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In general, it is very difficult to measure the information flow in a cellular network

directly. In this study, based on an information flow model and microarray data, we

measured the information flow in cellular networks indirectly by using a systems biology

method. First, we used a recursive least square parameter estimation algorithm to

identify the system parameters of coupling signal transduction pathways and the cellular

gene regulatory network (GRN). Then, based on the identified parameters and systems

theory, we estimated the signal transductivities of the coupling signal transduction

pathways from the extracellular signals to each downstream protein and the information

transductivities of the GRN between transcription factors in response to environmental

events. According to the proposed method, the information flow, which is characterized

by signal transductivity in coupling signaling pathways and information transductivity in

the GRN, can be estimated bymicroarray temporal data or microarray sample data. It can

also be estimated by other high-throughput data such as next-generation sequencing or

proteomic data. Finally, the information flows of the signal transduction pathways and

the GRN in leukemia cancer cells and non-leukemia normal cells were also measured

to analyze the systematic dysfunction in this cancer from microarray sample data. The

results show that the signal transductivities of signal transduction pathways change

substantially from normal cells to leukemia cancer cells.

Keywords: system theory, information flow, signal transductivity, information transductivity, microarray data,

signal transduction pathway, gene regulatory network

Introduction

No cell lives in isolation. Even eukaryotic microorganisms such as yeast, slime molds, and
protozoans can secrete molecules called pheromones to coordinate the aggregation of free-living
cells for sexual mating or differentiation under certain environmental conditions (Lipke and
Kurjan, 1992; Figueiras et al., 2009; O’day and Keszei, 2012). The most important among these
molecules are extracellular signaling molecules that function within plants and animals to control
metabolic processes within cells, the growth and differentiation of tissues, the synthesis and
secretion of proteins, and the composition of the intracellular and extracellular fluids. During
intercellular communication or cellular stress responses, the cell senses extracellular signals.
Different external changes or events may stimulate signaling. Typical signals are hormones,
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pheromones, heat, cold, light, osmotic pressure, and the
appearance or changes in the concentration of substances such
as glucose, potassium ions, calcium ions, or cyclic adenosine
monophosphate (cAMP) (Dibner et al., 2010; Dodd et al.,
2010; Kim and Choi, 2010; Kim et al., 2010; Leung and Sharp,
2010; Mosenden and Tasken, 2011). In the flow of the signal
transduction pathway, the extracellular signals are perceived
by a transmembrane receptor. The receptor changes its own
state from inactive to active and then triggers subsequent
cellular processes. The active receptor stimulates an internal
signaling cascade. This cascade frequently includes a series of
changes in protein phosphorylation states. The changes affect
downstream proteins across the nuclear membrane. Eventually,
a transcription factor (TF) is activated or deactivated, which
changes its binding activity to target genes that encode the
corresponding proteins in response to extracellular signals or
stresses. Therefore, signal transduction pathways can also be
viewed as information-processing and transferring systems to
control the gene activities of cells in response to stimuli (Tay et al.,
2010).

With regards to information-processing and transferring
systems, many studies have investigated the properties of signal
transduction pathways, such as amplification(Little et al., 2011),
specification (Corada et al., 2010), adaptive ultrasensitivity
(Srividhya et al., 2011), oscillation (Waters et al., 2014), and
synchronization (Liu et al., 2014). However, owing to the
complex nature of dynamic networks, knowledge of their
components and interactions is often not sufficient to interpret
their system behavior. Therefore, it remains challenging to
analyze the information flow in signal transduction pathways
efficiently.

Information transmission ability was first expressed as a
mathematical formula in Koshland et al. (1982). This report
focused on the sensitivity amplification of signals, which is
defined as the ratio of percent change in output response to
percent change in input signals, i.e., the relative change in
transduction system output with respect to a specific input. Signal
amplification is also defined as the signal gain of the signal
transduction pathways (Chen and Lin, 2012; Chen and Wu,
2012). Information flow is necessarily interpreted on a case-by-
case basis, i.e., the signal transductivity measured in a signal
transduction pathway is affected not only by the structure of the
signal transduction system but also by the input to the signal
transduction system.

In this study, the information flows of both coupling signal
transduction pathways and the downstream gene regulatory
network (GRN) were estimated by system identification
techniques and a systems biology method using microarray
data. First, the dynamic information flow model of coupling
transduction pathways was identified by microarray temporal
data. Then, based on a system theory about the discrete-time
state-space model, the signal transductivity was estimated for
each of the coupling transduction pathways from receptors
at the membrane to TFs in the nucleus from a system gain
perspective. When the microarray data were not time-profile
data, but rather represented different samples at a single time
point, the information flow for the coupling signal transduction

pathway was also estimated based on a linear regression
model and the recursive least square parameter estimation
method.

In general, it is challenging to calculate the information
transductivity from one gene to another in a GRN from
graph theory, especially with a large directed graph (digraph).
In this study, instead of using the digraph method, the
regulatory dynamic model was rearranged as a dynamic state-
space system with a single gene as an input and another as
an output. Then, based on the state-space dynamic system
theory and the recursive parameter estimation method, we
estimated the information transductivity of a GRN from
one gene to another from the microarray temporal data.
Similarly, when the microarray data represented a single time
point but different samples, we estimated the information
transductivity between genes in the GRN based on the steady-
state model.

