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Agriculture is the sector with the greatest water consumption, since food production
is frequently based on crop irrigation. Proper irrigation management requires reliable
information on plant water status, but all the plant-based methods to determine it suffer
from several inconveniences, mainly caused by the necessity of destructive sampling
or of alteration of the plant organ due to contact installation. The aim of this work is to
test if terahertz (THz) time domain reflectance measurements made on the grapevine
trunk allows contactless monitoring of plant status. The experiments were performed
on a potted 14-years-old plant, using a general purpose THz emitter receiver head.
Trunk THz time-domain reflection signal proved to be very sensitive to changes in plant
water availability, as its pattern follows the trend of soil water content and trunk growth
variations. Therefore, it could be used to contactless monitor plant water status. Apart
from that, THz reflection signal was observed to respond to light conditions which,
according to a specifically designed girdling experiment, was caused by changes in the
phloem. This latter results opens a promising field of research for contactless monitoring
of phloem activity.

Keywords: dendrometer, phloem, THz spectrometry, Vitis vinifera L., water relations, xylem

Introduction

Agriculture, and especially irrigated agriculture, is the sector with the largest consumptive water
use at a global scale (Frenken and Gillet, 2012). From a technical point of view, proper irrigation
management requires reliable information on plant water status to support growers to make fast
and effective decisions (Naor, 2006). The most frequently used information sources for decision-
making are (i) estimation of water consumption from climatic data, (ii) measurement of soil water
content or availability, and (iii) measurement of plant water status, or (iv) activity (Jones, 2004),
being the two latter sources the most reliable ones since the information is gathered directly from
the plant.

Ideally, water status estimation methods for irrigation decision-making should be sensitive to
changes in plant water status, and allow early detection of water stress that enables the grower
adjusting the irrigation regime before a significant yield loss or damage occurs. Nevertheless, it
should as well not imply destructive sampling, allow automation and also be easy and cheap to
implement. In the last five decades, there has been a remarkable development of methods, since
none of the available ones matches those requirements. For instance, leaf water potential measured
with the Scholander pressure bomb (Scholander et al., 1965) is considered the reference method
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by plant physiologists and agronomists. This is because it
provides a relatively quick, flexible and easy-to-understand
estimation of plant water status, but measurements are
destructive and cannot be automatized. Conversely, automatable
and non-destructive methods such as sap flow or plant
trunk diameter variation (TDV) measurement require
relatively complicated set-ups, skillful maintenance and a
relatively complex data interpretation (Braun, 1997; Fernandez
and Cuevas, 2010; Vandegehuchte and Steppe, 2013). As a
consequence, there is a great interest in developing new methods
that enable an easy, affordable and accurate non-destructive
estimation of plant water status.

The terahertz (THz) frequency band, the part of the
electromagnetic spectrum between classical microwaves (3 mm,
100 GHz) and the infrared (30 pm, 10 THz), is slowly becoming
more technologically relevant due to the increasing number
of attractive applications which can be potentially developed,
i.e., medicine (skin cancer detection, caries detection,...),
security and surveillance (detection of hidden weapons or
explosives, detection of gasses,...), viticulture (control of the
vine state), food sector, space, and aeronautics, industrial,
passive tomography imaging, and investigation on proteomics
in the pharmaceutical industry. In other hand, in the last
decade, terahertz time-domain spectroscopy (THz-TDS) has
proven to be a very strong and accurate tool for characterizing
and imaging various materials (for review, see Jepsen et al,
2011). The THz-TDS is a powerful spectroscopic technique
that allows the time-resolved measurement of light-matter
interaction with broadband and powerful THz pulses. Contrary
to other spectroscopies, amplitude and phase information
are directly retrieved in a single scan, making THz TDS a
powerful tool for studying absorption and gain dynamics in
many different kind of materials. The time information allows
further to retrieve depth information and can be used in
many different disciplines for tomographic imaging, which
allows to retrieve specific information coming from inside the
material.

