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The aim of the work was to test a relatively simple proteomics approach based on
phenol extraction and two-dimensional gel electrophoresis (2-DE) with 7 cm immobilized
pH gradient strips for the determination of clinically relevant proteins in wheat grain.
Using this approach, 157 2-DE spots were quantified in biological triplicate, out of
which 55 were identified by matrix-assisted laser desorption/ionization – time of flight
tandem mass spectrometry. Clinically relevant proteins associated with celiac disease,
wheat dependent exercise induced anaphylaxis, baker’s asthma, and food allergy, were
detected in 24 2-DE spots. However, alcohol-soluble gliadins were not detected with
this approach. The comparison with a recent quantitative study suggested that gel-
based and gel-free proteomics approaches are complementary for the detection and
quantification of clinically relevant proteins in wheat grain.
Keywords: Triticum aestivum, gel-based, quantification, MALDI-TOF/TOF, 2-DE, 7 cm IPG, grain, allergen

Introduction

The main component of the wheat grain are storage proteins with gluten as the major part
representing as much as 80% of total protein content (Ferranti et al., 2007). Gluten is a mixture
of gliadins and glutenins that differ in their electrophoretic mobility (Payne et al., 1985; Jacobsen
et al., 2007). Gluten is also the main allergen in the wheat grain and is responsible for nutritive
intolerances such as celiac disease or gluten-sensitive enteropathy (Rubio-Tapia et al., 2009), and
various allergies (Battais et al., 2008; Sapone et al., 2012; Mauro Martin et al., 2014). In addition
to storage proteins, wheat grain allergens include enzymatic and structural proteins such as
prolamins, cupins, and Bet v1 protein family (Breiteneder andMills, 2005). Out of these, prolamins
are dominant and include α-amylase and protease inhibitors, 2S albumins, and non-specific lipid
transfer proteins (nsLTPs; Breiteneder and Radauer, 2004; Mills et al., 2004).

Protein two-dimensional gel electrophoresis (2-DE) has been extensively used to characterize
wheat grain proteins. For instance, 2-DE followed with immunoblotting and tandem mass
spectrometry (MS/MS) resulted into the identification of nine subunits of low molecular weight
(LMW) glutenins, serpin, α-amylase inhibitor, and α-gliadin in wheat flour (Akagawa et al., 2007).
The combination of 2-DE and MS/MS identified several allergenic proteins, such as serpins, in
dough liquor of four wheat cultivars under abiotic stress (Sancho et al., 2008). Similar approaches
detected heat responsible allergenic proteins, such as α-amylase inhibitors or serpins, in the
endosperm of developing wheat grains under heat stress (Hurkman et al., 2009). Additionally,
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several allergenic proteins were detected in Korean sprouting
wheat cultivars using 2-DE and matrix assisted laser
desorption/ionization-tandem Time of Flight (MALDI-TOF)
MS/MS (Kamal et al., 2009). Importantly, 20 allergenic proteins
in wheat grains were detected using proteomics approach based
on 2-DE in combination with 17 cm immobilized pH gradient
(IPG) strips and MS/MS (Yang et al., 2011). Similarly, 2-DE in
combination with isoelectric focusing (IEF) capillary tube gels,
three different proteases, and MS/MS resulted in the detection
of 476 2-DE spots out of which 233 were identified, including
well-known allergens (Dupont et al., 2011). The 2-DE was also
used to analyze wheat with genetically altered omega-5 gliadin
content (Altenbach et al., 2014). Interestingly, this study showed
that unique genetic transformation events with the same RNA
interference construct may have differential effects on the wheat
grain proteome (Altenbach et al., 2014). This study highlights
the importance of proteomic analyses in the study of genetic
transformations (Altenbach et al., 2014).

The above studies showed that a 2-DE approach is effective in
the characterization of wheat grain proteins. However, 2-DE can
be labor, resources, and time consuming, especially when long
IPG strips are used. The aim of this study was to test a relatively
simple 2-DE approach based on 7 cm IPG strips for the detection
of clinically relevant proteins of wheat grain.