Finally, we used microarray sample data to estimate the
information flow in cancer-related signal transduction pathways
and a GRN. We compared the information flows of signal
transduction pathways between leukemia cancer cells and non-
leukemia normal cells. Based on the information flow analysis,
we traced back the main cause of systematic dysfunction
of the related proteins in the signal transduction pathways.
Furthermore, we also identified the systematic dysfunction of
information flow between genes related to leukemogenesis. The
methods proposed here are very useful for estimating signal
transductivity or information transductivity in cellular systems
using microarray temporal or sample data. Since the information
flow model can also be identified using high-throughput data
such as next-generation sequencing (NGS) or proteomic data,
the proposed method can also be used to estimate signal
transductivity and information transductivity from NGS or
proteomic data efficiently in future.

System identification technologies for discrete-time systems
and linear matrix inequalities are standardmethods, which, when
combined with system gain theories and microarray data to
estimate the information flow in signaling pathways in cellular
systems, provide a new method for measuring information
flow in cellular networks using microarray data. To the best
of our knowledge, this is the first study to quantify the
information flow between large coupling signal transduction
pathways and a complex GRN using corresponding microarray
data.

The proposed method has the following limitations. (1) We
use a linear model to approximately measure the information
flow. (2) Proteomic data that comprise differential expressions
are not discussed in this study. Although the information flow
can be measured using a non-linear model, the parameter
estimation of the networks will be more difficult due to the non-
linearity of the model, and more samples of microarray data are
required for the identification of more parameters in a non-linear
model. Furthermore, the information flow also becomes more
difficult to measure in coupling signaling pathways and a GRN.
Additionally, the results measured by the proposed methods will
be biased by microarray data noise. In other words, the variance
of parameter estimation error, i.e., the bias of the proposed least
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square parameter estimation, is proportional to the variance of
microarray data noise (Johansson, 1993).

The Information Flow in Signal
Transduction Pathways

Estimation of Signal Transductivity by Microarray
Temporal Data
For the coupling signal transduction pathways in Figure 1

throughout intercellular communication or cellular stress
response, the receptors in the cell membrane sensed extracellular
signals. yi(t) denotes the expression level of the ith protein in
the coupling signal transduction pathways. They are commuted
to intracellular signals and sequences of reactions. ui(t) denotes
extracellular signals. Different external changes or events outside
the cell may stimulate signaling. Typical extracellular signals are
hormones, pheromones, heat, cold, light, osmotic pressure, and
appearance or concentration change of substance such as glucose,
potassium ion, calcium ion, or cAMP (Klipp, 2005; Lin et al.,
2007; Dibner et al., 2010; Dodd et al., 2010; Kim and Choi, 2010;
Kim et al., 2010; Leung and Sharp, 2010; Li and Chen, 2010;
Mosenden and Tasken, 2011). The extracellular signals ui(t) for
i = 1,. . . ,l are perceived by a transmembrane receptor, as depicted
in Figure 1. The receptor changes its own state from susceptible
to active and then triggers subsequent processes within the cell.
The active receptor stimulates an internal signaling cascade.
This cascade frequently includes a series of changes in protein
phosphorylation states. The changes affect downstream proteins
across the nuclear membrane. Eventually, the TF is activated
or deactivated to change its binding activity to target genes.
In the information flow chart of simple coupling transduction
pathways in Figure 1, y13(t), y14(t), y15(t), and y16(t) represent
the expression levels of terminal TFs in the simple coupling signal
transduction pathways.

For the purpose of system identification for the information
flow of coupling signal transduction pathways in Figure 1, a

FIGURE 1 | Information flow chart depicting coupling signal

transduction pathways that control gene activities. u1,u2,u3, and u4 are

extracellular signals; y13, y14, y15, and y16 are expression levels of TFs.

simple regressionmodel for the expression level of the ith protein
at time t + 1 can be described as follows:

yi(t + 1) = ci,1y1(t)+ · · · + ci,i−1yi−1(t)+ ci,iyi(t)
+ ci,i+1,yi+1(t)+ · · · + ci,MyM(t)+ hi

+
∑l

j= 1 bi,juj(t)+ wi(t), for i= 1, · · · ,M

(1)

where yi(t) indicates the expression level of the ith protein at time
t; ci,j denotes the interaction ability between protein i and protein
j; hi denotes the basal level of the ith protein; and bij denotes
the binding ability of extracellular signal j to the ith protein. In
general, extracellular signals always bind to the receptor proteins
on the membrane.

Let us denote the state vector and system matrix of coupling
signal transduction pathways of Figure 1 in Equation (1) as
follows:

y(t) =






y1(t)
...

yM(t)




 , C =






c1,1 · · · c1,M
...

. . .
...

cM,1 · · · cM,M




 ,

H =






h1
...

hM




 , B =






b1,1 · · · b1,l
...

