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Microspore embryogenesis is a method of achieving complete homozygosity from
plants. It is particularly useful for woody species, like Citrus, characterized by long
juvenility, a high degree of heterozygosity and often self-incompatibility. Anther culture
is currently the method of choice for microspore embryogenesis in many crops.
However, isolated microspore culture is a better way to investigate the processes at
the cellular, physiological, biochemical, and molecular levels as it avoids the influence
of somatic anther tissue. To exploit the potential of this technique, it is important to
separate the key factors affecting the process and, among them, culture medium
composition and particularly the plant growth regulators and their concentration, as
they can greatly enhance regeneration efficiency. To our knowledge, the ability of meta-
Topolin, a naturally occurring aromatic cytokinin, to induce gametic embryogenesis in
isolated microspores of Citrus has never been investigated. In this study, the effect of
two concentrations of meta-Topolin instead of benzyladenine or zeatin in the culture
medium was investigated in isolated microspore culture of two genotypes of Citrus.
After 11 months of isolated microspore culture, for both genotypes and for all the four
tested media, the microspore reprogramming and their sporophytic development was
observed by the presence of multinucleated calli and microspore-derived embryos at
different stages. Microsatellite analysis of parental and embryo samples was performed
to determine the embryo alleles constitution of early embryos produced in all tested
media, confirming their origin from microspores. To our knowledge, this is the first
successful report of Citrus microspore embryogenesis with isolated microspore culture
in Citrus, and in particular in Citrus clementina Hort. ex Tan, cvs. ‘Monreal Rosso’ and
‘Nules.’
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Introduction

Biotechnology methods can be used to enhance the efficiency
of traditional breeding programs. Gametic embryogenesis
is a biotechnological tool employed in both basic and
applied research. Immature gametes, opportunely induced,
can deviate from the normal gametophytic developmental
pathway toward the sporophytic one. The sporophytic pathway
leads to the production of haploid organisms (Hs), with the
gametic chromosome number (n instead of 2n), or doubled
haploids (DHs), haploids that underwent, spontaneously or
induced, chromosome duplication, becoming homozygous at
all loci. Gametic embryogenesis techniques and particularly
microspore embryogenesis, are efficient methods for obtaining
homozygous individuals. They can be used for important
breeding applications such as mutation, selection, genetic
analysis, transformation, and gene sequencing (Germanà et al.,
2013).

Developing homozygous lines is very important in crop
improvement programs, particularly for woody plants
characterized by long reproductive cycles, a high degree of
heterozygosity, large size, and, sometimes, by self-incompatibility
(Germanà, 2006, 2009, 2011a,b; Seguì-Simarro, 2010). Woody
plants are considered recalcitrant species. Few studies reported
successful and efficient microspore embryogenesis protocols for
woody species (Höfer, 2004; Ramírez et al., 2004; Barany et al.,
2005; Bueno et al., 2005, 2006; Germanà, 2006, 2007, 2009, 2011a;
Chiancone et al., 2013; Rodríguez-Sanz et al., 2014; Blasco et al.,
2015).

Among the woody recalcitrant fruit producing species,
Citrus, ranks first worldwide, with 126 million tons of fruit
produced during 2013 (FAOSTAT Database, 2014). Clementine
is believed to be a ‘Mediterranean’ mandarin × sweet orange
hybrid. Particularly, the group of Clementine cultivars is the
most representative of the Spanish Citrus industry because
of their quality and acceptance by the consumers. Especially,
the cv. ‘Nules’ is one of the most cultivated clementine and
‘Monreal Rosso’ (MAR) was obtained by gamma rays mutation
at the Research Center for the Citrus and the Mediterranean
crops (CRA-ACM, Acireale, CT, Italy). Due to its economical
importance, clementine is of great interest to breeders.

Among the Citrus microspore embryogenesis reports to date
(Germanà et al., 1994, 2005; Germanà, 1997, 2007; Germanà
and Reforgiato Recupero, 1997; Germanà and Chiancone, 2003),
only one examined isolated microspore culture in several Citrus
species (lemon, orange, clementine, sour orange, grapefruit) and
a related genus (Poncirus; Germanà et al., 1996).

