tuning of anthocyanin composition has important impacts

on the color hue and color stability of the resultant wines
(Mazza, 1995). Source-sink modulation impacts berry coloration
(Weaver, 1963; Kliewer and Weaver, 1971; Petrie et al., 2000a),
and recently its effects on anthocyanin content and composition
(Guidoni et al., 2008; Pastore et al., 2011, 2013; Filippetti
et al., 2015) drew attention of many research groups. For
example, Wu et al. (2013) showed that retaining two leaves
only in a girdled shoot with one cluster completely inhibited
berry coloration. Moreover, Guidoni et al. (2008) reported that
total anthocyanins were reduced by source limitation, with di-
hydroxylated anthocyanins more sensitive than tri-hydroxylated
ones in cv. Nebbiolo berries. However, other authors recently
showed that a post-veraison source limitation resulting from
either shoot trimming (Filippetti et al., 2015), removal of leaves
above the clusters (Palliotti et al., 2013b; Poni et al., 2013) or
late-season application of anti-transpirants (Palliotti et al., 2013a)
significantly reduced the speed of sugar accumulation but did
not affect the concentration of berry anthocyanins at harvest.
As the source-sink modulation techniques also bring about
concomitant modifications in the fruit zone microclimate (i.e.,
light and temperature regimes), the results must be interpreted
with caution. It is well established that temperature significantly
affects anthocyanin accumulation (Spayd et al., 2002; Pereira
et al., 2006; Mori et al., 2007). Therefore, experiments that
are more precisely controlled and avoid confounding between
the effects of source-sink modulation and microclimate are
needed to quantify the actual response of anthocyanins to carbon
availability.

The accumulation of carbon in primary and secondary
metabolites is interconnected and results from a complicated
metabolic network. For instance, sugar levels positively correlate
with total anthocyanin levels (Vitrac et al., 2000; Dai et al.,
2014), yet negatively correlate with organic acids (Keller, 2010b).
Interestingly, the accumulation of sugars and anthocyanins
can be uncoupled by environmental conditions such as high
temperature (Sadras and Moran, 2012). In contrast, the
effect of source-sink modulation on the sugar-anthocyanin
uncoupling seems more complicated (Sadras and Moran,
2012). The anthocyanin: sugar ratio has been reported to be
increased (Guidoni et al., 2002), decreased (Sadras et al., 2007),
or unchanged (Petrie and Clingeleffer, 2006) by increasing
source-sink ratio. The mechanisms underlying this diversity
of responses warrant further investigation. Several theories
have been developed in literature to describe the relationship
between primary and secondary metabolites in plants, and
the two most relevant ones are the carbon-nutrient balance
(CNB) hypothesis and the growth-differentiation balance (GDB)
hypothesis (reviewed in Koricheva et al., 1998). CNB predicts
that concentrations of carbon-based secondary metabolites
will decrease in cases where carbon fixation is more reduced
than growth, as a result of decreased available carbon pool
for allocation to secondary metabolites production. GDB
provides a similar prediction, and a meta-analysis showed
that both hypothesis appears to be valid for describing
the dependence of total C-based secondary metabolites,
particularly phenylpropanoid-derived compounds (including
anthocyanins) on carbon availability in the leaves of woody
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plant (Koricheva et al., 1998). If sugars and anthocyanins
do have different sensitivities to source-sink modulation,
such de-synchronization may help to define a window of
source-sink ratios, within which sugars are reduced while
anthocyanins are unaffected. This would provide valuable
clues to mitigate the negative influences of climate change
(Keller, 2010a).

Therefore, the present study aims to quantify the relative
sensitivities of different berry compounds (sugars, organic acids,
and anthocyanins) to changes in source-sink modulation under
controlled or semi-controlled conditions. Monitoring the carbon
fixation rate of the whole-canopy and dynamic profiling of
metabolites allowed us to conduct a quantitative analysis of
carbon demand and supply, and to obtain detailed information
on the source-sink balance. In addition, a detailed HPLC analysis
allowed us to compare the effects of source-sink modulation on
the developmental changes in anthocyanin profiles in two distinct
cultivars, Cabernet Sauvignon and Sangiovese.

Materials and Methods

Two experiments were conducted with cv. Cabernet Sauvignon
in Bordeaux (latitude 44◦ 46′ 46′′ N, longitude 00◦ 34′ 01′′ W),
France, and cv. Sangiovese in Piacenza (latitude 45◦02′52′′N,
longitude 9◦42′2′′E), Italy.

Plant Material and Sampling
Exp 1. Cabernet Sauvignon
Fruiting-cuttings made of one vertical shoot bearing one
grape cluster of cv. Cabernet Sauvignon were prepared as
described in Mullins and Rajasekaran (1981) and grown in a
naturally lighted and semi-controlled greenhouse with chemical
disease control applied every 2 weeks. Environmental conditions
(air temperature, radiation at canopy level, and relative
humidity) were recorded hourly throughout the experiment
(Supplementary Figure S1).

Thirty homogeneous fruiting-cuttings were subjected to two
source-to-sink ratios at 1 week before veraison; a group of
15 plants had 12 leaves per cluster per vine (12L) while the
remaining vines had three leaves per cluster per vine (3L).
At 63 days after flowering (DAF), leaves underneath the basal
cluster were removed in both treatments to standardize the
microclimate effects; therefore, above the cluster, 3 and 12 leaves
were maintained, yielding a total of 7 and 16 nodes per shoot for
the 3L and 12L treatments, respectively. The remaining leaves and
all secondary shoots were removed over the measurement period.
The plants were randomly assigned to three blocks and each block
composed of five plants of each treatment.

