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The circadian clock of plants allows them to cope with daily changes in their environment.
This is accomplished by the rhythmic regulation of gene expression, in a process that
involves many regulatory steps. One of the key steps involved at the RNA level is post-
transcriptional regulation, which ensures a correct control on the different amounts and
types of mRNA that will ultimately define the current physiological state of the plant cell.
Recent advances in the study of the processes of regulation of pre-mRNA processing,
RNA turn-over and surveillance, regulation of translation, function of lncRNAs, biogenesis
and function of small RNAs, and the development of bioinformatics tools have helped to
vastly expand our understanding of how this regulatory step performs its role. In this
work we review the current progress in circadian regulation at the post-transcriptional
level research in plants. It is the continuous interaction of all the information flow control
post-transcriptional processes that allow a plant to precisely time and predict daily
environmental changes.

Keywords: circadian rhythms, post-transcriptional regulation, Arabidopsis thaliana, alternative splicing, mRNA
nuclear export, RNA turnover, polyadenilation, regulation of translation

Introduction of Cogs and Wheels

We live in a world that spins around its axis with a period of approximately 24 h, which causes
daily environmental changes. This has shaped the evolution of organisms living on earth, ultimately
leading to the appearance of an endogenous system that helps predict those environmental
changes, the circadian clock (Dunlap et al., 2004). The circadian clock mechanism is based on a
transcriptional–translational feedback loop (TTFL), consisting of positive and negative elements.
This architecture is maintained in all kingdoms of life, although the elements per se are different
(Brown et al., 2012; Romanowski et al., 2014).
In the case of the workhorse plant model organism, Arabidopsis thaliana, the basic layout of the

circadian clock operates through the mutual interaction between the MYB transcription factors
circadian clock associated 1 (CCA1) and late elongated hypocotyl (LHY), whose levels peak in the
morning and repress the expression of the gene encoding PSEUDORESPONSE REGULATOR 1
(PRR1), also known as TIMING OF CAB EXPRESSION 1 (TOC1), whose levels peak in the late
afternoon and feedback to repress CCA1 and LHY expression (Nagel and Kay, 2012). In addition,
another feedback loop taking place during the morning involves the down-regulation of CCA1
and LHY mRNA levels at midday through the TOC1 homologs known as PRR9 and PRR7 (Farre
et al., 2005). During the evening, Lux Arrythmo (LUX, also known as PHYTOCLOCK 1 (PCL1))
recruits early flowering 4 (ELF4) and ELF3 to constitute the evening complex (EC), that acts as a
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FIGURE 1 | The plant circadian clock. The plant molecular clock is
based on a TTFL mechanism. The image shows the simplified molecular
clockwork mechanism of Arabidopsis thaliana: the central loop composed by
TOC1, CCA1, and LHY; the morning loop, composed by PRR5, PRR7, and

PRR9; the evening complex, composed by ELF3, ELF4, and LUX;
and the newly described positive elements, the RVE and LNK family. Other
plant clocks are very similar in nature, although there some
differences.

transcriptional repressor targeting PRR9 and LUX itself (Chow
et al., 2012; McClung, 2014).

While all the above interactions are examples of transcriptional
repression, recent evidence indicates that transcriptional
activators also play a key role in the regulation of the plant
circadian network. In particular, RVE8, RVE6, and RVE4,
homologs of CCA1 and LHY, are morning clock factors that
activate the expression of afternoon clock genes such as PRR5 and
TOC1 (Hsu et al., 2013; Sanchez and Yanovsky, 2013). These two
proteins are then degraded by interaction with the F-Box protein
Zeitlupe (ZTL; Mas et al., 2003; Fujiwara et al., 2008; McClung,
2014). Recently, four new light regulated clock genes named
LNK1–4 have been described. These elements, whose expression
peak in the morning, also contribute to activate the expression
of afternoon genes such as PRR5 and ELF4 (Rugnone et al.,
2013), acting as co-activators in conjunction with RVE8 (Xie
et al., 2014). Thus, both transcriptional repression and activation
play important roles mediating circadian oscillations in gene
expression in Arabidopsis (Figure 1). For a complete current
review of Arabidopsis clock components, see McClung (2014).