Since the first studies of Nitsch (1974) on in vitro isolated
microspore cultures of Nicotiana, considerable research has been
done on developing protocols for different species for increasing
the frequency of embryogenesis via isolated microspore culture
(Dunwell, 2010; Prem et al., 2012). Although anther culture
is often the method of choice for DH production in many
crops, because of its higher efficiency and simplicity, the
isolated microspore culture technique provides a better way to
investigate the processes of pollen embryogenesis at the cellular,
physiological, biochemical, and molecular levels. However, it

requires better equipment and more skill than anther culture
(Nitsch, 1977; Reinert and Bajaj, 1977; Germanà, 2011a).
Also isolated microspore culture avoids the regeneration from
somatic anther tissue (Ferrie and Caswell, 2010; Germanà,
2011a,b).

Numerous endogenous and exogenous factors affect the
embryogenic response of immature gametes in culture (Smykal,
2000; Wang et al., 2000). Genotype, physiological status and
growth conditions of donor plants, stage of gamete development,
pre-treatment of the flower buds, culture media and conditions
of incubation, and their interactions, are all factors that greatly
affect the cell response to the in vitro culture (Germanà,
2011a,b).

There is no single standard condition or protocol for obtaining
plant formation by isolated microspore culture. Microspores
of different species and cultivars within a species can have
much different requirements for embryogenic development. For
these reasons studies of increasing microspore embryogenesis
efficiency, focused on detecting the influence of growth regulators
on anther culture and isolated microspore culture in Citrus
spp. and other fruit crops (Germanà et al., 1996, 2006, 2011;
Höfer et al., 1999; Germanà and Chiancone, 2003; Höfer, 2004;
Bueno et al., 2005, 2006; Chiancone et al., 2006; Padoan et al.,
2011).

Meta-Topolin (mT), a naturally occurring aromatic cytokinin,
considered an alternative to benzyladenine (BA), zeatin (ZEA),
and kinetin (KIN) in plant tissue culture (Aremu et al.,
2012), has been used to increase in vitro plant propagation
efficiency of several species including Citrus (Niedz and
Evens, 2011). To our knowledge, this alternative cytokinin
has not been used to induce microspore embryogenesis by
anther or isolated microspore cultures. Esteves et al. (2014)
recently tested meta-Topolin in the regeneration medium of
isolated microspore culture of recalcitrant barley genotypes.
It increased embryo differentiation into green plants by 2.9-
fold.

This study investigated the effect of meta-Topolin as
a substitute for benzyladenine or zeatin in the culture
media used for generating embryos of Citrus clementina
Hort. ex Tan., cultivars ‘Monreal Rosso’ and ‘Nules’ when
using gametic embryogenesis via isolated microspore culture
method.

Materials and Methods

Plant Material and Pollen Developmental Stage
Flower buds were harvested in April from trees of C. clementina
Hort. ex Tan., cvs. ‘Monreal Rosso’ (MAR) and ‘Nules’, grown
in a collection orchard (Campo d’Orlèans, Palermo 38◦N)
of the Università degli Studi di Palermo, Italy. Microspore
developmental stage was determined in one anther per flower bud
size by 4′, 6-diamidino-2-phenylindole (DAPI) staining. Anthers
from buds of different sizes were squashed in a few drops of DAPI
solution (1mg/mL) and observed under a fluorescent microscope
(Zeiss, Axiophot, Germany). For further experiments, only flower
buds of the size containing anthers bearing microspores at the
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uninucleated/vacuolated stage (3.5–4.0 mm), were selected for
culture.

