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Plant diseases are often thought to be caused by one species or even by a specific
strain. Microbes in nature, however, mostly occur as part of complex communities and
this has been noted since the time of van Leeuwenhoek. Interestingly, most laboratory
studies focus on single microbial strains grown in pure culture; we were therefore
unaware of possible interspecies and/or inter-kingdom interactions of pathogenic
microbes in the wild. In human and animal infections, it is now being recognized that
many diseases are the result of multispecies synergistic interactions. This increases the
complexity of the disease and has to be taken into consideration in the development
of more effective control measures. On the other hand, there are only a few reports of
synergistic pathogen–pathogen interactions in plant diseases and the mechanisms of
interactions are currently unknown. Here we review some of these reports of synergism
between different plant pathogens and their possible implications in crop health. Finally,
we briefly highlight the recent technological advances in diagnostics as these are
beginning to provide important insights into the microbial communities associated with
complex plant diseases. These examples of synergistic interactions of plant pathogens
that lead to disease complexes might prove to be more common than expected and
understanding the underlying mechanisms might have important implications in plant
disease epidemiology and management.
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Introduction

A widely accepted current concept is that a pathogen colonizes a host and responds to the host
environment resulting in the manipulation of expression of its resistance genes. Many studies have
demonstrated this type of host–pathogen interaction in monospecies infections. In contrast to this,
in the wild, microbes have been known to be part of complex multispecies consortia/communities
since the time of van Leeuwenhoek during 1600s (Gest, 2004). The earliest reports regarding
microbial communities as causal agents of a disease are attributed to Pasteur in the 1800s who
observed that a disease can also be due to synergistic interactions of different microorganisms.
Although microbial plant diseases of definite etiology are still mainly considered as being caused
by single microbial cultures, evidence is now beginning to mount that there can be synergisms
between different pathogens in complex plant diseases.

In human pathology, there is now a growing awareness that infectious agents frequently do
not operate alone and their virulence can be affected by their interaction with other commensals
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or pathogens (Singer, 2010). Consequently, the study of
multispecies synergistic interactions is emerging as a new
important subject for better understanding of microbial diseases
(Short et al., 2014). Several examples of synergistic commensal–
pathogen and pathogen–pathogen interactions that lead to
increased human disease severity have been recently reported
(Singer, 2010; Peters et al., 2012; Bosch et al., 2013). Similar
examples of pathogen–pathogen synergistic interactions that
result in increased disease severity in animals have also
been reported (Harms et al., 2001; Ellis et al., 2004). For
example, polyparasitism as a decisive factor has been recently
demonstrated in a protozoal disease in marine mammals; more
precisely, co-infections of Toxoplasma gondii and Sarcocystis
neurona were more recurrently related with mortality and
protozoal encephalitis when compared to solitary infections
(Gibson et al., 2011).

In contrast to mammalian pathology, the concept of
monospecies/monostrain infections is more deeply rooted in
plant pathology. In such cases, plant disease epidemics have
almost exclusively been associated to a single pathogen belonging
to a clonal group. Examples are bacterial canker of kiwifruit
(Mazzaglia et al., 2012), bleeding canker of horse chestnut (Green
et al., 2010), diseases of fruit and nut trees (Hajri et al., 2012),
Bayoud disease of date palm (Tantaoui et al., 1996) and potato late
blight (Goodwin et al., 1995). None of these studies have focused
on the possible role of other microbial populations associated
with infected plants in disease outcome. This is not surprising
as new methodologies to analyze total microbial populations
from diseased plant tissues are only beginning to be available on
a routine basis. The few studies, using traditional approaches,
reveal that many plant species can frequently be infected at the
same time by more than one pathogenic species (Fitt et al., 2006);
in many cases, a single microbe infection may not result in severe
disease symptoms while the co-infection with another microbial
species may lead to severe disease development due to synergistic
interactions.

The objective of this review is to highlight, describe,
and discuss known examples of plant diseases which involve
pathogen–pathogen interactions. There are twomain possibilities
in which different plant pathogens interact: (i) a disease complex
where disease is the result of the interaction of several plant
pathogens belonging to the same species or phylum, (ii) a disease
complex due to different plant pathogens belonging to different
phyla. This review does not cover plant diseases involving
commensal–pathogen, nematode–microbe, or insect–microbe
interactions. The universality of these synergistic interactions
between plant pathogens in the living world is an alarm bell and
microbiologists and plant pathologists need therefore to better
consider in the future that one pathogenic agent can team upwith
others rather than acting alone.