The circadian clock is very similar in different plant species,
although there are some subtle species-specific differences

(Murakami et al., 2007; Higgins et al., 2010; Song et al., 2010;
Calixto et al., 2015). Also, even though the main molecular
mechanisms of the plant clock have been devised, the complete
clockwork is far from complete and more elements will be
surely found in the near future. Taken together, this clockwork
mechanism orchestrates the oscillation of ∼30% of Arabidopsis
transcripts (Harmer et al., 2000; Schaffer et al., 2001; Covington
et al., 2008; Chow and Kay, 2013). Nevertheless, circadian
rhythms are also subject to many other layers of regulation in
addition to the transcriptional layer, including epigenetic, post-
transcriptional, and post-translational steps. In this review we will
focus on post-transcriptional regulation and circadian rhythms
and identify areas of research that merit further studies. We
apologize to co-workers whose work we could not cite due to
article length limitations.

Post-Transcriptional Regulation

Several post-transcriptional regulatory steps have been studied
in plants. These include pre-mRNA processing, RNA turn-over
and surveillance, and regulation of translation (Gallie, 1993; Floris
et al., 2009; Kojima et al., 2011). Over the years, evidence has
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FIGURE 2 | Post-transcriptional processes involved in circadian biology.
A transcript undergoes several steps of post-transcriptional processing in its
journey from transcription to translation. Many of these steps are circadian

regulated and help fine tune the circadian rhythms of the plant. A clock indicates
that the process is circadian regulated. A blue lightning indicates light
regulation.

accumulated pointing out the role that each of these events
play in circadian gene expression (Kojima et al., 2011; Beckwith
and Yanovsky, 2014). These processes all rely on protein–RNA
interactions and, not quite unexpectedly, several RNA binding
proteins have been shown to cycle in organisms as diverse as algae,
insects, and plants (McNeil et al., 1998; Staiger, 2001; Zhao et al.,
2004). For a summary of the post-transcriptional mechanisms
reviewed in this work, please refer to Figure 2.

Pre-mRNA Processing
Plant pre-mRNAs exist briefly and are rapidly processed into
mature mRNAs. The pre-mRNA molecules are composed of a
continuous series of segments, known as exons and introns.
Introns must be removed from a precursor mRNA to produce
a functional mRNA through a process known as splicing. In
addition, exons, which are nucleic acid sequences present in
the functional mRNAs after introns have been removed, can be
joined in many different ways through alternative splicing (AS;
Kornblihtt et al., 2013). Thus, through the process of AS a single
gene can actually generate many different proteins (Nilsen and
Graveley, 2010).

Alternative splicing seems to be amechanism to couple changes
in environmental temperature and circadian time information
(James et al., 2012b; Perez-Santangelo et al., 2013). This type
of thermosensitive AS has been observed to occur in A.
thaliana clock components. One such example is the case of
CCA1 during cold acclimation where AS leads to a truncated
version of the CCA1 mRNA, CCA1β, that prevents normal
binding and function of the active version of CCA1, CCA1α
(Seo et al., 2012). Also, in another regulatory strategy, many
thermosensitive AS events mediate the inclusion of premature
termination codons (PTCs), also referred to as unproductive
alternative splicing (UAS), that aim to regulate RNA levels instead
of altering protein diversity (Filichkin and Mockler, 2012; Syed
et al., 2012). A recent paper shows that environmental stresses
alter the accumulation of UAS isoforms and that this reversible
channeling allows for a rapid post-transcriptional adjustment
of daily oscillations of functional mRNAs (Filichkin et al.,
2015).