Berries were sampled nine times at 1-week interval from
1 week after treatment (70 DAF) to 126 DAF. In order to ensure
the capture of maturity in 3L treated vines, the last sampling
date corresponded to an over-ripe stage. At each sampling date,
one berry each was sampled from the top and the middle of
a single cluster, and the resulting 10 berries from five clusters
(vines) of a given treatment within a plot were pooled to form a
biological replicate. Three biological replicates were obtained for

each treatment at each sampling date. At harvest, all remaining
berries were sampled, counted, and weighed.

Exp 2. Sangiovese
The experiment was conducted on 4-years-old cane-pruned
cv. Sangiovese grapevines grafted on M3 rootstock and grown
outdoors in 40 L pots. The pots were filled with a mixture of
sand, loam and clay (65, 20, and 15% by volume, respectively)
and kept well watered throughout the trial season. Each vine
had a 1 m long fruiting cane with 8–9 dormant buds. Shoot
thinning was applied to retain one main shoot per node and, on
each shoot, the basal cluster only was maintained. Vines were
arranged along a single, vertically shoot-positioned, 35◦NE-SW
oriented row and hedgerow-trained. Eight uniform vines were
assigned in a completely randomized design to the following
two treatments 1 week before veraison: three leaves per cluster
(shoot) or 12 leaves per cluster (shoot). As in the Cabernet
Sauvignon experiment, at 40 DAF, leaves beneath the basal
cluster were removed in both treatments to standardize the
microclimate effects; therefore, above the cluster, 3 and 12
leaves were maintained, for 3L and 12L treatment, respectively.
Shoots were trimmed to 8 and 16 nodes per shoot, for 3L
and 12L treatment, respectively. The remaining leaves and
all secondary shoots were removed throughout the measuring
period.

Berries were sampled 14 times at 1-week interval from 1 week
before treatment to 8 weeks after treatment, and thereafter at 4-
days intervals for better capturing maturity. At each sampling
date, three berries from the top and the middle of a single cluster
were sampled and the 24 or 27 berries from 8 or 9 clusters
(shoot) of a given vine under a treatment were pooled to form
a biological replicate. Four biological replicates were obtained for
each treatment at each sampling date. At harvest, all remaining
berries of a vine were sampled, counted, and weighed.

Berry Pretreatment
Sampled berries from both experiments were immediately put
into a pre-weighed tube and dropped into liquid nitrogen. The
tubes were reweighed after deep freeze to calculate berry fresh
weight and then stored in −80◦C for later biochemical analysis.
Berries stored in −80◦C were slightly thawed and separated
quickly into skin, pulp, and seed in the laboratory. The skin
and pulp were immediately ground into fine powder in liquid
nitrogen using a ball grinder MM200 (Retsch, Haan, Germany).

Sugars and Organic Acids
An aliquot of 500 mg fine powder of pulp was extracted
sequentially with ethanol (80 and 50%), dried in Speed-
Vac, and re-dissolved in 2.5 mL de-ionized water. Glucose
and fructose content were measured enzymatically with an
automated micro-plate reader (Elx800UV, Biotek Instruments
Inc., Winooski, VT, USA) according to the method of Gomez
et al. (2007). Tartaric acid content was assessed by using the
colorimetric method based on ammonium vanadate reactions
(Pereira et al., 2006). Malic acid was determined using an
enzyme-coupled spectrophotometric method that measures the
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change in absorbance at 340 nm from the reduction of NAD+ to
NADH (Pereira et al., 2006).

Analysis of Anthocyanins
An aliquot of 500 mg of berry skin powder was freeze-dried for
72 h and the dried powder (∼50 mg) were extracted in 1.0 mL
methanol containing 0.1% HCL (v/v). Extracts were filtered
through a 0.45 µm polypropylene syringe filter (Pall Gelman
Corp., Ann Harbor, MI, USA) for HPLC analysis. Each individual
anthocyanin was analyzed as described in Hilbert et al. (2003) and
Acevedo De la Cruz et al. (2012) with HPLC. Quantification was
carried out by peak area integration at 520 nm, and Malvidin-
3-glucoside (Extrasynthèse, Lyon, France) standard was used for
quantify the anthocyanin concentration.

Leaf Area Measurement
For Cabernet Sauvignon experiment, leaf area (LA) was estimated
using the relationship between specific LA (m2 fresh area
gDW−1) and total leaf dry weight as described in Castelan-
Estrada et al. (2002). LAs of the removed leaves for 3L treatment
were determined at the initiation of treatment and whole plant
LAs were determined for both treatments at the end of the
experiment.

For Sangiovese experiment, LA was measured on the leaves
that were removed the day of treatment and after harvest of all
berries. LA was determined by measuring the surface of each
lamina with a LAmeter (LI-3000A, LI-COR Biosciences, Lincoln,
NE, USA).

Chlorophyll Concentration
Six leaves per plant for 12L vines and three leaves per plant for 3L
vines were measured using the portable Chlorophyll Meter SPAD
502 (Minolta Corp., Ramsey, NJ, USA). On each leaf, five SPAD
readings were taken at each leaf lobe and then averaged.