. . .
...

bM,1 · · · bM,l




 ,

u(t) =






u1(t)
...

ul(t)




 , w(t) =






w1(t)
...

wM(t)






Then, the network of coupling signal transduction pathways in
Figure 1 is represented by:

y(t + 1) = Cy(t)+H + Bu(t)+ w(t) (2)

To exploit the effect of extracellular signals u(t) on the coupling
signal transduction pathways, the effect of basal level H should
be extracted from the dynamic network in Equation (2).
Without consideration of extracellular signal u(t), the network
of coupling signal transduction pathways in Equation (2) can be
represented by:

ŷ(t + 1) = Cŷ(t)+H + w(t) (3)

which is only the effect of basal level H and noise w(t).
Let us denote ỹ(t) = y(t)− ŷ(t) and subtract Equation (3) from

Equation (2). We then get

ỹ(t + 1) = Cỹ(t)+ Bu(t) (4)

where ỹ(t) denotes the information flow in the coupling signal
transduction pathways due to extracellular signals u(t) in
Figure 1.

In this case, the initial condition is at zero, ỹ(0) = 0. The
solution of the recursive dynamic equation in (4) is given by the
following information flow equation (Ogata, 1987):

ỹ(t + 1) =

t
∑

j= 0

C t−jBu(j) (5)
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Obviously, if the system matrices C and B of the coupling signal
transduction pathways can be identified from the microarray
data, the information flow in the input/output response equation
in (5) can be calculated.

Let us denote the signal transduction level ρ of the coupling
signal transduction pathways from the extracellular signals u(t)
to ỹ(t) in Equation (4):

∑tp
t= 0 ỹ

T(t)ỹ(t)
∑tp

t= 0 u
T(t)u(t)

≤ ρ, ∀u(t) ∈ l2[0, tp] (6)

where tp denotes the present time; l2[0, tp] denotes the set of
all possible extracellular signals with bounded energy in [0, tp];
and ρ denotes the upper bound of the signal transductivity of the
coupling signal transduction pathways.
Proposition 1:

The coupling signal transduction pathways in Equation (4)
have a signal transduction level ρ in Equation (6) if the following
linear matrix inequality (LMI) holds for some positive definite
matrix P = PT > 0

[

CTPC − P + I CTPB

BTPC BTPB− ρI

]

≤ 0 (7)

Proof: see Appendix A.
Since ρ is the upper bound of signal transductivity ρ0 of the

coupling signal transduction pathways from extracellular signals
u(t) to ỹ(t)in Equation (4), the signal transductivity of the signal
transduction network in Figure 1 can be obtained by solving the
following LMI-constrained optimization problem:

ρ0 = min
P>0

ρ

subject to LMI in (7)
(8)

The constraint optimization problem in Equation (8) can be
easily solved by decreasing the upper bound ρ in Equation (7)
until no P > 0 exists in Equation (7) by using the MATLAB LMI
toolbox.

Remark 1: The signal transductivity ρ0 in Equation (8) is
equivalent to the system gain from u(t) to ỹ(t + 1) in Equation
(4) (Boyd, 1994; Chiu and Chen, 2011):

ρ0 = sup
u(t)∈l2[0,tp]

∥
∥ỹ(t + 1)

∥
∥
2

∥
∥u(t)

∥
∥
2

(9)

from a system theory perspective.
If we want to know the information flow from u(t) to any

protein, then the coupling signal transduction dynamic equation
in (4) should be represented by

ỹ(t + 1) = Cỹ(t)+ Bu(t)
ỹi(t) = [ 0

︸︷︷︸

1∼(i−1)

1 0
︸︷︷︸

(i+1)∼M

]ỹ(t) = Diỹ(t) (10)

where ỹi(t) denotes the expression of the ith protein and Di is a
row vector with all zeros except 1 at the ith element.

Remark 2: (i) The information flow from u(t) to ỹi(t) in
the signal transduction dynamic equation in (10) is given by
ỹi(t + 1) =

∑t
j=0 DiC

t−jBu(j), for i = 1,. . . ,M.

In this situation, the signal transductivity ρi
0 from u(t) to

the ith protein in the coupling signal transductivity pathways is
solved by the following LMI-constrained optimization problem:

ρi
o =

min
P>0

ρ

subject to

[

CTPC − P + DT
i Di CTPB

BTPC BTPB− ρI

]

≤ 0
(11)

(ii) Further, if we only want to discuss the signal transductivity
from the l extracellular signals to the ith protein, and we let Bl =
[b1l . . .bMl]

T , the binding vector of the lth extracellular signal
to the M proteins of the coupling signal transduction pathway,
it can be calculated by solving the following LMI-constrained
optimization problem:

ρ
i,l
o = min

P>0
ρ

subject to

[

CTPC − P + DT
i Di CTPBl

BT
l
PC BT

l
PBl − ρI

]

≤ 0
(12)

(iii) If the NGS data and proteomic data are available, epigenetic
regulations, such as DNA methylation and histone modification,
can be also involved in ourmodel. The regulations are considered
as the extra inhibition term −Bmm(t) in Equation (2). m(t)
denotes the expressions of DNA methylation or histone. In this
case, Equation (2) is modified as:

y(t + 1) = Cy(t)+H + Bu(t)− Bmm(t) + w(t)

We then obtain

y(t + 1) =

t
∑

j= 0

Ct−j
(

Bu(j)− Bmm(j)+H + w(j)
)

It does not influence signal transductivity ρ0 from u(t) to y(t) in
Equation (9) but will influence output signal y(t).