Pre-mRNA splicing takes place in the spliceosome, a dynamic
complex of five small nuclear ribonucleoprotein particles
(snRNPs) and additional non-snRNP auxiliary proteins that
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assemble on the exon-intron boundary sequences known as the
donor (5′) and acceptor (3′) splice sites (ss; Wahl et al., 2009).
AS results from the alternative use of 5′ ss, 3′ss, exon inclusion
or skipping, or intron retention (IR). Splice site recognition and
selection plays a key role determining AS patterns and this event
is regulated by the interactions between spliceosome components,
trans-acting proteins, and cis-acting sequence signals.

Mutations in spliceosome components that alter normal clock
function have been described. SKIP and STIPL1 mutants exhibit
a lengthened endogenous period of the biological clock and
altered AS rates, including those of clock components (Jones
et al., 2012; Wang et al., 2012). Also, a more recent paper has
shown that SM-like (LSM) genes, which encode components of
the U6 snRNP complex of the spliceosome, are regulated by
the circadian clock and control clock function. In this work, it
was shown that LSM5 is clock regulated in A. thaliana and that
several LSM genes cycle in the mouse suprachiasmatic nucleus
(SCN). Mutations in both organisms lead to a lengthened period
and AS is largely affected in plants (Perez-Santangelo et al.,
2014).

Other non-snRNP trans-acting splicing factors controlling
splice site choice are the serine/arginine rich (SR) and the
heterogeneous nuclear RNP (hnRNP) proteins (Matlin et al.,
2005). InArabidopsis, the AS of SR and hnRNP proteins is affected
by environmental conditions. Also the activity and localization
of SR proteins is affected by phosphorylation (Syed et al., 2012).
In Arabidopsis, some of the best studied hnRNPs are GRP7 and
GRP8, components of a slave oscillator coupled to the circadian
clock. These two splicing factors auto regulate their own AS and
cross-regulate each other to produce UAS isoforms (Schoning
et al., 2007, 2008; Syed et al., 2012).

The first evidence of a crosstalk and interplay between circadian
rhythms and AS in plants was described a couple of years
ago. A mutation in PRMT5, a clock regulated protein arginine
methyltransferase, was shown to significantly alter period length
by modulating the AS of PRR9 (Sanchez et al., 2010). This
constitutes a true feedback loop between AS and circadian
rhythms. This protein was also shown to affect circadian rhythms
and alter AS rates in the fruit fly, Drosophila melanogaster (Hong
et al., 2010; Sanchez et al., 2010).

Pre-mRNA also suffers other modifications, such as m7G
capping. There are no known associations between this process
and circadian rhythmicity in plants. However, a recent work has
shown that by inhibiting m7G-cap methylation and subsequent
cap-binding complex association, the endogenous period of the
mouse clock is lengthened, thus depicting the importance of
RNA-methylation dependent RNA processing for the circadian
clock (Fustin et al., 2013). Another type of RNA methylation,
m6A methylation, has been recently implicated in circadian
biology. When inhibited, this type of methylation which is
catalyzed by METTL3, the period of human U2OS cells and
mouse SCN slices is slowed. This can be explained by the
delay in RNA processing and nuclear mRNA export that
was observed upon the knockdown of Mettl3 (Fustin et al.,
2013).

Polyadenylation, a 3′UTR modification, is discussed further
below.