Single-Leaf Gas Exchange
Net photosynthesis (Pn), evapotranspiration (E) and stomatal
conductance (gs) rates of six leaves per plant were measured
only in the Sangiovese experiment at 95 DAF using a CIRAS-
2 portable photosynthesis system (PP Systems, Amesbury, MA,
USA). On each vine, two shoots were chosen in basal and apical
positions along the cane and, on each shoot, three mature leaves
located in the basal, median, and apical positions of themain stem
were measured in rapid sequence. Readings were performed in
the morning hours (10 h 00–12 h 00) under constant saturating
light (≈1500µmolm−2 s−1) imposed with an additional external
lamp mounted on top of the leaf chamber. Measurements were
taken at ambient relative humidity and the flow fed to the broad-
leaf chamber (4.5 cm2 window size) was 300 mL min−1. To
ensure stability of the inlet reference CO2 concentration [CO2], a
CO2 minicartridge was used to provide automatic control of inlet
[CO2] at 380 mmol L−1.

Whole-Canopy Gas Exchange
Whole-canopy net CO2 exchange rate (NCER) measurements
were performed only in the Sangiovese experiment using
the multi-chamber system reported in Poni et al. (2014)

featuring alternating current, centrifugal blowers (Vorticent
C25/2M Vortice, Milan, Italy) delivering a maximum air flow
of 950 m3 h−1; flexible plastic polyethylene chambers allowing
88% light transmission, 6% diffuse light enrichment and no
alteration of the light spectrum. System also features a CIRAS-
EGM4 single-channel absolute CO2 infrared gas analyser (PP
Systems, Amesbury, MA, USA) set at a 0–1000 parts per million
measurement range and a CR1000 data logger wired to an
AM16/ 32B Multiplexer (Campbell Scientific, Shepshed, UK).
To facilitate air mixing and ensure higher stability in inlet CO2
concentration, air was forced through a buffer tank (500 L)
before being directed to the chambers. Switching of air sampling
from one chamber to another was achieved at programmed time
intervals (90 s) using a set of solenoid valves (SIRAI, Padova,
Italy); the air-flow rate to each chamber was controlled by a
butterfly valve (Ghibson, Monteveglio, Italy) and measured with
a Testo 510 digital manometer (Farnell, Lainate, Italy) using the
flow restriction method (Osborne, 1977). The flow rate fed to
the chambers was set at 7.1 L/s and kept until the leaf removal
treatment, when the flow rate was changed to 5 L/s. Whole-
canopy NCER per vine (µmol CO2/s) and per LA unit (µmol
CO2/m2s) was calculated from flow rates and CO2 differentials
after.

The chambers were set up on each vine and continuously
operated 24 h per day from one week before treatment (2 July)
until 95 days after flowering (1 September). Ambient (inlet) air
temperature and the air temperature at each chamber’s outlet
were measured by shielded 1–0.2 mm diameter PFA–Teflon
insulated type-T thermocouples (Omega Engineering, Stamford,
CT, USA), and direct and diffuse radiation were measured with a
BF2 sunshine sensor (Delta-T Devices, Ltd, Cambridge, England)
placed horizontally on top of a support stake next to the chambers
enclosing the canopies. Ambient (inlet) relative humidity and
the relative humidity at each chamber’s outlet were measured
by a HIH-4000 humidity sensor (Honeywell, Freeport, IL, USA)
mounted upstream of the EGM4.

Data Analysis
All data analysis were conducted with R software (R
Development Core Team, 2010). Student t-test was used to
verify the differences between the two source-sink ratios at each
developmental stage.

Carbon allocation analysis was conducted as it follows. First,
the carbon accumulated in berries throughout development was
calculated as a function of hexose concentration and berry fresh
weight with a carbon transformation coefficient of 0.4 g carbon
g−1 hexose. Second, the total carbon accumulated (C) in berries
per vine was fitted to the following sigmoid curve (Sadras et al.,
2008):

C = Cmax

1 + e
[
t0−t
b

]

where t is the number of days after flowering, Cmax is the
maximal quantity of carbon (g), t0 is the number days after
flowering when carbon quantity is half the maximum, and b
represents the carbon accumulation duration from 0.25 Cmax to
0.75 Cmax . Third, the carbon accumulation rate (g Carbon/day)
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was calculated by using the first order derivation of the sigmoid
curve. Finally, the relationship between the berry accumulated
carbon and the photosynthesized carbon (obtained from whole-
canopy gas exchange measurement) was quantified by their ratio
to estimate the supply vs. demand carbon balance.

Results

Leaf-to-Fruit Ratio
As expected, leaf removal effectively reduced the total LA per
vine in 3L treatment in Cabernet Sauvignon and Sangiovese
(Tables 1 and 2). It also resulted in a significantly lower leaf-to-
fruit ratio (LA/F) in 3L than 12L treatments in both cultivars. 3L
vines all had a LA to yield ratio lower than 1.0 m2/Kg. On the
other hand, both 12L Cabernet Sauvignon vines and Sangiovese
vines had a LA/F of 3.98 m2/Kg and 1.15 m2/kg, respectively
(Tables 1 and 2).

Berry Weight
In Cabernet Sauvignon, the 3L treatment limited the increase
in berry size that normally occurs between 80 and 90 days
after flowering (DAF), but extended the growth duration to
110 DAF, when berries under 12L conditions already reached
their maximal fresh weights (Figure 1A). The longer growth
duration compensated for the decreased growth rate and
resulted in a very similar berry weight under both growth
conditions at harvest. Conversely, 3L treatment did not affect
the developmental profile of berry size in Sangiovese berries
(Figure 1B). At harvest, Sangiovese berries were bigger than
those of Cabernet Sauvignon. Berries of both cultivars doubled
their size from veraison to maturity. In addition, berry
dehydration occurred in Cabernet Sauvignon berries as indicated
by the decrease in berry fresh weight from 112 DAF to 126 DAF
(Figure 1A).