Flower Bud Sterilization, Microspore Isolation,
and Culture
As pre-treatment, flower buds were placed in darkness at 4◦C
for 1 week. Around 80 flower buds were surface sterilized by
immersion for 3 min in 70% (v/v) ethyl alcohol, followed by
immersion for 20 min in 25% (v/v) commercial bleach (about
0.5% active chlorine in water) and then rinsed three times with
sterile distilled water. Anthers were carefully separated from
stamens and put in sterile 0.4 M mannitol solution until the
isolation protocol, which was performed following the procedure
reported by Kumlehn et al. (2006), with little modifications.
Particularly, anthers were used as explants, instead of the entire
flowers and the density gradient step was skipped. Isolated
microspores were cultured at the concentration of 100,000
microspores per mL. A volume of 1.0 mL was placed into each
3001-type Petri dishes (35 mm × 10 mm, BD Biosciences).

All Petri dishes were put at 26 ± 1◦C in the dark for the
first 30 days, and then placed under cool white fluorescent lamp
(Philips TLM 30W/84, France), with a photosynthetic photon
flux density of 35 μmol m−1 s−1 and a photoperiod of 16 light
hours.

Media Composition
For the culture, the medium (referred as medium P) previously
employed in experiments on Citrus microspore embryogenesis
through isolated microspore culture was used (Germanà et al.,
1996; Table 1). In this medium, among the other plant growth
regulators, several cytokinins are present, particularly BA, ZEA,
KIN. To study the effect of mT, it was added in substitution of BA
or ZEA at the same concentration (respectively, media: PmT/BA,
PmT/ZEA) or at a concentration 10 times higher (respectively,
media: PmT/BA10, PmT/ZEA10).

In particular, for the experiments the following media were
tested:

(1) PC (control medium): 0.5 mg/L of BA and 0.5 mg/L of ZEA;
(Germanà et al., 1996);

(2) PmT/BA: PC medium without BA + 0.5 mg/L mT;
(3) PmT/ZEA: PC medium without ZEA + 0.5 mg/L mT;
(4) PmT/BA10: PC medium without BA + 5.4 mg/L mT;
(5) PmT/ZEA10: PC medium without ZEA + 5.6 mg/L mT.

Seven replicates for each medium were used, thirty five Petri
dishes per cultivar.

Early embryos obtained were transferred onto different solid
media (Table 2) in the attempt to obtain their germination.

TABLE 1 | Media used for ‘Monreal Rosso’ and ‘Nules’ isolated microspore culture.

Components Media

P PMT/BA PMT/ZEA PMT/BA10 PMT/ZEA10

Per liter

N6 Chu Salts 1X 1X 1X 1X 1X

N&N vitamins 1X 1X 1X 1X 1X

Galactose 18 g 18 g 18 g 18 g 18 g

Lactose 36 g 36 g 36 g 36 g 36 g

Ascorbic acid 500 mg 500 mg 500 mg 500 mg 500 mg

Myoinositol 5 g 5 g 5 g 5 g 5 g

Biotin 500 mg 500 mg 500 mg 500 mg 500 mg

Thiamine 5 mg 5 mg 5 mg 5 mg 5 mg

Pyridoxine 5 mg 5 mg 5 mg 5 mg 5 mg

Coconut water 100 mL 100 mL 100 mL 100 mL 100 mL

Casein 500 mg 500 mg 500 mg 500 mg 500 mg

Serine 100 mg 100 mg 100 mg 100 mg 100 mg

Glycine 2 mg 2 mg 2 mg 2 mg 2 mg

Glutamine 800 mg 800 mg 800 mg 800 mg 800 mg

Malt extract 500 mg 500 mg 500 mg 500 mg 500 mg

2,4-D 0.5 mg 0.5 mg 0.5 mg 0.5 mg 0.5 mg

GA3 0.5 mg 0.5 mg 0.5 mg 0.5 mg 0.5 mg

Kinetin 0.5 mg 0.5 mg 0.5 mg 0.5 mg 0.5 mg

Zeatin 0.5 mg 0.5 mg – 0.5 mg –

Thidiazuron 0.5 mg 0.5 mg 0.5 mg 0.5 mg 0.5 mg

Benzyladenine 0.5 mg – 0.5 mg – 0.5 mg

Meta-Topolin – 0.5 mg 0.5 mg 5.4 mg 5.6 mg

pH 5.8 5.8 5.8 5.8 5.8

P, Germanà et al. (1996); N6 Chu salts, Chu (1978); N&N vitamins, Nitsch and Nitsch (1969).
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TABLE 2 | Solid media tested for embryo germination.