Synergistic Pathogen–Pathogen
Interactions

Plant diseases where more than one pathogen is involved in
the infection process are commonly termed as “complex” since

their diagnosis and subsequent control are more complicated.
Such diseases occur as a result of a network that involves a wide
range of microbial interactions. Monoculture inoculations are
commonly performed to evaluate the pathogenicity behavior of
a given pathogen. Consequently, our knowledge of their possible
synergism that leads to increased disease severity is poor. It
is likely that synergism among different pathogens leading to
more severe disease symptoms occur more often than expected
(Begon et al., 2006). Such synergistic interactions in plants may
be of crucial importance for the understanding of microbial
pathogenesis and evolution and consequent development of
effective disease control strategies.

A non-exhaustive list of synergistic pathogen–pathogen
infections in plants that often lead to increased disease severity is
reported in Table 1. This overall picture is beginning to facilitate
the understanding of epidemiology and control of numerous
complex diseases. There are now several recent reports on the
diagnosis of complex diseases and their successful management
(Gleason et al., 2011; Clark et al., 2012; Martin et al., 2013;
Freeman et al., 2014).

Bacteria–Bacteria Interactions
Tomato pith necrosis is thus far a leading example of
co-infection due to synergistic interactions among several
bacterial pathogens. Overall, eight bacterial species namely
Pseudomonas cichorii (Wilkie and Dye, 1974), P. corrugata
(Scarlett et al., 1978), P. viridiflava (Goumas and Chatzaki,
1998), P. mediterranea (Saygili et al., 2008), P. fluorescens
(Saygili et al., 2008), Pectobacterium atrosepticum (Malathrakis
and Goumas, 1987), Pectobacterium carotovorum (Dhanvanthari
and Dirks, 1987; formerly Erwinia), and Dickeya chrysanthemi
(Formerly Erwinia; Alivizatos, 1985) can cause tomato pith
necrosis alone or in association with the other bacterial species.
The severity of the disease is greatly enhanced when co-
infection of one or more bacterial species occurs. In particular,
co-infection of P. corrugata–P. marginalis, or P. corrugata–
P. mediterranea have been reported to cause severe infection
in tomato (Moura et al., 2005; Saygili et al., 2008; Kůdela
et al., 2010). Similarly, bacterial soft or head rot of broccoli is
another complex disease caused by numerous plant pathogenic
bacteria. Overall, Pectobacterium carotovorum, P. marginalis,
P. fluorescens, and P. viridiflava have been reported to cause
broccoli head rot (Canaday et al., 1991). Bacterial strains
belonging to these species are also capable of causing soft rot on
unwounded broccoli when co-inoculated. The mechanism(s) for
this cooperativity among different bacterial species is currently
unknown.

Fungi–Fungi Interactions
Synergistic interactions between different fungal pathogens have
been studied intensively. For example, the young grapevine
decline disease is present across many regions worldwide,
and is caused by the following fungal pathogens when
present alone: Ilyonectris sp., Phaeomoniella chlamydospora,
Togninia sp., and Botryosphaeriaceae sp. (Mugnai et al., 1999;
Gramaje and Armengol, 2011). The fungal causal agent(s)
vary considerably between the grapevine producing regions.
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TABLE 1 | Pathogen–pathogen synergistic interactions that lead to plant disease occurrence and increased disease severity.

Host Disease Causal agents Reference

Bacteria–bacteria

Tomato Pith necrosis Pseudomonas corrugata and P. mediterranea Moura et al. (2005)

P. corrugata and P. marginalis Kůdela et al. (2010)

P. corrugata, P. Mediterranea, and P. marginalis Moura et al. (2005), Kůdela
et al. (2010)

Mulberry Wilt Enterobacter asburiae and Enterobacter sp. Wang et al. (2010)

Sugarbeet Leaf spot Xanthomonas sp. Mbega et al. (2012)

Broccoli Head rot P. marginalis, Erwinia carotovora, P. fluorescens, and P. viridiflava Canaday et al. (1991)

Potato Zebra complex Candidatus liberibacter solanacearum and Candidatus liberibacter psyllaurous Wen et al. (2009)

Fungi–fungi

Acacia mangium Root rot Ganoderma philippii, G. mastoporum, G. aff. steyaertanum, G. austral, and
Amauroderma rugosum

Glen et al. (2009)

Apple Sooty blotch and
flyspeck

Zygophialasp, Microcyclospora, and Microcyclosporella Batzer et al. (2008),
Frank et al. (2010)

Banana Sigatoka Mycosphaerella fijiensis, M. musicola, and M. eumusae Arzanlou et al. (2007)

Cassava Root rot Fusarium sp. Botryodiplodia theobromae and Armillaria sp. Bandyopadhyay et al.
(2006)