(iv) The above LMI-constrained optimization problem can be
easily solved with the help of LMI solver in the MATLAB LMI
toolbox by decreasing ρ until no P> 0 exists in the LMI. The LMI
solver works essentially in four steps, initial guess, elimination of
equality constraints, elimination of variables, and optimization.
The pipeline description of the procedure to solve the LMI-
constrained optimization problem in Equation (12) is available
(Elghaoui et al., 1995).

Based on the above analyses, if the system matrices C, H,
and B can be identified from the microarray temporal data
or proteomic temporal data, the signal flow in Equation (5)
and the signal transductivity ρ0 in Equation (8), (11), or (12)
can be easily estimated by solving the corresponding LMI-
constrained optimization problem. Therefore, as follows, we will
focus on how to estimate these system matrices of coupling
signal transduction pathways in Equation (2) from microarray
data. In general, we do not identify C, H, and B from Equation
(2) directly owing to its complex computation with much more
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round off error in the parameter identification process. We want
to estimate these parameters protein-by-protein from Equation
(1). From Equation (1), they can be represented by the following
regression form:

yi(t + 1) = [y1(t) · · · yM(t) u1(t) · · · ul(t)1]















ci,1
...

ci,M
bi,1
...

bi,l
hi















+ wi(t)

, φi(t)θi + wi(t), for i = 1, · · · ,M (13)

By the recursive least square parameter estimation algorithm
(Johansson, 1993),

θi(t + 1) = θi(t)+ Pi(t)φi(t)(yi(t)− φT
i (t)θi(t − 1))

Pi(t) = Pi(t − 1)−
Pi(t − 1)φi(t)φ

T
i (t)Pi(t − 1)

1+ φT
i (t)Pi(t − 1)φi(t)

,

for i = 1, · · · ,M
θi(0) and Pi(0) are given (14)

This recursive least square parameter estimation can use
microarray temporal data to update parameters protein-by-
protein. Therefore, it can be used for real-time parameter
estimation. If the number of time-profile data yi(t) is small, we
can repeat several rounds of the recursive parameter estimation
algorithm in Equation (14) with the previous result as initial
parameter estimate θi(0) and initial Pi(0) to achieve the optimal
parameter estimate. After parameter estimate θi from the least
square parameter estimation algorithm in Equation (14) for
all proteins in the coupling signal transduction pathways, i.e.,
i = 1,. . . ,M, we can estimate the system matrices C, H, and
B of both coupling signal transduction pathways in Equation
(2) from microarray temporal data. By substituting these
system parameters into the constrained optimization problem in
Equation (8), (11), or (12), we can estimate different kinds of
signal transductivities from the extracellular signals to proteins
in the coupling signal transduction pathways throughmicroarray
temporal data.

Estimation of Signal Transductivity by Microarray
Sample Data
If the microarray data for measuring signal transductivity is of
one time-point microarray from different samples, the regression
model for the protein expression level of the ith protein in the
coupling signal transduction pathways in Figure 1 cannot be
represented by the discrete-time dynamic equation in (2) but can
be represented by the following linear static regression form:

y(k) = Cy(k)+H + Bu(k)+ w(k), k = 1, . . . ,K (15)

where y(k) = [y1(k) . . . yM(k)]T ; u(k) = [u1(k) . . .ul(k)]
T ; w(k) =

[w1(k) . . .wM(k)]T ; C, H, and B are defined as in Equation (2);
and k = 1,. . . ,K denote the samples of microarray data.

In this situation,

y(k) = (I − C)−1Bu(k)+ (I − C)−1H + (I − C)−1w(k) (16)

From Equation (16), it is seen that the transduction function T
from u to y is

T = (I − C)−1B (17)

Then, the signal transductivity is obtained as Boyd (1994):

ρ0 = sup

∥
∥y(k)

∥
∥
2

∥
∥u(k)

∥
∥
2

= ‖T‖2 =
∥
∥(I − C)−1B

∥
∥
2
= σmax((I−C)−1B)

(18)
where σmax(·) denotes the maximum singular value.

Therefore, if we want to estimate the signal transduction
function T in Equation (17) or the signal transductivity in
Equation (18), we need to estimate the system matrices C and
B in Equation (15) from the microarray sample data. From the
linear regression model in Equation (15), we get:

yi(k) = [y1(k) · · · yM(k) u1(k) · · · ul(k)1]















ci,1
...

ci,M
bi,1
...

bi,l
hi















+ wi(k)

, φi(k)θi + wi(k), for k = 1, · · · ,K (19)

The recursive least square parameter identification for θi of the
ith protein in Equation (19) with K sample microarray is given
by Johansson (1993):

θi(k) = θi(k− 1)+ Pi(k)φi(k)εi(k)

εi(k) = (yi(k)− φT
i (k)θi(k− 1)), θi(0) and Pi(0) are given

Pi(k) = Pi(k− 1)−
Pi(k− 1)φi(k)φ

T
i (k)Pi(k− 1)

1+ φT
i (k)Pi(k− 1)φi(k)