Sugar Concentration
Hexose (glucose + fructose) concentrations of Cabernet
Sauvignon and Sangiovese berries were significantly reduced
by source limitation (Figure 2). The negative effects of source
limitation were observed 1 week after treatment for Cabernet
Sauvignon and 2 weeks after treatments for Sangiovese. At
harvest, 3L treatment caused a 17.5% reduction of hexose

TABLE 1 | Effect of source-sink modulation on leaf area (LA), leaf
area-to-yield ratio, and leaf chlorophyll content (SPAD) of Cabernet
Sauvignon grapevines.

Treatment‡ Pre-trimming
LA/vine
(cm2)

Removed
LA/vine
(cm2)

Final
LA/vine
(cm2)

LA/yield
(m2/Kg)

SPAD

3L 1123 858 265 0.67 51.0

12L 999 0 999 3.98 44.1

Sig.(t test)+ ns ∗∗ ∗∗ ∗∗ ∗∗

Data are means of nine plants. ‡3L: plants with three leaves per cluster; 12L:
plants with twelve leaves per cluster. +, ∗∗ , and ns indicate statistical significance
at P = 0.001, and not significant, respectively.

concentration in Cabernet Sauvignon and a 36.7% reduction in
Sangiovese compared to 12L treated berries.

Organic Acids
The developmental profiles of malic and tartaric acids were
slightly affected by the source-sink modulation in Cabernet
Sauvignon berries (Figures 3A,C). From veraison to near harvest,
the concentrations of malic and tartaric acids were higher in the
3L than in the 12L treatment, while no significant differences were
found at harvest. On the other hand, the developmental profiles
of organic acids in Sangiovese berries were not significantly
affected by source-sink modulation (Figures 3B,D). In addition,
the flat trend of tartaric acids in Cabernet Sauvignon berries is
due to the fact that sampling started at a later stage (Figure 3C).
At harvest, the concentrations of malic acid were 1.78 and 1.5 g/L
and those of tartaric acids were 6.61 and 7.13 g/L for Cabernet
Sauvignon and Sangiovese, respectively.

Anthocyanin Composition and Concentration
Cabernet Sauvignon and Sangiovese berries showed different
anthocyanin profiles under adequate source supply (Figure 4),
with malvidin-derivatives dominant in the former and cyanidine-
3-glucoside dominant in the latter. Moreover, all the acylated
forms of anthocyanins were absent in Sangiovese (Figure 4A).
These differences in composition were further affected by
source limitation (Figures 4B,C). At harvest, the proportion
of malvidin-derivatives was increased to 93.7% in 3L-treated
berries in comparison with 79.7% in 12L-treated berries of
Cabernet Sauvignon (Figure 4B). Sangiovese was less affected
by source limitation, with 55.6% of cynidin-3-glucoside in 3L-
treated berries and 42.4% in 12L-treated berries (Figure 4C).

The developmental profiles of anthocyanin composition and
concentration were significantly affected by source limitation
in both cultivars (Figures 5 and 6). In Cabernet Sauvignon,
the amount of total anthocyanins was systematically higher
in 12L treated berries than in 3L treated berries throughout
berry development (Figure 5A). 12L treated berries increased
their anthocyanins sharply from 70 to 77 DAF, remained at a
plateau until 98 DAF, and thereafter decreased progressively.
3L berries exhibited a similar developmental profile but with
a much lower plateau than 12L berries. In Sangiovese, 12L
berries started to accumulate anthocyanins from 68 DAF and
reached a maximum at harvest. By contrast, 3L treatment almost
completely depressed the accumulation of total anthocyanins,
with only a slight increase between 95 to 105 DAF (Figure 5B).
At harvest, 3L treatment caused a 74.8% reduction in the
concentration of total anthocyanins in Cabernet Sauvignon
(1.32 mg/g FW in 3L versus 5.27 mg/g FW in 12L) and a 94.5%
reduction in Sangiovese (0.22 mg/gFW in 3L versus 3.32mg/gFW
in 12L).

Tri-hydroxylated and di-hydroxylated anthocyanins showed
different developmental profiles and distinct responses to
source limitation (Figures 5C–H). Cabernet Sauvignon berries
had higher tri-hydroxylated anthocyanins than di-hydroxylated
ones in both treatments (Figures 5C,E,G), while the reverse
was observed in Sangiovese (Figures 5D,F,H). In Cabernet
Sauvignon, 3L treatment decreased more di-hydroxylated
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TABLE 2 | Effect of source-sink modulation on leaf area (LA), whole net carbon exchange rate (NCER) per vine and per unit of leaf area, cumulated net
carbon fixation (gCO2/vine) over the trial period, and leaf-to-yield ratio of Sangiovese grapevines.

Treatment‡ Pre-trimming
LA (m2)

Removed LA
(m2)

Final LA
(m2)

NCER/vine
(µmols−1)

NCER/LA
(µmolm−2s−1)

gCO2/vine (cumulated
over trial period)

LA/yield
(m2/Kg)

Pre Post Pre Post

3L 1.86 1.55 0.31 8.19 1.94 4.39 6.30 142 0.33

12L 1.70 0.68 1.02 8.04 5.64 4.67 5.56 321 1.15

Sig. (t-test)+ ns ∗∗ ∗∗ ns ∗∗ ns ns ∗∗ ∗∗

Data are means of four plants. NCER/vine and NCER/LA were averaged for all the post-treatment measurements. ‡3L: plants with three leaves per cluster; 12L: plants
with 12 leaves per cluster. +, ∗∗, and ns indicate statistical significance at P = 0.001, and not significant, respectively.