Cereals Bare patch disease Rhizoctonia sp. Roberts and
Sivasithamparam (1986)

Fusarium head blight Fusarium graminearum species complex Del Ponte et al. (2014)

Chestnut Ink disease Phytophtora sp. Vettraino et al. (2005)

Coffee Anthracnose Colletotrichum sp. Nguyen et al. (2010)

Cranberry Fruit rot A large number of species from different genera Oudemans et al. (1998),
Olatinwo et al. (2003)

Cymbidium Yellow leaf spot F. subglutinans and F. proliferatum Ichikawa and Aoki (2000)

Eucalyptus Leaf spot Teratosphaeria juvenalis and T. verrucosa Crous et al. (2009)

Hazelnut Gray necrosis Alternaria sp., Fusarium sp., and Phomopsis sp. Belisario et al. (2004)

Grapevines Grapevine decline Botryosphaeriaceae sp. and Ilyonectria sp. Whitelaw-Weckert et al.
(2013)

Black dead arm Botryosphaeria dothidea, Diplodiaseriata, and Lasiodiplodia theobromae Larignon et al. (2001),
van Niekerk et al. (2006)

Black foot Cylindrocarpon liriodenderi and C. macrodidymum Alaniz et al. (2007)

Petri and esca Phaeomoniella chlamydospora and Phaeoacremonium aleophilum Edwards and Pascoe
(2004)

Anthracnose Elsinoeampelina, Colletotrichum gloeosporioides, and C. acutatum Sawant et al. (2012)

Leek Leaf blotch A. porri and Stemphylium vesicarium Suheri and Price (2001)

Mango Malformation F. mangiferae, F sterilihyphosum, F. mexicanum, F. tupiense, F. proliferatum, and
F. pseudocircinatum

Freeman et al. (2014)

Maize Ear rot F. meridionale and F. boothii Sampietro et al. (2011)

Root and stalk rot Trichoderma sp., Penicillium sp., Pyrenochaeta indica, F. moniliforme, F. graminearum,
and F. oxysporum

Ramsey (1990)

Crown and root rot F. boothii, F. graminearum, and F. meridionale Lamprecht et al. (2011)

Milkwort Decline F. oxysporum and F. solani Vitullo et al. (2014)

Millet Stalk rot Bipolarissetariae, F. semitectum, and F. moniliforme Wilson (2002)

Oilseed rape Phoma canker Leptosphaeria biglobosa and L. maculans Fitt et al. (2006)

Pea Ascochyta blight Mycosphaerella pinodes, Phoma medicaginis var. pinodella, and P. glomerata Le May et al. (2009)

P. medicaginis var. pinodella and F. oxysporum f. sp. Pisi Sagar and Sugha (1997)

Periwinkle Anthracnose Colletotrichum siamense and C. tropicale Tomioka et al. (2013)

Potato Leaf spots A. tenuissima, A. dumosa, A. arborescens, A. Infectoria, and A. interrupta Ardestani et al. (2010)

Rice Bakanae disease F. fujikuroi and F. proliferatum Voigt et al. (1995)

Soybean Wilt F. graminearum, F. Meridionale, and F. cortaderiae Barros et al. (2014)

Stone fruit Brown rot Monilinialaxa and M. fructicola Papavasileiou et al. (2014)

Strawberry Root rot Pythium sp., Fusarium sp., Cylindrocarpon sp., Rhizoctonia sp. Wing et al. (1994)

Wheat Septoria leaf Blotches Septoriatritici and Stagonosporanodorum Fitt et al. (2006)

(Continued)
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TABLE 1 | Continued

Host Disease Causal agents Reference

Stem eyespot Oculimaculayallundae and O. acuformis Fitt et al. (2006)

Foot and crown rot F. graminearum, F. culmorum, F. poae, and F. sporotrichioides Kuzdraliński et al. (2014)

Apple Replant disease Cylindrocarpon destructans, Phytophthora cactorum, and Pythium sp. Mazzola (1998)

Ginger Soft rot Pythium sp. Le et al. (2014)

Parsnip and
parsley

Root rot A large number of Pythium sp. Petkowski et al. (2013)

Virus–virus

Corn Corn lethal necrosis Maize chlorotic mottle virus (MCMV) and Wheat streak mosaic virus (WSMV) Niblett and Claflin (1978),
Scheets (1998)

Cowpea Cowpea stunt Cucumber mosaic virus (CMV) and black-eye Cowpea mosaic virus (BCMV) Pio-Ribeiro et al. (1978)

Pepper Not assigned CMV and Pepper
mottle virus

Murphy and Bowen (2006)

Soybean Not assigned Soybean mosaic
virus and Bean pod mottle virus

Calvert and Ghabrial (1983)