,

for i = 1, · · · ,M, and k = 1, · · · ,K (20)

If the sample number of microarray data is small, we can repeat
several rounds of the recursive parameter estimation algorithm
in Equation (20) with previous results as initial conditions θi(0)
and Pi(0) to achieve the optimal parameter estimate. After the
parameters θi for i = 1,. . . ,M are estimated by the recursive
least square estimation algorithm in Equation (20) through
microarray data with K samples, we can estimate C, H, and B
in Equation (15). Then, the signal transduction function T in
Equation (17) or the signal transductivity ρ0 in Equation (18) can
be calculated through microarray sample data. If we only want to
estimate the signal transduction from all extracellular signals u(k)
to the ith protein (or TF) yi(k), then T in Equation (17) should be
replaced by:

yi(k)

u(k)
= Ti = Di(I − C)−1B (21)
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where Di is defined in Equation (10).
The signal transductivity from all extracellular signals u(k) to

the ith protein is given by:

ρi
0 = σmax(Di(I − C)−1B) =

∥
∥Di(I − C)−1B

∥
∥
2

(22)

where ‖ · ‖2 denotes 2-norm.
Remark 3: If we only want to estimate the information flow

from the lth extracellular signal ul(k) to the ith protein (TF) yi(k),
then T in Equation (21) should be replaced by:

yi(k)

ul(k)
= Ti,l = Di(I − C)−1Bl (23)

and the signal transductivity from ul(k) to the ith protein is
given by:

ρ
i,l
0 = σmax(Di(I − C)−1Bl) =

∣
∣Di(I − C)−1Bl

∣
∣

where | · | denotes the absolute value.

The Information Flow in a GRN

Estimation of Information Transductivity of a
GRN by Microarray Temporal Data
Consider the information flow of the GRN in Figure 2. The
regulatory dynamics of the ith gene can be represented by the
following regressive equation

xi(t + 1) = ai,1x1(t)+ · · · + ai,nxn(t)+ vi(t) (24)

where xi(t) denotes the gene expression level of the ith gene; vi(t)
denotes noise and residue; and ai,jdenotes the regulatory ability
of gene j on gene i.

Remark 4: (i) In general, a positive value of ai,j means the
jth gene is an active regulator while a negative value of ai,j
means the jth gene is an inhibitive regulator. (ii) The regulatory
parameter ai,j, for j = 1,. . . ,n, in Equation (24) can be identified
by the recursive least square parameter estimation algorithm in
Equation (14) through the corresponding microarray temporal
data xi(t), for i = 1,. . . ,n (Chen and Wang, 2006).

Therefore, the GRN in Figure 2 can be represented as follows:
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(25)

X (t + 1) = AX (t) + v (t) (26)

Suppose we want to estimate the information transductivity from
gene j to gene i. In general, it is difficult to solve the information
flow problem for the GRN in Figure 2 from the graph theory
perspective (Kreyszig, 1993), especially for a digraph (directed
graph) like Figure 2. In this study, an input/output state-space

FIGURE 2 | Information flow in a GRN. xi (t) denotes the gene expression of

the ith gene. Since the gene regulation is directional, the graph of the GRN is a

directed graph (digraph). The signal processing model of the GRN is given in

Equation (26) by microarray temporal data; the signal flow between any two

genes is described by Equation (28) and the information transductivity can be

obtained by solving Equation (30). If data are available from only one temporal

sample microarray, the static state-space model in Equation (32) is used, and

the information flow between any two genes is given by Equation (34), with

information transductivity in Equation (36).

method is proposed to solve this difficult information flow
problem of the digraph as follows. First, the dynamic model
of the GRN in Equation (25) is represented by the following
input/output dynamic state-space equation (Ogata, 1987):
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(27)

In the input/output dynamic state-space system (Equation 27),
xj(t) is considered an input signal and xi(t) an output signal.
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Therefore, Equation (27) is simply represented by:

X(t + 1) = AjX(t)+ Bjxj(t)+ v(t)
xi(t) = DiX(t)

(28)

which is similar to the signal transduction dynamic equation
in (10) but with the gene expression level xj(t) replacing the
extracellular signal u(t).

By the system theory (Ogata, 1987; Johansson, 1993), the
information flow from gene j to gene i in the GRN in Figure 2

is given by

xi(t) =

t
∑

k= 0

DiA
t−k
j Bjxj(k) (29)

Similar to solving the LMI-constrained optimization problem
in Equation (12) for the information transductivity from the
lth extracellular signal to the jth protein, the information

transductivity γ
i,j
0 from gene j to gene i, i.e., the system gain from

xj(t) to xi(t) γ
i,j
0 = sup

‖xi(t)‖2
‖xj(t)‖2

, can be estimated by solving the

following LMI-constrained optimization problem:

γ
i,j
o = min

P>0
ρ

subject to

[

AT
j PAj − P + DT

i Di AT
j PBj

BTj PAj BTj PBj − ρI

]

≤ 0
(30)

Based on the above analysis, we can easily calculate the regulatory
information flow in Equation (29) and solve the LMI-constrained
optimization in Equation (30) for the information transductivity

γ
i,j
0 between any two genes in a GRN if we identify the system

parameterA in Equation (26) from themicroarray temporal data.