FIGURE 1 | Effect of source-sink modulation on seasonal berry weight
of Cabernet Sauvignon (A) and Sangiovese (B) vines having either
three leaves (3L) or 12 leaves per cluster (12L). The solid arrow indicates
date of source-sink modulation. Vertical bars indicate SE (n = 3 for Cabernet
Sauvignon, and n = 4 for Sangiovese).

FIGURE 2 | Effect of source-sink modulation on seasonal hexose
concentrations of Cabernet Sauvignon (A) and Sangiovese (B) berries
sampled from vines having either three leaves (3L) or 12 leaves per
cluster (12L). The solid arrow indicates date of source-sink modulation.
Vertical bars indicate SE (n = 3 for Cabernet Sauvignon, and n = 4 for
Sangiovese).

(Figure 5C) than tri-hydroxylated anthocyanins (Figure 5F),
resulting in a lower ratio of di- to tri-hydroxylated anthocyanins
(Figure 5G). By contrast, 3L treatment equally decreased both
the di- and tri-hydroxylated anthocyanins in Sangiovese, leaving
the ratio of di- to tri-hydroxylated anthocyanins unaffected
(Figure 5H).

The effect of source-sink modulation on anthocyanin
acylation was further investigated in Cabernet Sauvignon berries

FIGURE 3 | Effect of source-sink modulation on seasonal malic acid
(A,B) and tartaric acid (C,D) concentration of Cabernet Sauvignon (A)
and Sangiovese (B) berries from vines having either three leaves (3L)
or 12 leaves per cluster (12L). The solid arrows indicate date of source-sink
modulation. Vertical bars indicate SE (n = 3 for Cabernet Sauvignon, and
n = 4 for Sangiovese).

(Figure 6). 3L treatment decreased more strongly the non-
acylated anthocyanins than the acylated ones in comparison
with 12L treated berries (Figures 6A,B). This unbalanced
modification caused a significant increase in the proportion of
acylated anthocyanins in 3L treated berries than 12L treated
berries (Figure 6D). The proportion of acylated anthocyanins
reached 58.4% in 3L and was 46.1% in 12L at harvest
(Figure 6D).

Leaf Carbon Fixation and Berry Carbon
Utilization
Whole-canopy net CO2 exchange rates (NCER) were measured
in Sangiovese and are shown in Figure 7. The NCER per unit
LA (µmol m−2 s−1) was very similar (∼= 4.5 µmol m−2 s−1)

Frontiers in Plant Science | www.frontiersin.org 6 May 2015 | Volume 6 | Article 382

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Bobeica et al. Source limitation decouples berry maturity

FIGURE 4 | Typical HPLC chromatograms of anthocyanins in berry
skins of Cabernet Sauvignon and Sangiovese grape berries grown
under non-limited carbon supply (A); and effects of source-sink
modulation on anthocyanin composition of Cabernet Sauvignon (B)
and Sangiovese (C) berry skins at harvest from vines with either three
leaves (3L) or 12 leaves per cluster (12L). Dp, delphinidin; Mv, malvidin; Pt,
petunidin; Cy, cyanidine; Pn, peonidin; glc, glucoside; ac, acetate; cou,
coumarate.

for the two groups of vines before treatment (Figure 7A and
Table 2). After treatment, it became slightly higher in 3L (in
average 6.30 µmol m−2 −1) than in 12L treatment (in average
5.56 µmol m−2 s−1), without reaching a significant difference
though (Table 2). However, when those marginal differences
in each day were cumulated, the carbon fixed by a unit of
LA over the experimental period was clearly higher in 3L
than 12L treatment (Figure 7C). Single leaf photosynthesis rate
at harvest, measured under optimal conditions at saturating
light, was significantly higher in 3L treated leaves (15.1 µmol
m−2 s−1 ) than in 12L treatment (13.8 µmol m−2 s−1).
Moreover, for both Cabernet Sauvignon (Table 1) and Sangiovese
(Table 3), leaves from 3L plants had higher chlorophyll content
than that of 12L plants (Table 3).

The NCER per vine was calculated as the product of NCER
per LA and total LA per vine (Figure 7B). Before treatment,
leaves of both groups had very similar NCER/vine (average of
3L and 12L at 8.12 µmol s−1). During the treatment, 40 and
83.3% LA were removed in comparison with pre-treatment for
12L and 3L vines, respectively (Table 2). These reductions in
total LA per vine resulted in an abrupt proportional decrease
of NCER/vine of 38.8% for 12L vines and 82.4% for 3L vines,
averaged during the first 3 days after treatment (Figure 7B).
Thereafter, vines reacted to their treatments, and the 3L plants
showed a 66.1% reduction in NCER/vine in parallel with a 69.6%
reduction in LA per vine, as compared to 12L plants (Figure 7B
and Table 2). When the NCER per vine was cumulated over the

FIGURE 5 | Effect of source-sink modulation on the accumulation of
total anthocyanins (A,B), di-hydroxylated anthocyanins (C,D),
tri-hydroxylated anthocyanins (E,F), and the ratio of Di- to
Tri-hydroxylated anthocyanins (G,H) in the skin of Cabernet Sauvignon
(left panel) and Sangiovese berries (right panel). The two carbon supply
levels were obtained by treating vines with either three leaves (3L) or 12 leaves
per cluster (12L). The solid arrows indicate date of source-sink modulation.
Vertical bars indicate SE (n = 3 for Cabernet Sauvignon, and n = 4 for
Sangiovese).

post-treatment period, the cumulated carbon per vine at harvest
in 3L treatment was only reduced by 55.8% compared to 12L
(Figure 7D).
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FIGURE 6 | Effect of source-sink modulation on the quantity (A,C) and
proportion (B,D) of non-acylated anthocyanins (A,B) and acylated
anthocyanins (C,D) in relation to the total concentration in the skin of
Cabernet Sauvignon berries from vines with either three leaves (3L) or
12 leaves per cluster (12L). Vertical bars indicate SE (n = 3).