Sweet potato Not assigned Sweet potato feathery
mottle virus and Sweet potato chlorotic stunt virus

Karyeija et al. (2000)

Sweet potato Not assigned Begomoviruses with Sweet potato chlorotic stunt virus Cuellar et al. (2015)

Tobacco Not assigned Potato virus X and Y Damirdagh and Ross
(1967)

Wheat Not assigned WSMV and Triticum mosaic virus Tatineni et al. (2010)

Zucchini squash Not assigned CMV and Zucchini yellow mosaic virus Choi et al. (2002), Wang
et al. (2002)

Blackberry Blackberry yellow vein
disease (BYVD)

Tobacco ringspot virus, Raspberry bush dwarf virus and Crinivirus Martin et al. (2013)

Raspberry Raspberry mosaic
disease

Raspberry necrosis virus, Raspberry leaf mottle virus, and Rubus yellow net virus Martin et al. (2013)

Raspberry Crumbly fruit complex Raspberry bushy virus and Raspberry latent virus Martin et al. (2013)

Carrot Motley dwarf Carrot red leaf luteovirus and Carrot mottle umbravirus Watson et al. (1998)

Cucurbits mosaic disease Watermelon mosaic virus and Zucchini mosaic virus Salvaudon et al. (2013)

Sweet potato Viral decline Sweet potato chlorotic stunt virus and Sweet potato feathery mottle virus Clark et al. (2012)

Sweet potato virus Y and Sweet potato feathery mottle virus Tairo et al. (2006), Gibson
and Kreuze (2014)

Turfgrass Decline Panicum mosaic virus and Satellite panicum mosaic virus Cabrera and Scholthof
(1999)

Grapevine Vein-clearing Phaeoacremonium aleophilum and Grapevine rupestris stem pitting-associated virus Lunden et al. (2010)

Leaf roll Grapevine leafroll-associated viruses Naidu et al. (2014)

Mixed infections

Potato Potato early dying Verticillium dahlia and Pectobacterium sp. Dung et al. (2013)

Arrowleaf Clover Root disease Pythiumsp, Rhizoctonia sp., and Fusarium sp. Pemberton et al. (1998)

Sugar beet Root rot Leuconostocmesenteroides subsp. dextranicum, Lactobacillus, Gluconobacter,
Rhizoctonia

Strausbaugh and Gillen
(2008), Strausbaugh and
Eujayl (2012)

Walnut Brown apical necrosis Fusarium, Alternaria, Cladosporium, Colletotrichum, Phomopsis, and Xanthomonas
arboricola

Belisario et al. (2002)

Pumpkin Gummy stem blight
and black rot

Didymella bryoniae, Pectobacterium carotovorum, Pseudomonas viridiflava, P. syringae,
and X. cucurbitae

Grube et al. (2011)

Panax
notoginseng

Root rot Alternaria sp., Cylindrocarpon sp., Fusarium sp., Phytophthora cactorum, Phoma
herbarum, Rhizoctonia solani, Pseudomonas sp., and Ralstonia sp.

Miao et al. (2006), Ma et al.
(2013)

A recent study demonstrated that co-infection of several fungal
species belonging to Botryosphaeriaceae sp. and Ilyonectria sp.
results in very severe decline of young grafted grapevines in
the field (Whitelaw-Weckert et al., 2013). Similarly, laboratory
experiments further confirmed that co-inoculation of Ilyonectria
and Botryosphaeriaceae isolates led to an increased disease
severity compared to monoculture inoculations of Ilyonectria

isolates (Whitelaw-Weckert et al., 2013). The different pathogens
isolated from grapevine decline symptoms throughout cultivated
areas are likely to have co-evolved due to their close association.
Prior to these studies, only one pathogen was thought to be the
causal agent of grapevine decline depending on the region due to
a marked dominance of one species over all the other ones for
each infection.
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Numerous examples of co-existence of fungal pathogens on
arable crops has been described in the UK (Fitt et al., 2006). Such
examples include a disease complex of wheat leaves known as
septoria leaf blotches caused by Septoria tritici and Stagonospora
nodorum; wheat stem affected by Oculimacula yallundae and
O. acuformis and phoma stem canker on oilseed rape caused
by Leptosphaeria biglobosa and L. maculans. Another complex
disease of wheat caused by a group of Fusarium species is foot
and crown rot. Overall, four species of the pathogen (Fusarium
graminearum, F. culmorum, F. poae, and F. sporotrichioides)
are associated with the disease although their prevalence differs
from one geographic region to another (Kuzdraliński et al.,
2014). It has also been reported that the majority of fields
in eastern Poland are subjected to the attack of at least one
or two of Fusarium species. The presence of F. graminearum
was found to foster the occurrence of F. culmorum and this
result was observable also for F. poae and F. sporotrichioides.
An additional disease complex of major economic significance
worldwide is Fusarium head blight, especially due to the
grain contamination with harmful mycotoxins produced by
the fungus during pathogenesis (McMullen et al., 2012). Over
16 known species of the F. graminearum species complex
have been reported as the causal agent of Fusarium head
blight (O’Donnell et al., 2008; Yli-Mattila et al., 2009; Sarver
et al., 2011). Studies carried out in Brazil show that the
prevalence of the species in Fusarium head blight varies from
one geographic region to another (Del Ponte et al., 2014).
Our current knowledge is very poor concerning mechanisms
that explain the geographic variation and prevalence of specific
pathogens in plants affected by a particular complex disease and
it is possible that such variations are related to the ecological
preference of these pathogens. Moreover, abiotic factors and
cultural practices might also influence this variation in pathogen
prevalence.