Estimation of Information Transductivity of a
GRN by Microarray Sample Data
If the microarray data for measuring the information flow of
the GRN in Figure 2 are of one time-point microarray from
different samples, then the regression model for gene regulation
in Equation (24) is modified to the following:

xi(k) = ai,1x1(k)+· · ·+ai,nxn(k)+vi(k), for k = 1, . . . ,K (31)

where x1(k),. . . ,xn(k) denote the gene expression levels of the
GRN in Figure 2 at the kth sample microarray. Therefore, the
whole GRN in Figure 2 can be represented by:

X
(

k
)

= AX
(

k
)

+ v
(

k
)

, for k = 1, . . . ,K (32)

where X(k) =
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x1(k)
...

xn(k)
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
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v1(k)
...

vn(k)
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
, and
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




a1,1 · · · a1,n
...

. . .
...

an,1 · · · an,n




.

Suppose we want to calculate the information flow from gene j to
gene i of the GRN in Figure 2. Then, Equation (32) needs to be
re-arranged as

X(k) = AjX(k)+ Bjxj(k)

xi(k) = DiX(k) (33)

where Aj, Bj, and Dj are defined in Equations (27) and (28).
Then, from Equation (33), we can get the information flow

from gene j, xj(k), to gene i, xi(k), as follows:

xi
(

k
)

= Di

(

I − Aj

)−1
Bjxj

(

k
)

(34)

Hence, the regulatory information transduction equation from
gene j to gene i is given by:

xi(k)

xj(k)
= Ti,j = Di(I − Aj)

−1Bj (35)

Then the information transductivity from gene j to gene i is
given by

γ
i,j
0 = |Di(I − Aj)

−1Bj| (36)

Therefore, if we can identify regulatory parameter ai,1, . . . , ai,n in
Equation (31) by the recursive least square estimation algorithm
in Equation (20) through microarray data with K samples for
all genes of a GRN, we can identify the regulatory matrix A in
Equation (32) and then Aj, Bj, and Di. In this situation, we can
estimate the information transduction equation Ti,j in (35) from

gene j to gene i and information transductivity γ
i,j
0 in Equation

(36) for any i and j.
Remark 5: (i) MicroRNA-mediated repressions can be also

involved in our model if NGS data is available. The repressions
are considered as the extra inhibition term−Bmm(t) in Equation
(26). m(t) denotes the expressions of microRNAs. In this case,
Equation (26) is modified as:

X(t + 1) = AX(t)− Bmm(t)+ v(t)

Then, Equation (28) is modified as:

{

X(t + 1) = AjX(t)+ Bjxj(t)− Bmm(t)+ v(t)
xi(t) = DiX(t)

Therefore, we obtain

xi(t) =

t
∑

k=0

DiA
t−k
j

[

Bjxj(k)− Bmm(k)+ v(k)
]

In this case, the information transductivity γ
i,j
0 = sup

‖xi(t)‖2
‖xj(t)‖2

from gene j to gene i is the same as found in Equation (30).
However, the gene expression xi(t) with microRNA-mediated
repressions is different from that without the repressions due to
the extra inhibition term −Bmm(t) in the above equation. (ii)
For the system identification of Equation (13), (19), (26), or (32),
the noise term, wi or v, is also model residue. In other words,
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it represents the modeling error and environmental noise. In
general, it cannot be measured beforehand, and is corrupted in
microarray data. After the system parameter θ was estimated by
the system identification in Equation (14), the noise could be
estimated by the modeling error ŵ = y − φθ̂ , where θ̂ is the
estimate of θ , from Equation (13) and Equation (19).

Example of Calculating Information Flow in
Signal Transduction Pathways and Control
of a GRN

Following on from the analyses of signal transductivity of
coupling signal transduction pathways based on protein–protein
interaction data from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database (Kanehisa and Goto, 2000;
Kanehisa et al., 2014) and the information transductivity of a
GRN based on the GRN from the TRANSFAC gene-regulation
database (Matys et al., 2006) in the above section, we applied
the microarray data for estimation of the signal transductivities
of the signal transduction pathways in normal cells and
cancer cells (Figure 3), and compared the differences between
these to determine the dysfunction in information flow due

to carcinogenesis. Furthermore, we estimated the information
transductivities between different genes in a GRN in normal
and cancer cells (Figure 4). The proteins with dysfunctional
information flow in signal transduction pathways and a GRN
can be considered as therapeutic targets. Using the microarray
sample raw data from the Gene Expression Omnibus (GEO)
database (accession number: GSE 13159) (Haferlach et al., 2010)
as y(k) and the data of the corresponding ligand for each receptor
protein as u(k) in Equation (15), we used the recursive least
square parameter estimation method to identify the system
parameters C, H, and B in Equation (15) of the coupling
transduction pathways shown in Figure 3. The estimated signal
transductivities from extracellular signals to 28 TFs in acute
myeloid leukemia (AML) cancer cells and non-leukemia normal
cells are given in Table 1. Among them, the signal transductivity
of each protein in the MAPK and PI3K-SKT coupling pathways
in normal and cancer cells is shown in Figure 5. The dysfunction
in signal transductivity in a protein is mainly due to genetic
mutations involved in the carcinogenesis. The effects of these
genetic changes on cellular function, via signal transductivity
changes in TFs, are also shown in Figure 5. Similarly, the signal
transductivity of each protein in the MAPK and JAK-STAT
coupling pathways in normal and cancer cells is shown in