RNA Turn-Over and Surveillance
Stability of transcripts has been long hypothesized to be involved
in circadian regulation of gene expression. One such example is
the case of CAB1 (LHCB1*3), whose transcript appears to be
constant whereas CAB2 (LCHB1*1) and CAB3 (LHCB1*2) show
rhythmic transcripts. However, CAB1 promoter driven reporters
and nuclear run on assays showed rhythmic transcription, which
pointed to the possibility that the steady state of CAB1 mRNA
was due to rhythmic regulation of its stability (Millar and Kay,
1991). Also, CATALASE 3 (CAT3) is rhythmically transcribed
in constant darkness conditions but transcript levels are kept
constantly high at the mRNA level (Zhong et al., 1997). Another
interesting case occurs with NITRATE REDUCTASE 2 (NIA2)
which is transcribed at a constant rate and is cyclic at the
mRNA levels (Pilgrim et al., 1993). In rice, CATALASE A mRNA
levels are rhythmic through mRNA stability regulation (Iwamoto
et al., 2000). These four examples show that transcripts that are
constantly transcribed can be turned into rhythmic mRNA by
regulation of its stability and also, that the opposite is also true.
All these evidence was however indirect. That changed recently,
when the differential mRNA stability of at least two mRNAs was
found to be clock controlled in A. thaliana: CCR-LIKE (CCL)
and SENESCENCE ASSOCIATED GENE 1 (SEN1) transcripts
have been found to be circadian regulated at the stability level.
The authors have shown that the transcripts are degraded by
the downstream (DST) instability determinant pathway and,
using dst mutants, they have shown a connection between
the circadian clock and a sequence-specific mRNA degradation
pathway (Lidder et al., 2005). Also, the mRNA stability of the core
clock element CCA1 has been found to be light regulated (Yakir
et al., 2007). In this work, the authors show that light exposure,
particularly red or blue light, causes rapid degradation of CCA1
mRNA, that is reversed when the plants are transferred to dark
conditions. The authors also showed that the cis elements involved
in this mechanism are located in the coding region and not in the
5′ or 3′ UTR regions.

Another process involved in mRNA turn over that has gained
some momentum over the past years is non-sense mediated
decay (NMD; Nicholson et al., 2010). As mentioned above, AS
sometimes gives rice to PTC containing UAS isoforms and many
of these are then degraded by NMD, affecting overall transcript
levels and expression (James et al., 2012a; Drechsel et al., 2013;
Reddy et al., 2013). In this sense, NMD could sometimes be
considered the underlying mechanism for the observed effect of
AS. Two of the best characterized examples of gene regulation
by this process are GRP7 and GRP8. As we mentioned a few
paragraphs above, these proteins bind their own pre-mRNAs
inducing AS. The resulting splice variants are NMD-sensitive
transcripts that help regulate the transcript levels of both genes
(Schoning et al., 2008).

A few years ago there was some evidence that showed that
most IR splice variants that had NMD-target features managed to
escape NMD turnover (Kalyna et al., 2012). By using upf1–5 and
upf3-1 single mutants, this work also showed that NMD regulates
the transcript levels of plant development genes, transcription
factors, RNA processing factors, and stress response genes. This
paper also mentions that their evidence points out that PRR9
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is regulated by NMD, linking this process to the clock. Last
year, a study by Kwon et al., 2014. showed that TOC1 and ELF3
were indeed regulated by NMD, whereas other clock genes were
impervious to NMD regulation. It would be interesting to study
whether NMD plays a role in fine tuning circadian rhythms. This
could be achieved by using the strong NMD defective upf1–3
mutant. However, this mutation results in lethality due to an
adverse autoimmune response. This can be circumvented by
using a upf1–3;pad4 double mutant, which rescues the embryonic
lethality of the strong upf1–3 single mutant, as was recently shown
(Riehs-Kearnan et al., 2012).