To investigate the carbon supply-demand balance, carbon
accumulation rate in all the berries of a vine was also
calculated and compared with the carbon fixed by photosynthesis
(Figure 8). As expected, 3L berries accumulated much lower
carbon (43.4 g) than those of 12L treatment (81.9 g) at harvest
(Figure 8A). In parallel, the carbon accumulation rate in berries
(g carbon per day) was also decreased in 3L berries compared to
12L berries (Figure 8B). Considering the carbon accumulation
rate as carbon utilization and the NCER per vine as carbon
supply, the proportion of the former to the latter was calculated
(Figure 8C). Total accumulated carbon per day in 3L berries
accounted for ∼76.9% of that fixed by photosynthesis during the
rapid sugar accumulation period (namely from 54 to 81 DAF),
while it accounted for only ∼48% in 12L berries over the same
period. Interestingly, this proportion jumped to very high levels,
even more than 100%, in several specific days in both treatments.
Further analysis revealed that those days corresponded to cloudy
days (Supplementary Figure S1) when NCERs per vine were very
low (Figure 7B).

Discussion

Source limitation induced by severe leaf removal in Cabernet
Sauvignon and Sangiovese caused a significant reduction in the
accumulation of sugars in berries. This result confirms many
previous studies with different other Vitis vinifera L. cultivars,
that reported a decrease in sugar accumulation following carbon
limitation induced by late leaf removal (manual or mechanical),
shoot trimming at fruit set and veraison (Poni and Giachino,

2000; Heuvel et al., 2005; Stoll et al., 2010; Palliotti et al., 2013b;
Poni et al., 2013; Filippetti et al., 2015; Parker et al., 2015).
However, there are also studies conversely showing that sugar
accumulation is unaffected (Percival et al., 1994; Chorti et al.,
2010; Sabbatini and Stanley Howell, 2010; Pastore et al., 2013)
or even slightly increased (Bledsoe et al., 1988; Percival et al.,
1994; Guidoni et al., 2002; Poni et al., 2006a, 2008; Palliotti
et al., 2011, 2012; Pastore et al., 2011, 2013; Bubola and Persuric,
2012; Gatti et al., 2012) after a diminishing LA/Fruit ratio.
These contradictory observations are most likely the result of
the differences in the timing and severity of source to sink
modulations. In fact, Kliewer and Dokoozlian (2005) have shown
that a LA/Fruit above 0.8 m2/Kg is critical for full ripening of the
grapes. Studies reporting no effect of source-sink modulations on
sugar accumulation often did not go below this threshold value.
In the present study, the LA/Fruit was lower than 0.8 m2/Kg
in source limited vines for both cultivars. It is therefore of the
utmost importance to consider the magnitude of LA/Fruit when
compare trials on the effect of source-sink modulations on berry
sugars.

In contrast to the decrease in sugar concentration under
source limitation, no significant differences were found in organic
acids content at harvest in the two cultivars studied in this
work. In a recent detailed developmental analysis, Parker et al.
(2015) also observed lose of synchronization between sugar and
organic acid in response to lowering LA/Fruit ratios, with sugar
accumulation reduced but organic acids largely unaffected. Some
other studies (Bledsoe et al., 1988; Poni et al., 2006a, 2009;
Tardaguila et al., 2010; Pastore et al., 2013) reported that a
decrease in source-sink ratio by leaf removal lead to decreased
total acidity and malic acid, whereas tartaric acids was unaffected
or even increased compared to vines without leaf removal.
The authors of these studies frequently pointed out a likely
confounding effect of leaf removal and modified microclimate,
making their result not really comparable with those found in
the present study. Our results and those from Parker et al. (2015)
both confirm that the organic acids are less responsive to carbon
limitation than sugars.

In addition to the relative sensitivity of sugars and organic
acids, we also studied the response of important secondary
metabolites such as anthocyanins. Source limitation caused 75
and 93.5% reductions in anthocyanin concentrations in Cabernet
Sauvignon and Sangiovese berries at harvest, paralleled by only
17.5 and 36.7% reductions in sugars, as compared to the non-
source limited berries. After recalculation from the dataset
of recent reports, we found that source limitation caused a
99.2% reduction in anthocyanins with a 38.5% reduction in
sugars in cv. Jingyan (Vitis vinifera; Wu et al., 2013), and a
17.5 or 19.1% reduction in anthocyanins with a 8.4 or 6.8%
reduction in sugars in cv. Sangiovese (Pastore et al., 2011, 2013).
These results clearly indicate that the accumulation of sugars
and anthocyanins are uncoupled under source limitation, and
that carbon is preferentially allocated for sugar accumulation
rather than anthocyanins. As mentioned in the introduction,
several theories (CNB and GDB) have been developed in
literature to describe the competition relationship between
primary and secondary metabolites in plants (reviewed in
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FIGURE 7 | Effect of source-sink modulation on net carbon exchange
rate (NCER) per unit of leaf area (A) and per vine (B), as well as
cumulated carbon fixation per unit of leaf area (C) and per vine (D),
recorded daily with a whole-canopy gas exchange system throughout

the experimental period on Sangiovese vines either with three leaves
(3L) or 12 leaves per cluster (12L). Values from empty chambers were also
indicated (A,B) as a reference. The solid arrows indicate date of source-sink
modulation. Vertical bars indicate SE (n = 4).