FIGURE 3 | The coupling signal transduction pathways that control

gene activities related to leukemogenesis. The figure consists of 147

groups of proteins and 18 groups of TFs. The downstream network in the

nucleus denotes the gene regulatory network as shown in Figure 4, while

the pathways in plasma denote protein-protein interactions. Other notations

are defined and shown at the top of this figure.
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FIGURE 4 | The information flow in the gene regulatory network related

to leukemogenesis in the downstream of coupling signal transduction

pathways in Figure 3. Each TF regulates other genes and acts as a gene of

TF regulated by other TFs. The 18 leukemogenesis-related TFs and the

regulations are determined by the TRANSFAC gene-regulation database and

shown as follows: AP-2α, β − catenin, C/EBPα, p300, c-Myc, CREBs

(ATF-4/CREB1/Luman/OASIS/CREB3L2/CREB-H/ AIBZIP/CREBPA),

CSLs(RBP-JK/RBPJL), E2Fs (E2F1/E2F2/E2F3), Elk-1, c-Fos, HIF-1α, c-Jun,

LEF-1, NF-κBs (NF-κB1/NF-κB1-p50/NF-κB2-p52, NF-κB2/

NF-κB2-p52/c-Rel/RelA-p65/RelB), Smad3, STATs (STAT1/STAT3/STAT5),

TCFs (TCF-1/TCF-3/TCF-4), and p53.

Figure 6. The effects of signal transductivity changes in TFs on
cellular functions are also shown in Figure 6. The information
transductivity of the GRN related to leukemia is shown in
Figure 4, based on the GRN from the TRANSFAC gene-
regulation database (Matys et al., 2006). By using microarray
sample raw data (accession number: GSE 13159) (Haferlach
et al., 2010) as X(k) to identify the system matrix A of the

GRN in Equation (32), we estimated the information flow γ
i,j
0

in Equation (36) between any two genes i and j in the GRN

from Equation (36). For example, the information flow γ
i,j
0 from

STATs to c-Jun is 0.3104 in AML cancer cells and 3.3952 in
normal cells; the information flow γ

i,j
0 in Equation (36) from

CREBs to p53 is 0.6276 in AML cancer cells and 0.2273 in normal
cells. This clearly shows that the information flow in a GRN can
be affected by leukemia. Additionally, according to the results
of parameter estimation methods in AML and non-leukemia
cells, the correlation coefficients of noise v(k) and the identified
parameterA in Equation (32) in AML cells almost lie within−0.2
and +0.2 (96.71%,), while those in non-leukemia cells almost lie
within −0.2 and +0.2 (98.58%), i.e., the estimation parameters
are almost uncorrelated with noises.

In order to clarify the proposed method for a broad
audience, we use a flowchart in Figure 7 to simplify the
estimation procedures of signal transductivity of coupling

TABLE 1 | The signal transductivities of signal transduction pathways in

Figure 2 from extracellular signals to 28 TFs in non-leukemia normal cells

and acute myeloid leukemia (AML) cancer cells.

TFs Signal transductivity

Non-leukemia AML

CSLs 0.0059 0.2267

P300 0.0002 0.0065

CTBPs 0.2330 0.1233

AP-2α 0.0001 0.0027

STATs 0.1551 0.9443

c-Jun 0.0017 0.0096

β-catenin 0.0160 0.0659

LEF-1 0.2295 0.0537

TCFs 0.0198 0.0096

c-Myc 0.0257 0.0016

C-Fos 0.0003 0.0000

CREBs 0.0168 0.0029

Elk-1 0.0321 0.0057

P53 0.0219 0.0013

FOXO3a 0.0050 0.0000

NF-κBs 0.0052 0.0001

HIF-1α 0.0000 0.0000

E2Fs 0.0001 0.0000

pRb 0.0003 0.0001

C/EBPα 0.0196 0.0023

AML1 0.0357 0.0134

ETO 0.0064 0.0099

PLZF 0.0011 0.0020

PU.1 0.0041 0.0072

Smad2 0.0373 0.0297

Smad3 0.4713 0.1089

Smad4 0.0150 0.1090

GLIs(Ci) 0.0803 0.0132

signaling pathways and information transductivity in a GRN.We
also clarified the estimation procedure of the method proposed in
this study. If we want tomeasure signal transductivity of coupling
signal transduction pathways and information transductivity in
a GRN, some technical specifications are required. First, we
need microarray sample data (or temporal data) or NGS sample
data (or temporal data) for normal or cancer cells. Second,
we need recursive parameter estimation algorithm in Equation
(12) or (20), and singular value decomposition and basic matrix
operation for Equations (18), (23), and (36). Finally, LMITOOL is
required for solving the LMI-constrained optimization problem
in Equation (30) (Elghaoui et al., 1995).