mRNA Nuclear Export
The natural flow of information, from DNA to proteins
encounters a formidable barrier in plants and all other eukaryotes:
the nuclear envelope. The passage of molecules across the nuclear
envelope is accomplished through nuclear pore complexes
(NPC). This includes the export of RNA molecules complexed
with proteins. Most of the RNA transported as RNPs are mRNA
and ribosomal RNA (rRNA). The mRNPs can be as large as
100 MDa, which is very large compared to the average size of
60 kDa of regular protein cargoes, and undergo quaternary
structure remodeling to pass through the NPC. mRNPs consist
of heterogeneous mixes of different proteins packed around a
single mRNA molecule (Grunwald et al., 2011; Merkle, 2011;
Parry, 2014, 2015). Interestingly, a few years ago, it was found
that a protein involved in mRNA export is required for circadian
periodicity in A. thaliana. Mutants of the E3 ubiquitin ligase
HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE
GENES1 (HOS1) are affected in cold signaling and exhibit a
long period phenotype in a broad range of temperature and light
conditions. HOS1 physically interacts with NPC components
and is localized in the nuclear envelope. Also, mutant hos1
plants show elevated accumulation of polyadenylated mRNA
inside the nucleus, evidencing a malfunction in nuclear mRNA
export. Circadian long period phenotypes were also described
for other hos1-similar mutants with altered mRNA export:
suppressor of axr1 (sar1–4) and osmotically responsive genes4
(los4-1). However, mutants of hasty mutant (hst-7), involved in
transport of microRNAs, do not have a lengthened period. This
revealed that hos1mutants have a period defect resulting from an
mRNA export defect (MacGregor et al., 2013). This work shows
a true link between circadian rhythmicity and mRNA nuclear
export and demonstrated that period lengthening is a general
consequence of the disruption of mRNA export in plants.

Polyadenylation and Regulation of Translation
Polyadenylation is a key factor controlling mRNA storage,
degradation, and translation. As early as 1988, poly(A) tail
length has been implicated in circadian regulation in mammals
(Robinson et al., 1988). This work showed that the concentration
of the neuropeptide vasopressin oscillated in the cerebrospinal
fluid of rats and that this correlated with vasopressin mRNA
poly(A) tail length, which in turn varied with the time of day.
A couple of years ago, it was shown that hundreds of mouse
liver mRNAs had poly(A) tail lengths that showed circadian
rhythmicity. And although 80% where due to nuclear adenylation

coupled to rhythmic transcription, 20% were due to rhythmic
cytoplasmic polyadenylation itself. The latter were found to be
partly regulated by cytoplasmic polyadenylation element binding
proteins (CEBPs; Kojima et al., 2012). Rhythmic changes in
poly(A) tail length can result from nuclear and/or cytoplasmic
adenylation and deadenylation processes. Several deadenylases
and poly(A) polymerases are circadian regulated in mice (Kojima
et al., 2012) and could likely contribute to this rhythmic changes
in poly(A) tail length. Interestingly, the authors point out that
the rhythmicity of poly(A) tail length closely correlates with
rhythmic protein expression, and that poly(A) tail length peaks
several hours prior to the observed protein expression peak. In A.
thaliana, four poly(A) polymerases (Addepalli et al., 2004; Meeks
et al., 2009) and several deadenylases belonging to the PARN
and CCR4/CAF1 complex deadenylase systems (Belostotsky and
Sieburth, 2009; Suzuki et al., 2015) have been found. We searched
for these genes, and several other homologs that we found
by BlastP homology search, in two publicly available circadian
datasets (Covington et al., 2008; Hsu and Harmer, 2012) and
found that, as was the case in mice, several of them exhibited
circadian rhythmicity at the gene expression level (Figure 3). It
would be interesting to study poly(A) tail length rhythmicity in
plants and also whether the rhythmic plant poly(A) polymerases
and deadenylases play a part in this process.

There also seems to be a link between environmental cues and
polyadenylation. In 2013 it was reported that two cold induced
RNA binding proteins, Cirbp and Rbm3, regulate circadian
gene expression by controlling the length of 3′UTR. Under cold
conditions, these two proteins bind to proximal polyadenylation
sites (PAS) favoring distal PAS selection. The authors also found
that proximal/distal PAS selection was, in many cases, under
strong circadian regulation (Liu et al., 2013). Whether the same
kind of mechanism is or not at work in plants remains to be
studied.