Koricheva et al., 1998). Arnold et al. (2004) confirmed, with
a series of elegant experiments, that the phenolic content and
coloration of poplar (Populus nigra x P. deltoides) sink leaves is
reduced by disrupted carbon flow from source to sink, namely
reduced carbon availability. In cell suspensions of cv. Gamay
Freaux that constructively produce anthocyanins, Guardiola et al.
(1995) proved with a mathematical modeling approach that
primary (sugars) and secondary (anthocyanins) metabolisms
compete for carbon substrate when substrate is scarce. Our
results provide a piece of evidence to the validity of CNB and
GDB hypotheses in a productive sink (berries) and pave the
way for modeling the sugars and anthocyanins accumulations
in grape berry under various source-sink ratios. Interestingly,
(Sadras and Moran, 2012) also reported the uncoupling between
sugars and anthocyanins accumulation under high temperatures
conditions. However, the biological mechanisms underlying this
uncoupling effect should be different from those under carbon
limitation, because temperature has direct effect on anthocyanin
biosynthesis and degradation by modulating gene expression
and enzyme activities of related enzymes (Mori et al., 2007).
Few studies have been conducted to understand the inhibitory
effect of source limitation on anthocyanin accumulation at

protein and/or transcription levels. Two recent genome-
wide transcriptome analyses showed that carbon limitation
reduced the transcript abundance of UDP glucose:flavonoid-3-
O-glucosyltransferase (UFGT) and GST4, which are known as
important regulators of anthocyanin accumulation and transport
(Pastore et al., 2011, 2013). A proteomic analysis showed
that the abundances of chalcone synthase and dihydroflavonol
reductase, which are both involved in anthocyanin pathway,
were strongly reduced by source limitation (Wu et al., 2013).
Our observed reduction in total anthocyanin in both cultivars
under source limitation should also result from modifications
in the key regulators of anthocyanin pathways, although further
transcriptomic and proteomic experiments are needed to confirm
these speculations.

Since it is known that different molecules of anthocyanins
have different color hues and stabilities (He et al., 2010),
we also studied the alteration of anthocyanin composition
in response to carbon limitation. The concentration and
composition of anthocyanins are different between Cabernet
Sauvignon and Sangiovese berries under normal (carbon
sufficient) condition; Cabernet Sauvignon berries had higher
concentration of malvidin (tri-hydroxylated) derivatives and
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TABLE 3 | Effect of source-sink modulation on transpiration (E), stomatal
conductance (gs), net photosynthesis (Pn) and chlorophyll content (SPAD)
measured on six leaves per vine in Sangiovese.

Treatment‡ E (mmol
m−2 s−1)

gs (mol
m−2 s−1)

Pn (µmol
m−2 s−1)

SPAD

3L 8.59 0.368 15.1 40.9

12L 8.86 0.345 13.8 38.0

Sig.(t-test)+ ns ns ∗∗ ∗

Data are means of four plants. ‡3L: plants with three leaves per cluster; 12L: plants
with 12 leaves per cluster. + ∗,∗∗, and ns indicate statistical significance at P = 0.05,
0.001, and not significant, respectively.

acylated anthocyanins, whereas Sangiovese berries were richer
in cyanidin-3-glucoside (di-hyroxylated), and no acylated
anthocyanins were found. These results are in agreement with
a previous report (Mattivi et al., 2006). Carbon limitation
increased the proportion of cyanidin-3-glucoside in Sangiovese.
In the same cultivar, other authors (Filippetti et al., 2007; Pastore
et al., 2011, 2013) also found that a decrease in source-sink
ratio increased the proportion of cyanidin-3-glucoside. On the
contrary, the proportion of the predominantly accumulated
anthocyanin peonidin-3-glucoside (di-hydroxylated) in cv.
Nebbiolo was decreased by low source-sink ratio (Guidoni
et al., 2002). In Cabernet Sauvignon, we found the proportion
of di-hydroxylated anthocyanins (cyanidin and peonidin
derivatives) was reduced by carbon limitation. These results
indicate that the modification in anthocyanin composition in
response to source limitation is cultivar dependent. It is known
that the ratio between di- and tri-hydroxylated anthocyanins
is under the control of the relative activity of flavonoid 3′-
hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H)
(Castellarin et al., 2006). Transcriptome analysis showed that
carbon limitation increased the transcript abundance of F3′Hb,
which is responsible for the biosynthesis of di-hydroxylated, and
explained the observed modification in anthocyanin composition
(Pastore et al., 2013). In addition to carbon source limitation,
light exclusion can increase the ratio of di-/tri-hydroxylated
anthocyanins (Guan et al., 2014); both water stress (Castellarin
et al., 2007a,b) and high temperature decrease this ratio
(Mori et al., 2007). Anthocyanin acylation is also known to
be affected by light exposure and temperature (Tarara et al.,
2008). In Cabernet Sauvignon, we also observed that source
limitation significantly increased the proportion of acylated
anthocyanins in compared to non-source limitation condition.
The molecular regulation of anthocyanin acylation is largely
unknown, although acylation can improve anthocyanin stability
(Sarni et al., 1995; He et al., 2010). This differential responses
between di- and tri-hydroxylated anthocyanins and between
acylated and non-acylated anthocyanins can provide valuable
potential implications in modulating wine quality. Further efforts
are warranted to investigate why the activities or expression
of F3′H and F3′5′H respond to source limitation differentially
between cultivars and why acylated anthocyanins are preferably
accumulated under source limitation.

