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Macronutrients are essential elements for plant growth and development. In natural,
non-cultivated systems, the availability of macronutrients is not a limiting factor of
growth, due to fast recycling mechanisms. However, their availability might be an issue
in modern agricultural practices, since soil has been frequently over exploited. From
a crop management perspective, the nitrogen (N), phosphorus (P), and potassium
(K) are three important limiting factors and therefore frequently added as fertilizers.
NPK are among the nutrients that have been reported to alter post-embryonic root
developmental processes and consequently, impairs crop yield. To cope with nutrients
scarcity, plants have evolved several mechanisms involved in metabolic, physiological,
and developmental adaptations. In this scenario, microRNAs (miRNAs) have emerged
as additional key regulators of nutrients uptake and assimilation. Some studies have
demonstrated the intrinsic relation between miRNAs and their targets, and how they
can modulate plants to deal with the NPK availability. In this review, we focus on
miRNAs and their regulation of targets involved in NPK metabolism. In general, NPK
starvation is related with miRNAs that are involved in root-architectural changes and
uptake activity modulation. We further show that several miRNAs were discovered to be
involved in plant–microbe symbiosis during N and P uptake, and in this way we present
a global view of some studies that were conducted in the last years. The integration of
current knowledge about miRNA-NPK signaling may help future studies to focus in good
candidates genes for the development of important tools for plant nutritional breeding.

Keywords: nitrogen, phosphorus, potassium, microRNAs, plant nutrition, plant–microbe symbiosis

Introduction

Nutrients in plants have important functions in osmotic regulation, cellular permeability, and
may act as structural components and essential metabolites, being therefore critical for proper
growth and development. Some of those nutrients, known as macronutrients, though, are required
in relatively large amounts. Among these macronutrients, nitrogen (N), phosphorus (P), and
potassium (K) are three important limiting factors frequently added as fertilizers in modern
agricultural schemes.

Plants have evolved several physiological and molecular adaptive responses to deal with the
lack of nutrients. A better understanding about how those circuits are triggered, transduced and
controlled may lead to the development of important tools for plant breeding and manipulation.
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Recent data have showed that classes of long and small non-
coding RNAs (ncRNAs) play an important role during plant
stress response (Kulcheski et al., 2011; Jeong and Green, 2013;
Kumar, 2014), including in nutrient availability (Sunkar et al.,
2012). The vast majority of those ncRNAs remain poorly
understood, but others, like some microRNAs (miRNAs) have
been extensively studied and characterized, especially as negative
regulators of mRNA half-life and translation, consequently
interfering with protein production.

Since miRNAs are involved in the regulation of virtually
all cellular metabolic pathways, modulation of their biogenesis
is of paramount importance for the maintenance of cellular
homeostasis. Like mRNAs, miRNAs are mainly transcribed by
RNA Polymerase II (Pol II) and are associated with factors
involved in RNA splicing and processing, including addition of
5′CAP and 3′ polyadenylation (Xie et al., 2005; Bielewicz et al.,
2013). Likewise, miRNA promoters have TATA box cis elements
and are recognized by basic transcription initiation factors, such
as transcription factor IIB (TFIIB), involved in the formation
of Pol II pre-initiation complex (Megraw et al., 2006; Zhao
et al., 2013). Therefore, miRNA biogenesis is temporally and
spatially regulated during development, as well as in response
to environmental factors. Due to their sessile nature, plants have
efficiently integrated the miRNA response for the mitigation of
several types of stresses.

Like other small ncRNAs, mature miRNAs are single-
stranded molecules with 20–24 nucleotides (nt) in length. Those
molecules, however, have a unique biogenesis mechanism. As the
first step, miRNAs are produced from a particular type of stem-
loop precursor RNA, termed pri-miRNAs. The pri-miRNAs are
generally transcribed by RNA Pol II and may contain several
100s of nucleotides (Rogers and Chen, 2013). In eukaryotes,
a special class of RNase III enzyme called Dicer recognizes
and degrades pri-miRNAs, generating a stem loop intermediate
known as pre-miRNA. Pre-miRNAs are further processed into
20–24 nt duplex miRNAs. In plants, the two processing steps are
mediated by a single enzyme, Dicer-like 1 (DCL1; Reinhart et al.,
2002; Finnegan et al., 2003; Xie et al., 2004; Park et al., 2005).
DCL1 dices stem-loop RNAs into 21 nt sequences, explaining
the predominance of this small RNA size class in plants. Some
precursors, however, can be degraded by other plant DCLs,
generating miRNAs with different sizes (Margis et al., 2006;
Rajagopalan et al., 2006; Vazquez et al., 2008; Ben Amor et al.,
2009).

Dicer-like 1, however, depends on several other proteins
to exert its activity, forming a complex frequently refereed as
microprocessor. Proteins directly or indirectly associated with
DCL1 includes the dsRNA binding proteins DRB1 (also known
as HYL1) and Tough (TGH; Ren et al., 2012), the zinc finger
protein Serrate (SE; Yang et al., 2006), the phosphatase C-terminal
Domain Phosphatase-like 1 (CPL1; Manavella et al., 2012),
the threonine binding protein Dawdle (DDL; Yu et al., 2008),
the proline-rich protein Sickle (SIC; Zhan et al., 2012), the
RNA binding protein Modifier of SNC1-2 (MOS2; Wu et al.,
2013), proteins involved in RNA splicing, like Cap Binding
protein 20 (CBP20), Cap Binding protein 80 (CBP80), and
Stabilized 1 (STA1), and components of the transcriptional

machinery, such as Negative on TATA 2b (NOT2b; Gregory
et al., 2008; Kim et al., 2008; Laubinger et al., 2008). Each
protein has a specific function in the processing complex,
including recruitment of pri-miRNAs, assistance in dicing
activity, post-translation modification of key components and
binding and/or recruitment of RNA splicing and transcriptional
factors, indicating that pri-miRNA transcription and processing
might occur simultaneously.