Translation is another process that is subject to circadian
control. In mammals, it has been shown that AANAT translation
is regulated by hnRNP Q by interaction with the 5′UTR of
Aanat. hnRNP Q is rhythmically expressed and highly correlates
with the AANAT phase of expression (Kojima et al., 2011). In
Chlamydomonas reinhardtii,CHLAMY1, an RNAbinding protein
with RNA recognition motifs (RRM), regulates the circadian
translation of proteins related to nitrogen and carbonmetabolism,
by recognizing UG repeat sequences in the 3′UTR of its target
mRNAs (Waltenberger et al., 2001). This process has not yet
been found to be circadian regulated in plants but the studies
mentioned are excellent examples to lead the way in plant
circadian biology research. It is however, worth to note that a 2003
study found that the translation of a core clock component LHY
was light induced. The authors also found that under light:dark
cycles, a combination of two simultaneous processes, translational
induction and transcriptional repression of LHYexpression, could
help narrow the peak of LHY protein at dawn (Kim et al., 2003).
Later, in 2012, two global studies that showed light regulation of
translation were published. Both used sucrose-gradient profiling
of ribosomes combinedwith high-throughputmicroarray analysis
of the ribosome-associatedmRNAs to investigate the translational
landscape of A. thaliana (Missra and von Arnim, 2014). In the
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FIGURE 3 | Rhythmic poly(A) polymerases and deadenylases in A.
thaliana. (A) A Venn diagram between the two circadian datasets and the list of
poly(A) polymerases. (B) A Venn diagram between two circadian datasets and
the list of known deadenylases and others found by BlastP

homology searches. (C) This table shows the rhythmic and arrhythmic poly(A)
polymerases and deadenylases of A. thaliana. DS1 = Covington + Edwards
dataset from Covington et al. (2008); DS2 = circadian dataset from
Hsu and Harmer (2012).

first work, by Liu et al. (2012) 4-day-old Arabidopsis etiolated
seedlings were exposed to white light and harvested at 0 min,
10 min, 0.5 h, 1 h, and 4 h. The translational status of the
samples was then examined by polysome profiling analyses. It
was found that during photomorphogenesis, genes encoding
ribosomal proteins are preferentially regulated at the translational
level, and that mRNAs regulated at the translational level have
longer half-lives and shorter cDNA lengths. Also a cis element,
TAGGGTTT, in the 5′ untranslated region was found to correlate
with higher translatability (Liu et al., 2012). The second work,
by Juntawong and Bailey-Serres, showed that over 1600 mRNAs
were differentially translated in response to light availability.
In this work, seedlings were grown under long day conditions,

shifted to darkness at ZT8, and then re-illuminated. This caused
a 17% reduction in polysomes after the dark pulse and an
increase in 80S monoribosomes and ribosomal subunits, which
was effectively reversed after 10 min of light exposure (Juntawong
and Bailey-Serres, 2012). This work identified four distinct groups
of genes: dark induced and translated; dark unstable; dark stable
and translationally repressed; and non-responsive genes. The
first group included mRNAs associated with carbohydrate and
amino acid catabolism. The second group was highly enriched
in transcription factors and other regulatory proteins. And the
third group, which shifted out of polysome complexes and was
somehow stabilized, was enriched for plastid targeted proteins
and the protein synthesis machinery. This work demonstrated
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that light:dark transitions have a profound effect on overall and
specific translation of mRNAs. There could also be a role for the
plant circadian clock in this process. Further studies are needed to
answer this question.

Long Non-Coding RNAs and microRNAs
Non-protein coding RNAs (ncRNAs) are known to be major
regulators of cellular processes. In particular, long ncRNAs
(lncRNAs), which are generated from the opposite strand of
coding or non-coding genes, have a role in transcriptional
and post-transcriptional regulation and have been found to be
rhythmic in several organisms (Hazen et al., 2009; Coon et al.,
2012). In plants, many circadian and light responsive lncRNAs
have been found (Hazen et al., 2009; Wang et al., 2014). Some of
the lncRNAs have as their natural antisense targets LHY, CCA1,
TOC1, PRR3, PRR5, PRR7, and PRR9 (Jouannet and Crespi,
2011). However, the role of these lncRNAs in the central clock
remains to be elucidated.