In order to estimate the signal transductivities of the coupling
signal transduction pathways (Figure 3) obtained from the
KEGG database and the information transductivities of the GRN
(Figure 4) obtained from the TRANSFAC database in non-
leukemia normal cells and AML cancer cells, we applied the
microarray sample data from non-leukemia normal cells or AML
cancer cells to the Equations (15) and (32). We first identified
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FIGURE 5 | Signal transductivities of the proteins in p38 MAPK

and PI3K-AKT coupling pathways contributing to loss of

transductivity of TF p53 at the acute myeloid leukemia (AML)

subtype when compared with normal type. The solid line

represents the PPIs in the plasma membrane, while the dot-and-dash

line represents the interactive contribution from the other pathways.

The proteins underlined in red play an important role in dysfunction of

the downstream TF. The other notations are shown at the top of the

Figure. Stars ⋆ denote the locations at which the genetic mutations

occur.

the system parameters in the models by using the recursive
least square parameter estimation algorithm in Equation (20).
Finally, we use Equations (22) and (36) to estimate the signal
transductivities of coupling signaling pathways in Table 1 and
Figures 5, 6 and information transductivities in the GRN,
respectively.

Conclusion

In this study, the signal transductivity and information
transductivity in cellular networks were estimated using
microarray temporal data and a state-space model of signal
processing systems. If the microarray data are obtained from
different samples with a single time point, the static state-
space model can also be developed to measure the information
flow of cellular systems from multi-input extracellular signals to

multi-output TFs in the coupling signal transduction pathways.
Furthermore, we also proposed an input/output state-space
signal model to overcome the difficulties of the digraph
theory method in efficiently estimating the regulatory one-
gene-to-another in a complex digraph network of a GRN.
Finally, the proposed signal transductivity and information
transductivity methods were applied to measure the signal
transductivity of coupling signal transduction pathways and
the information transductivity of a GRN related to cancer via
microarray sample data. By comparing signal transductivity and
information transductivity between cancer and normal cells, we
were able to determine the systematic dysfunctions of proteins
and genes in the signal transduction pathways or a GRN
easily, using the proposed method and microarray data. Since
the proposed information flow models can also be identified
using high-throughput data such as NGS, real-time PCR, or
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FIGURE 6 | Signal transductivity of the proteins in JAK-STAT and

MAPK coupling pathways contributing to the gain of transductivity of

STATs and the loss of transductivity of CEBPα at the acute myeloid

leukemia (AML) subtype. The notations are the same as those in Figure 5.

The bold solid line with a pink arrow denotes the demonstration of the

directional signal flow between two pathways.
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FIGURE 7 | The estimation flowchart of the signal transductivity for coupling signaling pathways and information transductivity for a GRN. The figure

summarizes parameter estimations and transductivity measurements of information flows in this study.

proteomic data, the proposed model has great potential for
efficiently estimating the signal transductivity and information
transductivity of cellular systems using such data. However,
we do not discuss the use of differential expression protein
data here.
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Appendix A
Let us denote the Lyapunov function of the coupling signal
transduction pathways in Equation (4) as V(ỹ(t)) = ỹT(t)Pỹ(t),
for some symmetric positive definite matrix P = PT> 0. We have:

V(ỹ(t + 1)) = ỹT(t + 1)Pỹ(t + 1) =
{

Cỹ(t)+ Bu(t)
}T

P
{

Cỹ(t)+ Bu(t)
}

= ỹT(t)CTPCỹ(t)+ uT(t)BTPCỹ(t)+

ỹT(t)CTPBu(t)+ uT(t)BTPBu(t)− ρuT(t)u(t)− ỹT

(t)Pỹ(t)+ ỹT(t)ỹ(t)− ỹT(t)ỹ(t)+ ỹT(t)Pỹ(t)+ ρuT(t)u(t)

(A1)

If we assume

ỹT(t)CTPCỹ(t)+ uT(t)BTPCỹ(t)+ ỹT(t)CTPBu(t)

+uT(t)BTPBu(t)− ρuT(t)u(t)− ỹT(t)Pỹ(t)+

ỹT(t)ỹ(t)− ỹT(t)ỹ(t) ≤ 0

(A2)

Then, Equation (A1) becomes

ỹT(t + 1)Pỹ(t + 1) ≤ ỹT(t)Pỹ(t)+ ρuT(t)u(t) (A3)

Summing the above inequality from t = 0 to tp, we get

ỹT(t + 1)Pỹ(t + 1) ≤ ỹT(0)Pỹ(0)−

tp
∑

t= 0

ỹT(t)ỹ(t)+

ρ

tp
∑

t=0

uT(t)u(t) (A4)

By the factor ỹ(0) = 0, we get

tp
∑

t=0

ỹT(t)ỹ(t) ≤ ρ

tp
∑

t=0

uT(t)u(t) (A5)

which in Equation (6).
The above inequality holds if the assumption of the inequality

in Equation (A2) holds, i.e.,

[

ỹT(t) uT(t)
]
[

CTPC − P + I CTPB

BTPC BTPB− ρI

] [

ỹ(t)
u(t)

]

≤ 0

(A6)

i.e., if the LMI in Equation (7) holds, then the coupling signal
transduction pathways in Equation (4) have a transduction level
(Equation 6).
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