Components Media

E EE E/ZEA E/TDZ MS/TDZ

Per liter

MS salts 1X 1X 1X 1X 1X

MS vitamins 1X 1X 1X 1X 1X

Sucrose 30 g 30 g 30 g 30 g 30 g

Ascorbic acid 500 mg 500 mg 500 mg 500 mg –

Malt extract 500 mg 500 mg 500 mg 500 mg –

GA3 1 mg 2 mg 1 mg 1 mg –

Zeatin – – 1 mg – –

NAA 0.02 mg 0.02 mg 0.02 mg 0.02 mg –

Thidiazuron – – – 1.0 mg 1.0 mg

Agar 8.5 g 8.5 g 8.5 g 8.5 g 8.5 g

pH 5.8 5.8 5.8 5.8 5.8

MS, Murashige and Skoog (1962); GA3, gibberellic acid; NAA, α-naphthaleneacetic
acid.

Evaluation of the Microspore Response
In Vitro, Data Processing, and Statistical
Analysis
Petri dishes containing isolated microspores in cultures were
weekly observed by an inverted microscope (Zeiss) and a
binocular microscope (Leica). Samples of isolated microspores
were stained with DAPI and observed by a fluorescence
microscope (Zeiss, Axiophot, Germany) to monitor their in vitro
development, once a month, every month, during the culture.
After 7 months of culture, per each medium, 400 microspores
DAPI-stained (four replicates with around 100microspores each)
were observed, by a fluorescence microscope (Zeiss, Axiophot,
Germany). Different structural features have been observed
and registered: microspores uninucleated, binucleated with two
equal-size nuclei that had just started the sporophytic pathway,
trinucleated, tetranucleated, and multinucleated. Moreover, after
11 months of in vitro culture, the number of calli and embryos
produced per each Petri dish was registered, using a binocular
microscope. These values were used to calculate means. Statistical
analysis was carried out using SYSTAT 13 software. Two
factors were considered: “Cultivar” and “Culture medium,” and
differences between them were tested by two-way analysis of
variance (ANOVA), at p ≤ 0.05 level. Tukey’s test was, then, used
to separate means.

Fixation and Processing for Microscopic
Analysis
In vitro cultures containing microspores and microspore-
derived structures were fixed in 4% paraformaldehyde in
phosphate buffered saline (PBS), overnight, at 4◦C. After fixation,
microspore culture samples were embedded in gelatin, washed
in PBS, dehydrated through an acetone series, infiltrated and
embedded in Technovit 8100 acrylic resin (Kulzer, Germany),
at 4◦C, as previously described by Solís et al. (2008). Staining
solution of 0.075% toluidine blue in water, was applied on
Technovit semithin sections (1 μm) for 10–15 min. After rinsing

and drying, preparations were mounted in Eukitt and observed
under bright field for structural analysis in a light microscope
Zeiss 68105 equipped with a Leica Microsystems DFC420C
digital camera.

Allelic Pattern Detection by SSR Analysis
The allelic pattern was checked on the embryos obtained from
C. clementina cultivar ‘Monreal Rosso’ and ‘Nules’ isolated
microspore culture. DNA was extracted from leaves of the
mother plant and from the embryos obtained by in vitro culture
and collected from the medium by an insulin needle. The samples
were frozen in liquid nitrogen and ground using steel beads
and a Tissuelyser (QIAGENR©, Germany). DNA extraction was
performed as described by Doyle and Doyle (1987). The parent
DNA was resuspended in 60 μL TE buffer (Tris-EDTA, pH 8.00)
and then diluted to 10 ng/μL. Embryo DNA was resuspended in
25 μL TE.

Ten microsatellite loci isolated by Novelli et al. (2006) from
C. sinensis and by Froelicher et al. (2008) from C. reticulata were
preliminarly screened on the DNA from the leaves and one was
selected for its heterozygosity in the parental genotype: CCSM147
(Novelli et al., 2006). This locus was used for assessing the allelic
pattern of the embryos.