Source and sink can communicate interactively and exert
mutual influences on each other. When the source-to-sink ratio

FIGURE 8 | Effect of source-sink modulation on carbon allocation in
Sangiovese grown with three leaves (3L) or 12 leaves (12L) per cluster.
Carbon accumulated in all berries per vine (A), carbon accumulation rate in all
berries per vine per day (B), and proportion of photosynthesized carbon used
for berry sugar accumulation during the developmental period (C). The solid
arrows indicate date of source-sink modulation.

is reduced, the leaves (source) on the grapevine can increase
leaf efficiency toward a compensation of their photosynthetic
rate to meet the demand of berries (sink; Candolfi-Vasconcelos
and Koblet, 1990; Petrie et al., 2003; Kliewer and Dokoozlian,
2005). We observed that the source limited vines increased
their NCER per unit of LA compared to source sufficient
vines. This was further confirmed by a higher content of
chlorophyll (7% more in Sangiovese vines and 13.5% more in
Cabernet Sauvignon vines), and a higher photosynthesis capacity
measured on single leaf under optimal conditions. Similar effects
of source limitation on leaf chlorophyll content have been
observed by other authors (Candolfi-Vasconcelos and Koblet,
1990; Petrie et al., 2000b). Such photosynthetic compensation
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can explain why the source limited vines lost 69.6% of their
LA although carbon fixation was reduced only 55.8% over
berry ripening. However, it is clear that the compensation is
partial, and this may be due to the fact that only the main
leaves from the primary shoot were retained with all new
growth being removed during our experiment. Mature leaves are
less responsive to source-sink modulation (Candolfi-Vasconcelos
et al., 1994b).

Comparing carbon fixation by leaves and carbon utilization
by berries can provide a valuable estimation of the carbon
balance between demand and supply. This information is
essential to understand the physiology of vines and may
help to develop mechanistic models (Poni et al., 2006b; Cola
et al., 2014). However, this comparison is often missing
in the source-sink modulation experiments due to the lack
of suitable facilities to measure it. The whole-canopy gas
exchange approach (Poni et al., 2014) makes it possible to
monitor the seasonal NCER and to quantify the carbon
fixed following the source-sink modulation. In addition, we
followed the dynamics of sugar accumulation of berries and
calculated the quantity of carbon used in the berries via a
mathematic sugar accumulation function (Sadras et al., 2008).
This provided a good estimate of carbon utilization in the
most important sink (berries; Gutierrez et al., 1985; Coombe,
1989). The mathematical analysis of carbon-balance indicated
that berry carbon utilization accounted for a higher proportion
of fixed carbon for sugar accumulation under carbon limitation
(73.4%) than under carbon adequacy (40.7%) during the sugar
accumulation stages (54 to 81 DAF). This indicates that
carbon allocation is not proportional to the carbon offer but
with priorities to berries under source limitation, providing
direct evidence to support the most applied assumption in
grapevine carbon allocation models (Gutierrez et al., 1985;
Bindi et al., 1996; Poni et al., 2006a; Pallas et al., 2008).
The biological mechanisms behind this phenomenon have
been poorly investigated. Pastore et al. (2011) showed that
the transcript abundance of pyruvate decarboxylase isozyme
2 involved in glycolysis was reduced by a low source-sink
ratio. However, we found that the carbon limitation increased
enzyme activities involved in primary carbohydrate metabolisms
(Dai et al. unpublished data). These increases in metabolic
enzymes may confer higher sink strength and therefore allow
berries to attract a higher proportion of carbon under source
limitation. It is worth noting that our calculation do not
consider the carbon utilization for maintenance and reserves,
nor the potential contribution of reserve carbon remobilization
(Gutierrez et al., 1985), but rather provides a quantitative
indicator of carbon allocation. Therefore, the proportions close
to 100% observed between 64 and 67 DAF in 3L vines are
hardly realistic in real vines; instead they strongly indicate that
carbon reserves are remobilized for berry sugar accumulation
and/or vine maintenance. A similar reserve remobilization could
explain the high carbon proportion that was observed when
it was cloudy and the vine photosynthesis rate was extremely
low. Although we did not quantify the reserve remobilization,
Weaver (1963) reported that reserves (both soluble sugars and
starch) in shoots were significantly reduced by source limitation

in cv. Carignane and Zinfandel vines. Kliewer and Antcliff
(1970) estimated that as much as 40% of the total sugars
in berries may come from storage tissues of the vine. Using
14C-labeling, (Candolfi-Vasconcelos et al., 1994a) showed that
carbon reserves from the woody storage tissues can be actively
reallocated into berries under source limitations. Future use of
14C-labeling, whole-canopy net carbon exchange rate (NCER)
measurement, and carbon content assessment in various tissues
(leaf, shoot, wood, fruit, and root) would provide a valuable
dataset for the quantification of the carbon balance and allocation
analysis.

Conclusion

Source limitation induced by leaf removal 1 week before
veraison significantly reduced the concentration of sugars and
anthocyanins but did not alter the concentration of organic acids
in Cabernet Sauvignon and Sangiovese. Moreover, the magnitude
of reduction was much greater in anthocyanins than sugars in
response to source limitation, attesting to a decoupling between
sugars and anthocyanins in both cultivars. Although the patterns
of responses for sugars, organic acids, and total anthocyanins
to source limitation are fairly consistent between cultivars, the
modification of anthocyanin compositions is cultivar dependent.
Therefore the grape berry manages the metabolic fate of carbon
in such a way that sugar accumulation is maximally maintained at
the expense of secondary metabolites (e.g., anthocyanins) under
source limitation.
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