Micro RNAs (miRNAs) have been dubbed the “master
regulators of gene expression.” They themselves are subject to a
tight regulation at the transcriptional, processing, and localization
level (Hamid and Akgul, 2014) and represent another process
involved in circadian biology. miRNAs have been shown to be
rhythmic in diverse organisms, from plants to mice (Kojima et al.,
2011). In plants, it has been shown that the accumulation of
several microRNAs (miR171, miR398, miR167, and miR168) has
a daily regulation, showing a higher level during the daylight
phase of the photoperiodic cycle (Sire et al., 2009). However,
this work also showed that this cyclical regulation disappeared
upon transfer to constant light conditions indicating that their
oscillation was not truly circadian. Another work did succeed in
identifying circadian miRNAs in A. thaliana using a tiling array
that could distinguish only 114 annotated miRNAs (Hazen et al.,
2009). Among the several plant circadian miRNAs, this work
identified miR157A and miR158A, involved in the regulation
of the SQUAMOSA BINDING PROTEIN family regulation;
and miR160B and miR167D, involved in the regulation of the
AUXIN RESPONSE FACTOR family. These two examples are
centered in a rhythmic output of miRNAs. However, a more
direct involvement of miRNAs in the circadian clock mechanism
has been found in other organisms. For example, disruption
of the miRNA biogenesis pathway in D. melanogaster severely
affects circadian rhythmicity. Using tiling array analyses, several
miRNAs involved in normal clock function were identified in the
fruit fly head circadian tissue (Kadener et al., 2009). A similar
global approach might shed light on miRNA involvement in plant
circadian rhythm generation.

Circadian Bioinformatics Tools Come to the
Rescue!
The twenty-first century is the century of big data generation and
this is also true in the case of post-transcriptional studies. One can
study circadian transcription and pre-mRNA splicing by Nascent-
Seq andRNA-Seq (Koike et al., 2012;Menet et al., 2012; Rodriguez
et al., 2013), protein–DNA interactions by ChIP-Seq (Huang et al.,
2012; Koike et al., 2012; Nakamichi et al., 2012), small RNA
biology by tiling arrays and small RNA sequencing (Hazen et al.,

2009; Kadener et al., 2009; Yoshitane et al., 2014), and circadian
mRNA expression by microarrays and mRNA sequencing
(Harmer et al., 2000; Schaffer et al., 2001; Edwards et al., 2006;
Covington et al., 2008; Hughes et al., 2012; Koike et al., 2012;
Chow and Kay, 2013). Considerations to correctly design RNA-
Seq analysis of circadian rhythms have been recently discussed in
a very nicely presented methods paper (Li et al., 2015).

Once the data is generated there are several algorithms
designed to help identify circadian patterns. Nevertheless,
choosing the right algorithm might prove difficult. Some of the
most frequently used algorithms have been recently reviewed (Wu
et al., 2014). The algorithms reviewed in this work were ARSER
(Yang and Su, 2010), COSOPT (Straume, 2004), Fisher’s G test
(Wichert et al., 2004), HAYSTACK (Mockler et al., 2007), and
JTK_CYCLE (Hughes et al., 2010). Using simulated data, some
of the most important conclusions were that the sampling rate
of the data directly affects the performance of the algorithm and
all methods perform equally well when using at least a sampling
rate of 2 h/2 days. However, when decreasing the sampling rate to
4 h/2 days or 6 h/2 days, the false discovery rate (FDR) increases.
The waveform shape also has implications in the accuracy of
detection. For example, while cosine based waveforms are very
well detected by the five algorithms, cosine squared, triangle,
peak, or squared based waveforms are less accurately identified
as sampling rate decreases. Another circadian parameter, phase,
is generally detected with an error of approximately 3 h, so this
information should be taken cautiously. Fisher’s G test does not
give phase information. Overall, the authors identify JTK_CYCLE
and Fisher’s G test as the best algorithms to identify circadian
data under different sampling rates. However, each method has
its own defined rhythmic signals and they may show preferences
for a specific periodic profile, so it is important to determine
beforehand the periodic pattern of interest.