Polymerase chain reactions (PCRs) were performed in two
steps in a total volume of 10 μl containing 3 μL DNA
(corresponding to 30 ng of DNA for the parent plants), 0.25 U of
KAPA Taq DNA polymerase (KAPABIOSYSTEMS, Wilmington,
MA, USA) 1 μL of 10X PCR buffer, 200 μM nucleotide mix
and 0.5 μM of each primer. PCR conditions were as follows: an
initial denaturation step at 95◦C for 3 min followed by 34 cycles
of denaturation (30 s at 95◦C), annealing (45 s at 55◦C), and
extension (90 s at 72◦C). The final elongation step was at 72◦C
for 30 min. Four μL of the product from the first amplification
were then used as template for a second PCR, carried out for 28
cycles with the same conditions of the first one.

Polymerase chain reaction products were then analyzed on
a 3130 Genetic Analyzer (Applied Biosystems, Foster City, CA,
USA). Data were processed using GeneMapper Software (ver. 4.0;
Applied Biosystems) and alleles were defined by their size in base
pairs, by comparison with the standard size (GeneScan-500 LIZ,
Applied Biosystems).

Results

Using the above methods allowed facilitated observation of the
entire microspore embryogenesis process in clementine isolated
microspore culture. Monitoring of the culture samples by DAPI
staining (to show the nuclei) revealed that initially microspores
of both genotypes were mainly uninucleated/vacuolated
(Figure 1A) This is the developmental stage reported as being
the most responsive for embryogenesis induction in clementine
(Ramírez et al., 2003) and many other woody and herbaceous
species (Germanà and Chiancone, 2003; Germanà et al.,
2011; Solís et al., 2008; Prem et al., 2012). It was possible to
observe that some microspores did not show any change in
the nuclei number or shape. In other microspores the nucleus
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FIGURE 1 | Nuclei divisions and formation of microspore-derived
multicellular structures during early microspore embryogenesis
through isolated microspore culture of Citrus clementina Hort. ex Tan,
cv. ‘Monreal Rosso’ and ‘Nules’, monitored by DAPI staining.
(A) Uninucleated microspore of ‘Monreal rosso’; (B) binucleated pollen,
originated by asymmetrical division of Nules; (C) binucleated microspore,
originated by symmetrical division, Nules; (D) trinucleated microspore of
Monreal Rosso; (E,F) multicellular microspore of ‘Monreal Rosso’ (E) and
‘Nules’ (F). Bars represent 10 μm.

started to divide. This rarely occurred asymmetrically, i.e.,
following the normal gametophytic pathway (Figure 1B). In
most binucleate microspores, the two nuclei are similar in size
and shape (Figure 1C), indicating their origin by a symmetric
division. This type of division is considered the first step
of the sporophytic pathway followed by the reprogrammed
microspores in microspore embryogenesis (Germanà, 2011a,b).
Many microspores followed this pathway and underwent
subsequent divisions, so that, later trinucleated (Figure 1D),
tetranucleated and multinucleated microspores (Figures 1E,F)
were detected in DAPI-stained squash preparations.

The structural organization of these microspores and
multinuclear structures observed in the cultures were analyzed on
semithin sections (Figure 2). Samples of the in vitro culture were
fixed and processed for further microscopical analysis. At culture
initiation, the microspores exhibited the typical architecture
of the vacuolated microspores, with one nucleus located at
the periphery and a central vacuole (Figure 2A). At later
stages, in toluidine blue-stained sections, developingmicrospores
exhibited differential features, some of them showing two
nuclei with similar size and organization, and dense cytoplasms
(Figures 2B,C), in contrast with the two different nuclei
of the bicellular pollen developed in vivo. These two-celled
structures indicated that the microspores in vitro underwent
a symmetrical division and switched from their gametophytic
developmental pathway toward proliferation; the result of the
first embryogenic division of the microspore still exhibiting the
exine wall (Figures 2B,C). Some dead (empty) microspores with
irregular shapes were also observed in the cultures, together with
larger multicellular structures (Figure 2D). They were elongated
structures formed by more or less polygonal cells showing one
nucleus and low-dense cytoplasm and vacuoles, and separated by