Black spot disease complex of pea was previously known to be
caused by three fungal pathogens (Le May et al., 2009); however,
four additional pathogens have been recently found in association
with this disease. These new pathogens include Phoma koolunga
(Davidson et al., 2009), Phoma herbarum (Li et al., 2011),
Boerema exigua var. exigua (Li et al., 2012), and Phoma glomerata
(Tran et al., 2014). All these fungi are necrotrophic, generalist and
polyphagous species and these characteristics favor colonization
of new environments. It is possible that these pathogens use
synergism as a strategy to infect a large variety of plants which
might also explain why some pathogens occur more easily than
others in a given environment or plant host.

Leaf spot of eucalyptus is a disease complex caused by
numerous species of fungi of the genus Teratosphaeria (Crous
et al., 2009). Diseased eucalyptus plants sampled from South
Africa yielded two fungal species (i.e., Teratosphaeria juvenalis
and T. verrucosa) that co-occur in the same leaves and even
in the same spots. In Australia, T. gauchensis and T. zuluensis,
(which predominantly cause eucalyptus stem cankers) have been
reported to occur in leaf spots either alone or in association
with some of the other species belonging to Teratosphaeria
(Crous et al., 2009). On mango, a complex disease known as
mango malformation is caused by F. mangiferae, F. mexicanum,

F. proliferatum, F. pseudocircinatum, F. sterilihyphosum, and
F. tupiense where individual species of this fungus prevail in
association with the symptomatic tissues (Freeman et al., 2014).

The importance of the temporal order of host infection by
different pathogens is another important factor to be considered.
Several reports have been described in the literature in this
regard. Le May et al. (2009) demonstrated that the simultaneous
inoculation of two plant pathogenic fungi (Mycosphaerella
pinodes and Phoma medicaginis var. pinodella) associated to
the Ascochyta blight disease complex limits disease development
and their reproduction. However, when plants pre-inoculated
with one pathogen were then inoculated with another there
was a marked increase in severity of the disease. In contrast
to this report, Sagar and Sugha (1997) reported a decrease in
necrotic symptoms of pea caused by Phoma medicaginis var.
pinodella previously inoculated with the vascular root pathogen
F. oxysporum f. sp. pisi. The order/succession of host infection by
each pathogen in a complex disease and its trophic level might
affect the nature of interaction that these pathogens eventually
develop during disease occurrence. Such temporal effects could
also be related to the notion of ecological niche.

There are also reports of synergistic interactions between
more or less aggressive strains of numerous pathogens. Kaur
et al. (2011) for example demonstrated that the severity of
white rust symptoms (caused by the pathogen Albugo candida)
on mustard increases and the symptoms appear earlier when
a host highly susceptible to A. candida but resistant to
Hyaloperonospora parasitica (the causal agent of downy mildew),
was first inoculated on day 1 with a less aggressive strain of
H. parasitica followed by a 10-days-post inoculation with an
aggressive strain of A. candida. Taken together, the outcomes
due to co-occurrence of the same pathogens on the same host
may result in antagonism and/or synergism which are likely
influenced by the order of their association with the infected
plant. In-depth future studies are needed to consider the temporal
aspect of infection by different pathogens and their interactions,
both among themselves and with the plant, to uncover the
possible underlying mechanisms.