The THz wave region exhibits an interest property for the
agriculture sector; i.e., the electromagnetic waves operating in
this frequency range are highly sensitive to water content,
which makes them a suitable candidate for plant water status
characterization (Iriarte et al, 2010; Etayo et al, 2011la)b;
Iriarte et al., 2011; Maestrojuan et al, 2013). In fact, some
research developed in the last decade has shown that THz-TDS
transmittance correlates well with leaf water content in coffee
(Jordens et al., 2009; Shakfa et al., 2009; Breitenstein et al., 2012),
celery (Zhang et al., 2008), Arabidopsis (Castro-Camus et al.,
2013), and silver fir (Born et al., 2014). The first research works
were performed on detached leaves that were allowed to dry
under laboratory conditions (Zhang et al.,, 2008; Shakfa et al.,
2009), whereas later research has shown that this method could
also be used in vivo (Breitenstein et al., 2012; Castro-Camus et al.,
2013; Born et al., 2014).

However, in all the above mentioned research, THz-TDS
measurements were performed in leaves, which implies a
double difficulty for its implementation under field measuring
conditions. On the one side, it is difficult to fix the sensors

to the leaves, since holding systems may damage them or, at
least, alter leaf conditions and, on the other side, the significance
of the measurements made in a leave is limited, since there
may be a large variability on water status between leaves in
the same plant (Jones, 1990; Williams, 2012). From that point
of view, and particularly for woody species, it would be more
desirable to measure water status in the trunk, which would
act as an integrator of plant water status. Furthermore, most of
the measurements performed at leave level at THz frequencies
have been performed in a transmission mode configurations,
meanwhile, for trunk measurements, reflection configuration are
more appropriated and therefore implemented into this paper.

The aim of this research is to evaluate for the first time
the potentiality of THz-TDS reflection measurements performed
on grapevine trunks to measure of plant water status non-
destructively and in real time.

Materials and Methods

Experimental Layout

All the experiments were performed in 2013 on a 14-years-
old grapevine (Vitis vinifera L., cv. “Tempranillo’) plant, which
had been uprooted 2 years before from a commercial vineyard,
transplanted to a 26 L pot filled with a peat:sand mix (2:1),
and properly maintained outdoors. The plant was pruned as a
single-cordon, and its vegetative and reproductive development
was similar to that of moderate vigor field-grown plants.
The experiments started on first August, when the plant had
reached veraison (phenological stage 35 in Eichhorn-Lorenz
scale). One month before starting the experiment the plant was
transferred, for proper acclimation, to a growth chamber where
all measurements took place.

During the acclimation period, the growth chamber was
programmed for a 16 h photoperiod, day-night cycle, day and
night temperature being, respectively, 23 and 16°C. The chamber
was equipped with mixed incandescent and fluorescent lighting
that provided approximately 400 wmol m~2 s~! P.A.R (400-
700 nm) at the upper part of the canopy. During the experiments,
the photoperiod was 14 h day/10 h night (except when otherwise
expressed), day and night temperature was fixed at 21°C to avoid
temperature interferences, and the plant was irrigated back to
field capacity every other day.

Plant water Status Monitoring Methods
Conventional Methods

Soil water content was measured using a capacitance soil
moisture sensor (mod. EC10, ECH20, Decagon Devices Inc.,
Pullman, WA, USA) inserted in the pot. This sensor estimates
soil volumetric moisture (m*® water m~ soil) by determining
the apparent permittivity of the soil. TDV's were also monitored
using a dendrometer, that consists on a linear variable differential
transformer (LVDT, mod. DF 2.5, Solartron Metrology, West
Sussex, UK) fixed to the trunk by a metal frame of Invar (a metal
alloy with minimal thermal expansion), that allows the detection
of small changes in trunk size. TDV have been widely used to
evaluate plant water status (Goldhamer and Fereres, 2001; Naor,
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FIGURE 1 | Setup for terahertz (THz) reflection measurements.

2006; Intrigliolo and Castel, 2007), since daily growth and the
magnitude of stem contraction along a day are related to it. Water
deficit reduces trunk growth, whereas the diurnal shrinking and
swelling of tissues that mainly depend on the level of plant
tissue hydration (Simonneau et al., 1993) and on the degree of
a radial transfer of water from bark tissues into xylem or vice-
versa (Parlange et al., 1975). The readings provided by the soil
water probe and the dendrometer were logged every 2 min with
a CR10X multiple purpose datalogger (Campbell Scientific Ltd.,
Logan, UT, USA).