FIGURE 2 | Cellular structural organization at early microspore
embryogenesis through isolated microspore culture of C. clementina
Hort. ex Tan, cv. ‘Monreal Rosso’ and ‘Nules.’ Toluidine blue-staining of
resin sections observed under bright field microscopy. (A) Vacuolated
microspore at the beginning of the culture, ‘Monreal Rosso’; (B,C) Two-celled
microspores, ‘Nules’; (D) Microspore-derived multicellular structure (in the
center) and some dead microspores (at the top), ‘Monreal Rosso.’ Bars
represent, in (A–C): 10 μm, in (D): 50 μm.

straight cell walls (Figure 2D). At the periphery of some of these
multicellular structures, remnants of the exine, could be found
(arrows in Figure 2D). These multicellular microspore-derived
structures or proembryos resembled those found in other woody
and herbaceous species. The evolution of the in vitro system
described here, from two-cell and multicellular microspores to
large multicellular structures or proembryos indicated that the
reprogramming of the microspore and the first steps of the
embryogenic pathway were achieved.

Results recorded after 7 months of microspore culture, and
their statistical analysis are reported in Table 3. No statistically
significant differences were detected among treatments of
the percentages of uninucleated and binucleated microspores.
Moreover, for both cultivars, the percentage of uninucleated
microspores with no division was rather high (41.2% for MAR
and 46.7% for ‘Nules’). For the trinucleated microspores, a
significant interaction was recorded between the two factors,
“Cultivar” and “Culture medium,” in which the main factor
inducing variability was “Cultivar.” Actually, the medium in
which mT replaced ZEA at the same concentration, induced the
highest response in MAR (19.1%) and the worst in ‘Nules’ (5.6%;
data not shown).

The primary factor influencing induction of multinucleated
microspores was “Culture medium.” Tukey’s test evidenced
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TABLE 3 | Influence of cultivar and medium composition on two clementine cultivars, ‘Monreal Rosso’ and ‘Nules’, isolated microspore development,
after 7 months (uninucleated, binucleated, trinucleated, multinucleated microspores) and 11 months (calli and embryos) of culture.

Factors Uninucleated
microspores (%)

Binucleated
microspores (%)

Trinucleated
microspores (%)

Multinucleated
microspores (%)

Calli/Petri
dish∗ (n◦)

Embryos/Petri
dish (n◦)

Cultivar Monreal Rosso 41.2 a 30.7 a 14.2 a 13.9 a 3.7 a 1.0

Nules 46.7 a 32.3 a 9.7 b 11.2 a 2.9 a 1.5

Cultivar 0.088 0.359 0.002 0.548 0.090

Medium PC 41.9 a 30.8 a 11.5 a 15.9 a 4.0 ab 1.2

PmT/BA 43.1 a 27.3 a 13.2 a 16.4 a 4.4 a 1.4

PmT/ZEA 41.4 a 32.8 a 12.4 a 13.5 ab 2.5 ab 1.0

PmT/BA10 44.7 a 34.2 a 13.0 a 8.2 b 2.4 b 1.4

PmT/ZEA10 48.6 a 32.6 a 9.7 a 9.1 ab 3.2 ab 1.4

Culture medium 0.615 0.153 0.465 0.007 0.019 –

Cultivar × Culture medium 0.208 0.381 0.024 0.383 0.254 –

Two-way ANOVA, Tukey’s test, p ≤ 0.05.
∗Average number of calli recorded per each medium and per each cultivar (seven Petri dishes/medium/cultivar).
PC (control medium), 0.5 mg/L BA and 0.5 mg/L ZEA (Germanà et al., 1996); PmT/BA, PC medium without BA + 0.5 mg/L mT; PmT/ZEA, PC medium without ZEA +
0.5 mg/L mT; PmT/BA10, PC medium without BA + 5.4 mg/L mT; PmT/ZEA10, PC medium without ZEA + 5.6 mg/L mT.
Per each factor and per each column, values followed by different letters are statistically different.

that the control medium (PC) and PmT/BA induced a
statistically higher percentage (15.9 and 16.4% respectively) of
multinucleated microspores, while the mT/BA10 medium the
lowest (8.2%). For the other tested media, the percentages
of multinucleated microspores were intermediate between the
reported values (Table 3).