Virus–Virus Interactions
Disease synergisms among two or more plant pathogenic
viruses increasing the severity of symptoms has been reported
on a variety of crop species (Table 1). For example, Maize
chlorotic mottle virus (MCMV) and Wheat streak mosaic virus
(WSMV) cause corn lethal necrosis. The interactions between
these two viruses results in a significant increase (up to 10-
fold) of the MCMV concentration in plants (Scheets, 1998).
In addition, WSMV infection is considerably enhanced by the
presence of MCMV both in terms of frequency and intensity.
Likewise, a strong synergistic interaction was found between
Cucumber mosaic virus (CMV) and black-eye Cowpea mosaic
virus (BCMV) in severely stunted cowpea in fields (Pio-Ribeiro
et al., 1978). In an experimental inoculation study, each virus
caused relatively mild disease when inoculated singly and
plants showed significantly reduced stunting. In contrast, disease
severity and the extent of stunting increased when these two
viruses are co-inoculated under the same conditions. Another
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example is blackberry yellow vein disease (BYVD) complex which
is caused by the cooperation between different viral species
(Martin et al., 2013). More specifically, Tobacco ringspot virus,
Raspberry bush dwarf virus, and a new virus which belongs to
the genus Crinivirus are involved. The BYVD disease severity
was stringently related with the number of viruses infecting
plants. No disease symptom was caused by the incoming viruses
in single infections while symptoms clearly become visible in
mixed infections. Hence, in some cases the absolute number
of viruses infecting plants is likely to be more important than
the type of viruses involved in the infection. However, the role
of vectors in transmitting complex viral diseases is not clear
in the above described examples. For example, are the viruses
commonly transmitted by the same vector? If this is the case, are
there likely to be differences in the acquisition time or latency of
the organisms that could affect whether they are co-transmitted?
Answers to these questions are likely to be important in disease
control; however, information available to date is not sufficient
and further studies are required.

In addition to synergisms between plant viruses, several
studies reported mixed virus infections leading to mutual
exclusion (antagonism); this aspect has been recently reviewed by
Syller (2012).

Mixed Interactions
There are a few reports in the literature of plant disease
complexes involving association of more than one pathogenic
microbial phyla (Table 1). An example is brown apical
necrosis of walnut fruit where numerous plant pathogenic
fungi (Fusarium, Alternaria, Cladosporium, Colletotrichum, and
Phomopsis) and a bacterium (Xanthomonas arboricola) are
involved (Belisario et al., 2002). Another example is root rot
disease complex of Panax notoginseng where a large number
of plant pathogenic fungi (Alternaria panax, Alternaria tenuis,
Cylindrocarpon destructans, Cylindrocarpon didynum, F. solani,
F. oxysporum, Phytophthora cactorum, Phoma herbarum, and
Rhizoctonia solani) and bacteria (Pseudomonas sp. and Ralstonia
sp.) have been found (Miao et al., 2006; Ma et al., 2013). The
mechanisms of interaction that result in communication and
synergism of pathogens in these complex diseases are currently
unknown.

New Approaches are Needed for Studies
of Complex Plant Diseases

An initial thorough analysis that correctly identifies the disease
causing agent(s) is the primary step of managing a plant
disease (Adams et al., 2013). Suitable disease management tools
can then be applied such as the use of an anti-microbial
compounds which can be administered depending on the
plant type and part affected by the disease. Although the
application of a chemical substance can be of importance, a
more sustainable disease management can be achieved only
through the development of more long-term strategies. To this
aim, a better knowledge of pathogen–pathogen synergism in
causing complex plant diseases is of paramount importance.

For example, many anti-microbial strategies currently used in
agriculture are specific to control a given microbial pathogen.
Targeted chemical control strategies become limiting when more
than one pathogenic agent contributes to the disease as the
application of the specific substance may not necessarily result
in successful disease management. It is therefore important to
study plant disease complexes, the synergisms in pathogen–
pathogen interactions as well as the underlying mechanisms to
identify important links that may be manipulated to ensure crop
health. This could be a difficult task since disease complexes
are related to environmental conditions, cultural practices, and
geography (Willocquet et al., 2002). It is therefore important
to design the experimental approach leading to identification
of pathogen cortege in relation to the crop production
system.

The diagnosis and management of complex diseases can
be lengthy resulting in significant yield losses. Often the
use of classical isolation techniques on selected or semi-
selected media may not yield any of the causal agents
or sometimes only their partial isolation. Because of the
complexity of polymicrobial diseases, the study in this regard
was somewhat overlooked in the past. In most of the studies
reported in Table 1, the authors performed the isolation
of pathogen on culture growth media. In addition, other
more specific (e.g., immunofluorescence or PCR) or generic
(e.g., morphological identification) assays were used. However,
currently we have new knowledge and techniques which may
facilitate the understanding of the total microbial species
involved in plant diseases as well as the underlying mechanisms.
Hence, studies of complex diseases now need to benefit from
culture-independent analyses (high-throughput sequencing for
example). This approach does not have the limitations of the
classical culture-based approach, which is often lengthy and
costly (Nikolaki and Tsiamis, 2013). In the modern era of
biodiversity surveillance, techniques such as next-generation
sequencing (NGS) have enabled high-throughput analyses of
complex microbial populations (reviewed by van Dijk et al.,
2014). This has transformed microbiology and has revealed that
microbial diversity is vastly underestimated based on classical
cultivation-based techniques (Gilbert and Dupont, 2011). In the
last 10 years, metagenomic projects have been combined with
NGS technologies boosting studies in microbial ecology at a
very fast pace (Venter et al., 2004; Tringe and Hugenholtz,
2008).