Other algorithmswere recently compared on the basis that they
employed different mathematical methods to identify periodicity
(Deckard et al., 2013). The authors compared de Lichtenberg (De
Lichtenberg et al., 2005), Lomb–Scargle (Lomb, 1976; Scargle,
1982), JTK CYCLE (Hughes et al., 2010) and persistent homology
(Cohen-Steiner et al., 2010). They found that waveform shape had
the largest impact on performance, especially under high noise
or low sampling rate conditions. In the situations studied in this
work JTK_CYCLE was found to be the most versatile algorithm.
However, the authors suggest combining the four algorithms
together to recover themost comprehensive set of periodic signals
in a data set.

Taken together it is advisable to choose the appropriate
algorithm based on noise levels, sampling rate and the shape of the
periodic pattern of interest. Sampling rate should be the highest
possible to obtain the best results. If the pattern of interest is not
known, it is advisable to combine various algorithms to obtain a
better overview of the circadian data set.

Final Remarks

We have described several post-transcriptional processes linked
with circadian biology. Post-transcriptional regulation adds
robustness and complexity to the TTFL based circadian system
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of plants. However, it is also important not to overlook the
fact that circadian rhythms are also subject to epigenetic
and post-translational regulation. For example, circadian
H3K56ac, H3K9ac, H3K14ac, H3K4me2, and H3K4me3 histone
modifications have been described to correlate broadly with
circadian mRNA rhythms, indicating a link between chromatin
regulation and plant circadian rhythms (Hemmes et al., 2012;
Malapeira et al., 2012; Henriques and Mas, 2013). Also, many
chromatin remodeling factor seem to be under circadian control
of expression (Lee et al., 2015). Post-translational regulatory
mechanisms, including protein phosphorylation, stability, and
turnover, are also involved in fine tuning circadian rhythmicity
and have been recently reviewed (Seo and Mas, 2014). The
coordinated phosphorylation of negative elements of the clock,
which leads to proteasomal degradation, is essential to determine
the pace of the clock. However, a recent work has shown that
this final step is not as essential a step as initially thought.
Using COP9 signalosome mutants in Neurospora crassa, the
authors show that in ∆fwd-1 fungi there is no period increase
as expected by the lengthened half-life of the negative element
FRQ. By using different frq alleles they demonstrated that period
was determined by the nature of the allele and not the rate
of turnover (Larrondo et al., 2015). Another post-translational
process implicated in circadian biology is nuclear protein import
and, in plants, the import of the circadian clock regulated
RNA binding protein AtGRP7 has been studied (Ziemienowicz
et al., 2003). This work showed that AtTRN1 is responsible
for the nuclear import of AtGRP7 and that the transportin-
mediated nuclear input pathway is conserved in man, yeasts, and
plants.

There are also other post-transcriptional processes that have
been described to be linked to circadian biology in other
organisms but not in plants, or that might be under circadian
control but have not been yet investigated. An example of the
first case is evidenced in small nucleolar RNAs (snoRNAs). This
small RNAs guide methylation of both non-coding RNAs and
mRNAs. Interestingly, the level of several snoRNA host genes
oscillates in the fly brain transcriptome (Hughes et al., 2012),
highlighting a possible mechanism by which the clock might
couple transcription with this post-transcriptional mechanism.

Bioinformatics tools will become more and more important,
and necessary, in global studies of circadian biology as evidenced
by the ever increasing complexity of all the circadian layers
of regulation. As new techniques to study each layer of post-
transcriptional regulation become available, new algorithms must
be devised to analyze the data and also, special effort should be
put to the development of comprehensive algorithmic tools to
integrate the circadian information of each layer of regulation.
This would help to better understand circadian regulation with a
whole new unifying view, and would prove an invaluable tool not
for plant biology alone but for the whole science of chronobiology.
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