After 5 months of culture, binocular microscope observations
revealed new structures: light brown calli (Figure 3) that
increased in quantity and volume during the culture. A statistical
analysis of number of calli per Petri dish after 11 months of
culture, demonstrated that the culture medium was the also
primary factor that influenced the microspore response of this

FIGURE 3 | Microspore-derived callus of ‘Monreal Rosso’ in the
PmT/BA medium.

parameter. As withmultinucleated microspores, the PmT/BA and
PmT/BA10 media treatments produced statistically significant
differences between the average number of calli/Petri dish (4.4
and 2.4, respectively; Table 3).

Together with calli, the formation of globular embryos was
detected: they were pearl white and round (Figure 4A). During
the culture, the round embryos elongated, often with a suspensor-
like structure (Figures 4B,C). This kind of structure has not
previously observed in the microspore-derived embryos obtained
through Citrus anther culture.

Embryo production was observed for both cultivars and
for all media tested. This is the first report of gamete-derived
embryos obtained by isolated microspore culture in Citrus.
Differences were recorded between the cultivars, with the ‘Nules’
cultivar showing a higher average number of embryos/Petri dish
regenerated than in MAR (1.5 vs. 1.0; Table 3). However, while
the two cultivars responded differently to the five different media,
it appears that the higher concentration of mT, replacing BA or
ZEA, was not detrimental for the embryo induction. The best
responses were induced forMAR in themedia PC and PmT/BA10
(1.3) and for ‘Nules’ in the media PmT/BA and PmT/ZEA10 (1.8;
data not shown).

The results of the analysis at the SSR locus CCSM 147
showed a clear amplification: while the parental genotype was
heterozygous, the allelic pattern of the embryos showed a single
allele, shared with the parental genotype (Figure 5). This result
is a first step in confirming the origin of the embryos from the
‘Monreal Rosso’ and ‘Nules’ gametophyte, although it was not yet
possible, due to their small size, to check the ploidy condition of
the embryos (either haploid or double haploid).

The embryos obtained were transferred from liquid to
different solid media to achieve germination and plantlet
production. After 12 months of trials with several media
(Table 2), no germination was observed in microspore-derived
embryos, probably due to dormancy caused by immaturity.
Physiological and biochemical aspects of these microspore-
derived embryos should be investigated to determine if the
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FIGURE 4 | Microspore-derived embryos of ‘Nules’ (A), ‘Monreal Rosso’ (B) and ‘Nules’ (C). Bars represent 100 µm.

FIGURE 5 | Amplicons of the SSR locus CCSM147 in the embryo (top)
and in the parental genotype (bottom) cv. ‘Monreal Rosso.’ Values in
box beside each peak represent the allele size (bp). The allelic pattern of
the embryo shows a single allele, shared with the parental genotype.

lack of endosperm, medium composition or dormancy prevent
germination. Further investigations are in progress to obtain
embryo conversion testing different factors, such as exposure to
cold temperature and/or drying.

Discussion

The great potential of haploids and gametic embryogenesis in
woody plant breeding has been well-demonstrated. Haploids
can improve the efficiency and the speed of laborious and
time-consuming traditional breeding methods. While in vitro
isolated microspore culture is a standard breeding method in
many crops, such as Brassicaceae and cereals, this technique
has not been exploited in fruit crops because the induction
frequency is low, plant recovery is difficult and response is
highly genotype-dependent (Höfer et al., 1999; Bueno et al., 2005,
2006). Earlier work with isolated microspore culture of several
Citrus species (lemon, orange, clementine, sour orange, and
grapefruit) and a related genus (Poncirus) have been reported by
Germanà et al. (1996). Multi-nucleated structures, pseudobulbils
and small proembryos, were obtained but which failed to develop
significantly.