Time Domain THz Reflection Characterization
Time-domain THz reflection measurements were performed
on the vine’s trunk, using a network analyser (VNA, Agilent
E3861C), a receiver/transmitter external frequency head in the
frequency range from 140 to 220 GHz (OML VO05VNA2-
TR), and a pair of plane-convex lenses, whose set-up is
represented in Figure 1, and depicted in Figure 2. The selected
Agilent equipment is able to measure up to 26,5 GHz, but
through the use of the external heads, which correspond to
frequency mixers, the output operation frequency is moved to
the 140-220 GHz band. The system allows to different kind
of measurements; ie., frequency and time domain responses.
The VNA measures the frequency response of the device and
mathematically calculates a time domain transform of the data
to convert the frequency domain information into the time
domain. In the reflection mode, the VNA measures reflection
coefficient as a function of frequency. The reflection coefficient
can be viewed as the transfer function relating the incident
voltage and reflected voltage. An inverse transform converts
the reflection coefficient to a function of time (the impulse
response). Step and impulse responses can be calculated by
convolving the input step or pulse with this reflection coefficient
impulse response. The resulting measurement is a fully corrected
time domain reflection response of the test device, displayed
in near real-time. Response values provide valuable insight into
the behavior of the grapevine trunk beyond simple frequency
characteristics.

The equipment was configured to obtain automatically the
time domain response of the grapevine trunk. Taking into
account that the operational bandwidth is 80 GHz, the achieved

FIGURE 2 | Images of the setup for THz reflection measurements.

spatial resolution (SR) is 1.875 mm (SR = ¢/2 * BW) where c is
the speed of light and BW the bandwidth considered. The system
recorded and processed the THz time domain reflection peak
data every 10 min (real time analysis).

The plane-convex lenses are used to focus the signal
from the THz receiver/transmitter external head into a
smaller and concentrated beam spot over the trunk of
the grapevine. This enhanced signal is achieved with a

FIGURE 3 | Details of girdled area. Phloem discontinuity lines are marked
with red arrows.
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FIGURE 4 | Evolution of soil water content and trunk THz reflection signal under the short watering cycles. Arrows indicate irrigation events.
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FIGURE 5 | Evolution of soil water content and trunk THz reflection signal under the long watering cycles. Arrows indicate irrigation events.

distance of 5 cm from the horn of the external frequency
head to the first plane-convex lens, a distance between
lenses of 50 mm, and 50 mm from the second plane-
convex lens to the trunk of the grapevine. The use of
these lenses improves the dynamic range of the system
and prevents unwanted refractions from the trunk
edges. The diameter of the beam spot achieved was of
approximately 2 mm.

The underlying principle for this measurement procedure
is that the reflected signal is hypothesized to be directly
proportional to the water content of the grapevine in its
trunk. Thus, the greater water content in the trunk, the higher
refractive index is hypothesized to be encountered by the THz

signal, and a higher reflection signal will be measured at the
transmitter/receiver external head.

Experiments Performed

In order to evaluate the suitability of Time Domain THz
Reflection characterization for plant water status estimation,
three different experiments were conducted.

Experiment 1: Watering Cycles

The plant was submitted to watering and drying cycles during
August and the first fortnight of September. During the first
2 weeks, the plant was watered every 3-4 days leading the plant
to experience mild water deficit, whereas during the following
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4 weeks, watering was performed every 6-7 days, so that the plant
reached a moderate to severe water deficit.

Experiment 2: Coupling of THz Signal to Changes in
Light and Darkness

In September 23rd, the day and night pattern was changed in
order to evaluate how the THz reflected signal responded to light
and darkness. Thus, a light to darkness alternating cycle was
programmed, consisting on 4 h-(4 h)-3 h-(2 h)-1 h-(1 h)-30'-
(30")-20"-(20")-10"-(10"), where darkness periods are indicated
between brackets.

Experiment 3: Coupling of THz Signal to Xylem and
Phloem Activity

In the last days of September, in order to test the dependence
of the THz signal on phloem and xylem activity, phloem
was discontinued in a 3 cm x 3 cm square around the
lens focusing area through phloem girdling. This technique
consists on removing thin strips of bark in order to

prevent phloematic flux from reaching the girdled area,
so that the reflected THz signal would be less dependent
on phloem activity. The phloem girdled area is shown in
Figure 3.