Materials and Methods

Plant Material and Protein Extraction
Seeds of winter wheat cultivar Viginta were obtained from
SELEKT LtD, Bučany, Slovak Republic. Proteins were extracted
in biological triplicate from 500 mg of dry seeds. Seeds were
ground in liquid nitrogen and proteins were extracted with
phenol-based extraction media [50% (v/v) phenol, 0.45 M
sucrose, 5 mM EDTA, 0.2% (v/v) 2-mercaptoethanol, 50 mM
Tris–HCl, pH 8.8]. Sample was stirred and homogenized
for 30 min at 4◦C. The phenol phase was removed after
centrifugation at 5000 × g for 10 min at 4◦C. Proteins
were precipitated from the phenol phase by the addition of
five volumes of ice-cold 0.1 M ammonium acetate in 100%
methanol, and incubated at −20◦C overnight. The protein
pellet was extensively washed twice using 0.1 M ice cold
ammonium acetate in 100% methanol, followed by 80% ice cold
acetone, and finally with 70% ice cold ethanol and precipitates
were collected by centrifugation for 15 min., 5000 × g at
4◦C. Total protein concentration was determined using the
Bradford (1976) assay with Bovine Serum Albumin as the
standard.

Two-Dimensional Gel Electrophoresis
Samples (50 μg protein) were diluted in 100 μl of IEF buffer
[8 M urea, 2 M thiourea, 2% (w/v) CHAPS, 2% (v/v) Triton
X-100, 50 mM dithiothreitol], 3 μl of ampholytes were added,
and loaded onto 7 cm IPG strips of pH 3–10 (ReadyStripTM
IPG Strips BioRad) for IEF. Isoelectric focusing was carried out
using Protean IEF Cell (Bio-Rad) with the following conditions:
150 V for 150 VH, 500 V for 500 VH, and 4000 V for

15,000 VH including initial active rehydration for 12 h at
50 V. For the second dimension (SDS-PAGE), IPG strips were
incubated in SDS equilibration buffer [1.5 M Tris-HCl pH 6.8,
6 M urea, 30% (v/v) glycerol, 5% (w/v) SDS) for 15 min with
2% (w/v) dithiothreitol] followed by a second equilibration step
of 15 min with the equilibration buffer containing 2.5% (w/v)
iodoacetamide. The equilibrated strips were loaded on the top
of 10% polyacrylamide gel and the electrophoresis was run
at 80 V until the dye reached the bottom of the gel. Gels
were stained for 16 h with Coomassie Brilliant Blue G-250
at room temperature. The 2-DE gels were digitalized using a
GS-800 Calibrated Densitometer (Bio-Rad) at 300 dpi and 16
bit grayscale. Digitalized gels were analyzed with PDQuest 8.0
software (Bio-Rad).

Protein Digestion and Mass Spectrometry
Excised 2-DE plugs were washed with 300 μl destaining solution
(50% acetonitrile in 50 mM ammonium bicarbonate) and
dehydrated in 100% acetonitrile. After removal of acetonitrile, 2-
DE spots were rehydrated with trypsin (Promega) and digested
at 37◦C overnight. The digestion was stopped with formic
acid and extracted tryptic peptides were stored at −80◦C
until MS/MS analysis with a TOF/TOF mass spectrometer in
combination with MALDI using an ultrafleXtreme instrument
equipped with a 355 nm smartbeam-2 laser, capable of
pulsing frequency 1 kHz (Bruker). Peptides were concentrated
to 20 μl using Concentrator plus (Eppendorf). After that,
concentrated peptides were desalted by μ-C18 ZipTips (Merck
Millipore). Next, 1 μl of purified digests were spotted onto
800 μm AnchorChip MALDI target (Bruker) and α-cyano-
4-hydroxycinnamic acid (CHCA) matrix (0.7 mg·ml−1 in
85% acetonitrile, 0.1% trifluoroacetic acid, 1 mM ammonium
phosphate) was added.

The mass spectrometer was operated by flexControl 3.3
software (Bruker). For every position 4000 shots were summed in
positive reflector mode in the range of 700–3500 mass to charge
(m/z). Following that, up to 25 of the most intense precursor
peaks per sample were selected for the MS/MS analysis with
the minimal signal to noise (S/N) ratio set to 15. Abundant
trypsin and keratin peaks were specified in the exclusion list.
Fragmentation spectra were acquired by accumulation of 3000
laser shots in positive reflector LIFT mode. Fragmentation was
achieved by laser induced dissociation (LID) mechanism by 50%
increase in laser power, without the introduction of a collision
gas. Simultaneously detector voltage was boosted by 80%.