In C. clementina Hort. ex Tan., the gametic embryogenesis
process through isolated microspore culture, is slower than in
other herbaceous and woody species, requiring up to 5 months
for the first callus tissue or embryos. However, the microspores
continued regenerating embryos and calli for 11 months in
culture. In Brassica isolated microspore culture, first embryos are
usually observed within 2 weeks of culturing (Barro and Martin,
1999), and in wheat after 9–12 days (Hu and Kasha, 1999).
In fruit tree crops, apple embryo regeneration through isolated
microspore culture, was observed after 8–12 weeks (Höfer et al.,
1999). In olive, Bueno et al. (2005) reported the first pro-embryos
after 4 weeks.

The media supplemented with mT showed microspore
switching from the gametophytic to the sporophytic pathway as
well as the PC medium. However, it appears that the response
to mT in the media, as reported in numerous experiments, is
genotype-dependent. For example, ‘Nules’ embryo production
seems be favored by mT addition. Possibly mT replaces both
BA and ZEA, at the same concentration, giving rise to
embryo regeneration rate comparable to that of the control. In
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‘Nules’, replacing BA with mT 10-fold more concentrated was
not beneficial for the induction of multinucleate microspores
and calli. However, for embryo induction, adding a higher
concentration of mT as replacing BA did not affect the
regeneration rate.

The results here reported indicate that meta-Topolin can be
employed not only in Citrusmicropropagation (Niedz and Evens,
2011), but also in the microspore embryogenesis process. The
effect of mT on microspore embryogenesis induction could be
due to its anti-senescence activity and plant growth stimulation
activity. Other cytokinin-like compounds, such as polyamines
(PAs), considered potent senescence inhibitors (Altman et al.,
1977; Kaur-Sawhney et al., 1980) and implicated in several plant
growth and development processes (Torrigiani et al., 1989; Bagni
and Tassoni, 2001), improved the embryogenic callus production
through anther culture inC. clementinaHort. ex Tan. (Chiancone
et al., 2006). To understand how anti-senescence substances
influence microspore embryogenesis induction could facilitate
understanding the mechanisms beyond this phenomenon as well
as being used to increase the efficiency of breeding programs.

Actually, an effective regeneration system through isolated
microspore culture could facilitate male gametophytic selection
(MGS) in Citrus. This strategy would allow early genotype
screening for selection of desirable alleles on pollen grains (Clegg
et al., 1978; Hormaza and Herrero, 1996; Ravikumar et al.,
2007). With respect to the sporophytic selection, the MGS has
advantages for selecting among very high numbers of haploid
individuals in a small space (Soleimani et al., 2010), allowing
selection also of recessive characters and mutations, without the
interference of dominance. Furthermore, as pollen is the result
of genetic recombination, possibly new allelic combination and
mutations can be selected for physiological and biochemical
characteristics by applying stress during microspore culture
(Evans et al., 1990).

Conclusion

The characteristics of angiosperm pollen (haploidy, small size,
great number, totipotency) make it very useful in biotechnology
as immature microspores can be manipulated to improve the
efficiency, rapidity, and precision of plant breeding methods. The
in vitro culture of immature microspores is a good way to recover

homozygosity via embryogenesis in higher plants. The potential
value of isolated microspore culture in higher plants is obvious.
However, a well-defined and efficient procedure of regeneration
through microspore embryogenesis is necessary.

The results here presented are a major step in understanding
C. clementina Hort. ex Tan. microspore embryogenesis. Actually,
this is first report of regeneration of microspore-derived embryos
through isolated microspore culture of the two clementine
cultivars ‘Monreal Rosso’ and ‘Nules.’ Additional investigations
are needed to optimize the medium composition and increase
the regeneration rate. Studies to promote the development of
obtained embryos and recover plantlets from them are now in
progress.
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