Results and Discussion

Experiment 1: Watering Cycles

Trunk THz time-domain reflection signal proved to be very
sensitive to changes in plant water availability, as its pattern
follows the trend of soil water content for either short (Figure 4)
and long (Figure 5) watering cycles, the response being clearer
for the latter, where a wider range of water status was embraced.
THz reflection signal does not show the peak detected after every
irrigation event by soil moisture sensors, which correspond to
gravitational water, which gets drained in the minutes following
irrigation, and is not useful for the plant. All this supports the
hypothesis formulated in the introduction, linking trunk THz
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reflection signal to plant water status. In fact, the THz reflection
signal follows the irrigation cycles by varying (increasing the
amount of reflected power which means larger water content in
the trunk) its level.

When THz time-domain reflection signal was compared
to TDV measured with the dendrometer, the correspondence
observed is not clear neither for short (Figure 6) nor for long
(Figure 7) watering cycles. Taking into account the neatness of
the response observed to watering events, this lack of coherence
with TDV can be a consequence of the loss of sensitivity that TDV
have after veraison, as shown by Intrigliolo and Castel (2007).
Nevertheless, the information provided by the dendrometers
was proved to be useful in order to understand the changes
observed for THz-reflection signal, seen in Figures 4-7, the
observed general tendency is quite similar, both TDV and
THZ reflection measurements respond in the same way to

irrigation cycles; TDV values increase when watering reducing
its value between irrigation cycles, the THz reflection signal
also increases when watering the plant, reducing its value
between cycles. Nevertheless, if a more detailed inspection
is performed at the observed ripples, these ones show that
the THz reflected signal is increased during the day and
decreased during the night hours. In Figure 8, this daily trend
has been represented in more detail for 1 day in the short
(Figure 8A) and another in the long (Figure 8B) watering
cycles.

The THz reflection and dendrometer measurements showed
opposed daily trends (Figure 8), so that trunk size decreases
rapidly when the lights are switched on (8:00 am), whereas
the THz reflection signal increases at the beginning of the day,
both signals being relatively stable after the plant had been
exposed to 2-4 h of daylight for the TDV measurements and
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2 h for the THz reflected signal. The behavior measured by
the dendrometer agrees with the expected behavior according to
earlier research (see review by Fernandez and Cuevas, 2010): at
the beginning of the day, stomata opened and in the first hours
of light the plant gives up part of its constitutional water (initial
abrupt fall) to the transpiration stream. Afterwards, nearly no
variation in trunk diameters was observed, indicating balance
between water loss by transpiration and uptake through the
roots. Last, during the night time, since transpiration nearly

ceases but water uptake from the soil is maintained, an increase
of trunk diameter occurs. The inverse behavior of the THz
reflection signal indicates therefore that the processes that affect
it are different from those resulting in TDV. Thus, in a one
day timespan, when trunk water content is known to be lower
(during the day), THz reflection signal increased and trunk
diameter decreased (Figure 8), whereas when a longer time-span
(7 days) was considered (Figure 7), both THz reflection and
diameter decreased as water availability was lower. Experiments
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2 and 3 were designed in order to shed some light on this
behavior.

Experiment 2: Coupling of THz Signal to

Changes in Light and Darkness

The response of THz reflection to light and darkness observed
in the daily cycles in Experiment 1 was confirmed when
photoperiod was changed, alternating shorter light and darkness
period (Figure 9). When a light period started, trunk size
decreased, whereas THz reflection was increased. This trend was
maintained even with short light-darkness alternating periods,
see the right end of the x-axis part of Figure 9 (hours between
5and 7).

Since the response of THz reflection signal to light and
darkness was progressive (reflection increased gradually about
1-2 h), this behavior appears not to be a consequence of
a direct response of THz reflection signal to light, but to
reflect changes at a physiological level. The most obvious
physiological aspect that changes between light and darkness is
photosynthesis, so we hypothesized that, apart from reacting to
water status in the mid-term (4-7 days), THz reflection signal
was somehow responding to photosyntethic activity and/or to
phloematic loading/unloading processes. In order to demonstrate
this behavior, Experiment 3 was set up.

Experiment 3: Coupling of THz Signal to Xylem
and Phloem Activity

When phloem was discontinued around the THz measurement
area, the response of THz reflection to light and darkness
periods was totally changed (Figure 10). At this point, both
dendrometer and THz reflection signals follow the same trend,
decreasing when during light periods, and increasing during the
hours of darkness. Therefore, it appears that once phloematic
flux was discontinued, THz reflection signal solely reflected
the dehydration-rehydration cycles that TDV also do. On the
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