Processing of MS/MS Data
Acquired spectra were processed by flexAnalysis 3.3 software
(Bruker). A sophisticated numerical annotation procedure
(SNAP) algorithm was used for peak picking to calculate
exact monoisotopic masses. For the precursor spectra the S/N
threshold was set to 10 and the resulting spectra were externally
recalibrated against data from an adjacent spot containing nine
peptides of the Peptide calibration standard 2 (Bruker). For
the fragment spectra S/N threshold was set to 5, also baseline
subtraction (TopHat algorithm), and smoothing (Savitzky-Golay
algorithm 3 cycles with 0.15 m/z width) were applied.
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The MS/MS peak lists were imported into the ProteinScape
2.1 proteomic data management software (Bruker). Peptide
identification was performed by an in-house Mascot 2.3 server
(Matrix Science), querying against the non-redundant Triticeae
plant protein UniProt database downloaded on April, 2014 (100
981 entries). Additionally, protein assignments were verified
by searches against the SwissProt database from June 2014
(545 388 sequences) that included major contaminants such as
trypsin or keratin. Search parameters were the following: fixed
cysteine carbamidomethylation, variable methionine oxidation,
one missed trypsin cleavage site, 40 ppm precursor mass
tolerance, 0.5 Da fragment mass tolerance. Protein identifications
were accepted if at least two different matched peptides had ion
score higher than 30, meaning p < 0.05.

For allergenicity assessments, identified proteins were queried
against the Allergome database1 containing 2994 allergen entries,
using Allergome Aligner module with an embedded NCBI blastp
v.2.2.18 algorithm. Only hits with 100% sequence identity were
accepted as clinically relevant allergens. The MS/MS proteomics
data have been deposited to the ProteomeXchange Consortium
via the PRIDE partner repository with the dataset identifier
PXD002067.

Results

The 2-DE-based proteomics approach in combination with 7 cm
IPG strips (Figure 1) quantified 157 2-DE spots in biological
triplicate (Supplementary Figure S1; Supplementary Table S1)
out of which 55 were identified (Table 1). Identified proteins
were classified according to previous apporaches (Bevan et al.,
1998) into five functional classes (Figure 2). The most abundant
class was 37 proteins associated with destination and storage,
followed by nine proteins associated with metabolism and five
energy proteins (Figure 2). This study also detected two signaling
proteins and two proteins associated with disease/defense
(Table 1). All identified proteins were assigned on the 2-DE gel
(Supplementary Figure S2). The most abundant protein on this
reference map is the high molecular weight (HMW) glutenin
subunit (GS) with a relative volume (%V) of 8.8 (spot number
2909) followed by 11-S seed storage domain containing protein
(3302) with %V of 5.6 (Table 1).

As Much as 45% of Identified Proteins were
Associated with Various Allergies or Food
Intolerances
To determine clinical relevance of the identified proteins,
sequences were queried against the Allergome database1 which
contains 2994 allergen entries (Supplementary Table S2). This
approach detected clinically relevant proteins in 24 2-DE
spots which represented 13 non-redundant accession numbers
(Table 1). Out of these, nine 2-DE spots were identified as
HMW GS, seven as serpins, three as α-amylase inhibitors, two
as LMW GS, two as glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), and one as Cys peroxiredoxin (PER1; Table 1). All

1http://www.allergome.org/

FIGURE 1 | Experimental workflow. Proteins were isolated from the winter
wheat variety Viginta using a phenol-based method and resolved by 7 cm
immobilized pH gradient (IPG) strip. After analysis with PDQuest,
two-dimensional gel electrophoresis (2-DE) spots were excised from the gels,
and analyzed by MALDI-TOF/TOF. From 55 identified 2-DE spots, 24
contained clinically relevant proteins. These proteins were assigned onto a
2-DE reference map.

these proteins were assigned on the 2-DE gel in order to establish
the reference map of clinically relevant proteins of wheat grain
(Figure 3). All 24 2-DE spots presented on this reference map
were color-coded based on protein identification to visualize
regions of the 2-DE gel with a prevalence of clinically relevant
proteins (Figure 3). The most abundant protein is HMW GS
(2-DE spot number 2909) followed LMW GS (7211; Table 1).
The 2-DE spots identified as serpin (2202), GAPDH (3216),
GAPDH, and α-amylase inhibitor (4009) (3203) showed the
lowest abundance on this reference map (Figure 3; Table 1).
To reveal overall abundances of the detected clinically relevant
proteins, relative volumes of each 2-DE spot were summed based
on protein identifications. Using this approach, the summed
(total) relative volumes for each of eight detected clinically
relevant proteins was established (Figure 4). It was revealed that
HMW GS, LMW GS, and serpins are highly abundant in wheat
grain (Figure 4).