Although plant pathology in general and plant disease
complex in particular could stand to gain from exploiting NGS
and metagenomic approaches, the current literature reveals only
a limited number of applications of this technology. Only a few
studies have applied such methods with a regard to the diagnosis
of new pathogens (Adams et al., 2009, 2013). For example,
sequences of an entire viral genome (determined via a single step
of high-throughput parallel sequencing) highlighted the presence
of three novel viruses in sweet potato plants which were infected
with known pathogenic viruses occurring at extremely low titers
(Kreuze et al., 2009). These novel technologies are thus a powerful
tool to understand the implication of two or more microbes and
their contribution in plant disease occurrence.

Frontiers in Plant Science | www.frontiersin.org 6 May 2015 | Volume 6 | Article 385

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Lamichhane and Venturi Multispecies interactions in plant microbial diseases

There are some limitations in using these novel OMICs
methods with respect to studying the role of microbial consortia
and plant disease. Although these will help to better characterize
complex diseases they will not necessarily allow to determine
which microbe is the dominant factor in the disease occurring
process. Identification of the infection-site derived nucleic acid
sequence is not unequivocal evidence that the microorganism
in question is the causal agent of disease. For example, Adams
et al. (2009) determined the complete virus genome sequence
of a pathogenic virus via metagenomic anaylsis. This data
is convincing proof that a transmissible infection with virus-
like symptoms was linked with the occurrence of the new
Cucumovirus full genome present in the infection site despite
the fact that Koch’s postulates were not fulfilled. Importantly,
viral particles were not observed nor the disease was re-
established in the original host highlighting that only the virus
presence can be determined via metagenomic sequence analysis.
Metagenomics will therefore pose a new challenge for taxonomy
and role of phytopathogens in disease (Studholme et al., 2011).
Another aspect when considering mixed infections will be that of
distinguishing pathogens from saprotrophic microorganisms.

Another important feature in studying complex diseases
concerns growth models and the pathogen cortege. Examples
are RICEPEST (Willocquet et al., 2002) and WHEATPEST
(Willocquet et al., 2008) models which have been developed
to simulate yield losses due to several pests under different
production situations. These models are the first to include the
impact of several diseases on yield losses. A limit to these models
is that although impact of the different diseases is considered,
they do not take into account the potential interaction between
the pathogens. Future studies need to take into account such
limits in order to develop models that simulate the possible
synergism between plant pathogens.

Recently, Elena et al. (2014) proposed that evolutionary game
theory provides an adequate theoretical framework to analyze
mixed viral infections and to predict the long-term evolution
of the mixed populations. Here we recommend that the same
approach can be used to analyze mixed fungal and bacterial
infections which need to be considered in the future studies.

What Mechanisms are Known?

Synergistic interactions between pathogens in humans have
been reported to occur through several mechanisms such as
chemical signaling influencing gene expression or via metabolic
exchange/complementarity in order to avoid competition for
nutrients and improve metabolic ability of the consortium (Frey-
Klett et al., 2011). Pathogen–pathogen interactions are also
known to result in viral induced bacterial adhesion, interference
with the host immune system, production of viral products,
direct bacterial effectors and viral-derived disruption of the
epithelium (Singer, 2010; Peters et al., 2012; Bosch et al.,
2013). On the other hand, studies involving mixed infections
in plant diseases are still in their infancy and the underlying
mechanisms of possible synergistic interactions are currently
unknown. However, it has been recently reported that a plant

pathogen undergoes interspecies signaling via quorum sensing
signals with residential commensal microbiota indicating the
occurrence of intimate multispecies interactions in planta (Hosni
et al., 2011). Signaling among different bacterial species is also
likely to play an important role in the synchronization of
behaviors as well as expression of virulence factors in mixed
populations. The example of Hosni et al. (2011) could pave the
way for the discovery of other interspecies interactions among
microbes living in close association with plants.

Synergistic interactions among bacterial pathogens could also
be indirect as for example the ability of certain harmless or
beneficial plant-associated bacteria and pathogens to suppress
host immunity or alter the plant micro-environment that can
promote colonization by other pathogens. Several studies have
demonstrated that plant defenses are induced following the
infection of an avirulent bacterial strain resulting in its own
growth restriction as well as that of a co-inoculated virulent strain
(Klement and Lovrekovich, 1961; Averre and Kelman, 1964;
Omer and Wood, 1969). The growth of non-pathogenic bacterial
strains could reach higher cell numbers when co-inoculated with
pathogenic bacteria (Young, 1974).

On the other hand, growth differences of virulent bacterial
species could occur when they are co-inoculated owing to
variations in fitness rather than virulence (Llama-Palacios et al.,
2002). Similarly, growth interference in a mixed infections
between different strains of P. syringae has been reported to be
influenced by the initial population size (Macho et al., 2007).
The lowest range of initial population necessary to circumvent
interference has been reported to be dependent both on the
type of virulence factor that differentiates the co-inoculated
strains as well as the pathogen aggressiveness. In another study,
growth interference in a mixed infection between different
strains of P. syringae is strain-dependent and the populations
of strains in mixed inoculations were lower than those in
independent inoculations (Bartoli et al., 2015). The mechanisms
supporting these synergistic and/or antagonistic interactions
need to be explored taking into account the importance of
immune suppression or modulation of phytohormone-based
signaling mechanisms.

The mechanism of synergistic interaction among the Sweet
potato feathery mottle virus and Sweet potato chlorotic stunt virus
has been investigated and shown to be mediated by the SPCSV
encoded RNase3 protein (Cuellar et al., 2009). The authors
suggest that RNase3 may synergize Sweet potato feathery mottle
virus and other viruses by targeting a specific host component via
interference with small-RNA biogenesis; the precise mechanism
of this interaction is currently unknown.

A previous study (García-Marcos et al., 2009) on synergistic
interactions between Potato virus X and Potato virus Y,
which led to an increased systemic infection in Nicotiana
benthamiana, reported transcriptional changes and oxidative
stress associated with the synergistic infection. This stress
correlated with the misregulation of antioxidative genes in a
microarray experiment. Expression of genes encoding oxylipin
biosynthesis were upregulated by the synergistic infection caused
by the two viruses and were not by single infection with Potato
virus X or Potato virus Y. Interestingly, oxylipin biosynthesis
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genes were recently shown to positively regulate programmed
cell death during compatible infections with the synergistic pair
Potato virus X-Potato virus Y and Tomato spotted wilt virus
(García-Marcos et al., 2013).

Polymicrobial Diseases and Koch’s
Postulates

Of the four criteria postulated by Koch [they are (i) the microbe
must be isolated from an infected host and obtained in pure
culture; (ii) it must cause infection when inoculated into a
healthy host; (iii) it must be re-isolated from the inoculated,
symptomatic organism; and (iv) it must be shown to be the
same as the originally cultured microorganism], some are not
valid for polymicrobial infections as for example re-inoculation
of the pathogen not necessarily causes disease if synergism is
lacking. Another postulate raised by Koch was that the pathogen
should be isolated from diseased and not from healthy organisms.
This is also challenged for an increasing number of human
diseases as well as plant diseases. Pierce’s disease of grapevine is
an example, where the bacterial pathogen Xylella fastidiosa can
colonize xylem vessels of asymptomatic plants for a long period
of time (Purcell, 2013). Another issue related to these postulates
are the non-culturable pathogens (Oliver, 2010) for which
none of the Koch’s criteria can be fulfilled. The identification
of polymicrobial diseases and other issues, some raised here,
suggests that Koch’s postulates need to be revised. For example,
pathosystems may be divided into two groups; simple diseases

in which only one organism is involved, and complex diseases
in which there is an interplay of more than one organism (e.
g., insect, commensal, pathogen, non-culturable organism etc.).
For the complex diseases, an additional criterion (fifth) taking
into account the interactions between microrganisms involved
in disease occurrence that are positively correlated with disease
occurrence and/or severity might be necessary.

Concluding Remarks

The pathogenic microorganisms associated with plants now need
to be isolated/studied with the view that possible antagonistic,
mutualistic, or synergistic interactions are taking place. A careful
assessment of the roles of all the microorganisms isolated
from the infection sites needs to be evaluated as multispecies
interactions and consortia can be involved in establishment
and aggravation of the disease. This will need to involve the
interdisciplinary research collaboration between bacteriologists,
mycologists and virologists. Understanding the biology and
molecular interactions of these inter-microbial processes may
be important in defining new targets and strategies for disease
control.
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