Discussion

The aim of this work was to test a 2-DE proteomics approach
with 7 cm IPG strips and phenol-based protein extraction for the
detection of clinically relevant proteins in wheat grain. Classical
methods for protein isolation from wheat grain are based on iso-
propanol extraction (van den Broeck et al., 2009).We successfully
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FIGURE 2 | The 55 identified wheat grain proteins were classified into
five functional categories.

implemented this method and have previously determined
quantities of wheat grain proteins using gel-free proteomics
approach (Uvackova et al., 2013a,b). In the present study we
tested the phenol-based extraction protocol (Hurkman and
Tanaka, 1986), which also solubilizes membrane proteins often
excluded from alcohol-based protein extractions. Previously, our
group efficiently used this protocol for the characterization of
seed proteins in soybean (Hajduch et al., 2005; Danchenko et al.,
2009; Klubicova et al., 2012), canola (Hajduch et al., 2006), castor
(Houston et al., 2009), Arabidopsis (Hajduch et al., 2010), and flax
(Klubicova et al., 2010, 2013).

FIGURE 4 | Summed abundance of the six non-redundant allergenic
proteins detected in wheat grain extracts. The total abundance is shown
as relative volume (%V).

In the present study we detected nine 2-DE spots as
HMW GS (Table 1; Figure 3), which influence the viscoelastic
properties of wheat flour (Masci et al., 1998), and may
cause wheat dependent exercise-induced anaphylaxis (WDEIA)
when digested (Hofmann et al., 2012). The present study was
particularly successful in the detection of wheat grain allergens
associated with Baker’s asthma (Salcedo et al., 2011; Olivieri
et al., 2013). Five 2-DE spots were identified as serpin (Table 1;
Figure 3), which are involved in food allergy and Baker’s asthma
(Salcedo et al., 2011; Mameri et al., 2012). Three 2-DE spots were
identified as an α-amylase inhibitor, important contributors to
Baker’s asthma (Tatham and Shewry, 2008; Salcedo et al., 2011),

FIGURE 3 | The 2-DE reference map of 24 clinically relevant proteins representing 13 unique accession numbers (six proteins).
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food allergies (James et al., 1997), and WDEIA (Hofmann et al.,
2012). Additionally, one 2-DE spot was detected as PER1 which
is a confirmed wheat allergen likely associated with Baker’s
asthma (Pahr et al., 2012). However, this study did not detect the
27 kDa albumin, which was shown to be associated with Baker’s
asthma (Weiss et al., 1993) or the alcohol-soluble gliadin proteins
involved in celiac disease (Wieser, 1996; Allred and Ritter, 2010).

The majority of wheat grain allergenic proteins detected in
the present study were not quantified in our recent MS-based
study (Uvackova et al., 2013b). This finding is in agreement with
a recent investigation of soybean under flooding stress, where
only 9 out of 115 proteins were detected by both gel-based and
gel-free proteomics approaches in root tips (Yin et al., 2014).
Similar results have been shown in the analysis of the honey bees
hemolymph proteome, where only 27% of proteins were detected
with both approaches (Bogaerts et al., 2009).

Based on this, it is tempting to speculate that gel-based
and gel-free approaches are complementary for the detection
and quantification of wheat grain allergenic proteins. However,
the complementarity of gel-based and gel-free proteomics
approaches was suggested previously (Luque-Garcia et al., 2011;
Abdallah et al., 2012). The combination of gel-based and gel-free
proteomics was shown to be effective for the analyses of soybean
under flooding (Yin et al., 2014), phytopathogenic fungus Botrytis
cinerea (Gonzalez-Fernandez et al., 2013), Nicotiana tabacum
trichomes (Van Cutsem et al., 2011), the honeybee hemolymph
proteome (Bogaerts et al., 2009), or during soybean seed filling
(Agrawal et al., 2008).

Conclusion

This study has demonstrated that phenol-based protein
extraction in combination with 2-DE and 7 cm IPG
strips is capable of determining clinically relevant proteins
in wheat grain extracts. However, important clinically
relevant proteins, such as alcohol-soluble gliadins were
not detected with this approach. The comparison of these
data with previous work suggests that gel-based and gel-
free proteomics are complementary approaches for the
determination of clinically relevant proteins in wheat grain
extracts.
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