Mature duplex miRNAs may also suffer edition before being
incorporated into effector complexes known as RNA-Induced
Silencing Complex (RISC). Modifications may include 3′ end
methylation, base additions, or degradation (Yu et al., 2005;
Ramachandran and Chen, 2008). Once in RISC, duplex miRNAs
binds to effector proteins called Argonaute (AGO). One of the
strands is removed and the other will guide the complex to
target sequences. Depending on the base pairing between the
two RNAs, AGO proteins may regulate target sequences by
slicing or translation inhibition (Poulsen et al., 2013). Most
of known miRNA targets are mRNAs, however, other ncRNAs
(Fei et al., 2013) and transposons can also be regulated during
reprogramming of germ lines (Creasey et al., 2014).

Several miRNA genes/families are conserved among
plants. Those genes are usually highly regulated and target
mRNAs coding for development-related transcriptional factors
(Willmann and Poethig, 2007). For example, genes involved
with vegetative phase transition and leaf polarity are directly
or indirectly regulated by conserved miRNAs (Peragine et al.,
2004; Nogueira et al., 2007). Accordingly, mutations in genes
associated with miRNA biogenesis display strong developmental
defects and in some cases are lethal (Jacobsen et al., 1999;
Lu and Fedoroff, 2000; Morel et al., 2002). However, like any
other gene, miRNA genes can be continuously gained and
lost during evolutionary processes. Even in closely related
plants, like the two model plants Arabidopsis thaliana and
Arabidopsis lyrata, about 13% of miRNA genes are unique
in each species (Fahlgren et al., 2010). Most of those young
miRNAs are frequently associated with clade-specific processes,
including several types of stresses (Willmann and Poethig,
2007). More specifically, miRNAs have already been associated
in cold, drought, salt, oxidative, injury, and nutrient stresses,
among others (Sunkar et al., 2012). In fact, drb1 and cpb80
mutants from Arabidopsis are hypersensitive to the abscisic acid
hormone (ABA), a key regulator of stress responses (Kim et al.,
2008).

The regulation of gene expression, mediated by miRNAs in
stress and development responses in plants, is enhanced by two
mechanisms: amplification and migration. Depending on the size
of the mature miRNA sequence, the number of binding sites
to the target sequence and also the type of AGO associated,
the miRNA-mediated regulation can trigger the recruitment
of the amplification machinery containing the RNA-dependent
RNA Polymerase 6 (RDR6; Fei et al., 2013). By creating novel
dsRNAs from target-sequences, a plethora of small interfering
RNAs (siRNAs) are produced by the action of DCL4 protein.
Those siRNAs can also be incorporated in AGO-containing
RISC complexes, creating a complex network of regulation
(MacLean et al., 2010). Furthermore, both amplified siRNAs and
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miRNAs can move from cell-to-cell and eventually reach phloem
cells, promoting a long-distance regulation (Sarkies and Miska,
2014).

These characteristics confer to miRNAs an efficient buffer
capacity and, in concert with transcription factors, important
hubs for both local and systemic gene regulation. In this review,
we will focus on the role of miRNAs in response to the NPK
macronutrient stresses, the three main growth-limiting elements
that are widely used as fertilizers.

Nitrogen and Plant miRNAs

Nitrogen is an essential macronutrient required for plant growth
and development. This element is required in large amounts in
plant cells, not only as an important building block of amino
acids, nucleic acids, and chlorophyll, but also due the pivotal
regulator role in carbon and amino acid metabolism, as well
as in protein synthesis (Frink et al., 1999; Cai et al., 2012).
Plants absorb N from soil in the form of nitrate (NO3

−),
ammonia/ammonium (NH3/NH4

+), or urea [CO (NH2)2], and
also as free amino acids or organic N throughmicrobial symbiosis
in legumes (Williams and Miller, 2001; Fischer et al., 2013).
Since N is indispensable to plant growth, it is also associated
with crop production improvement. In this way, millions of
tons of nitrogenous fertilizers are added to the soil worldwide
annually (Good et al., 2004). However this practice increases
the costs of plant production and also contributes for a serious
soil and water pollution due to an excess of N that remains
in the environment (Good and Beatty, 2011; Fischer et al.,
2013). Incomplete capture and poor conversion of N fertilizer
also can causes global warming through emissions of nitrous
oxide (Montzka et al., 2011). For this reason, one of the
main goals of researches on plant nutrition is to improve
the plant N uptake as well as its efficient use (Hirel et al.,
2007).

The efficient use of N by plants includes its uptake,
assimilation, translocation, and when the plant is aging, recycling,
and remobilization (Masclaux-Daubresse et al., 2008; Chardon
et al., 2010). Many efforts have been done to understand the
molecular basis of plant responses to N and to identify N
responsive genes. The complex and diverse physiological and
biochemical changes involved in N metabolism suggest that a
plethora of genes and metabolic pathways are necessary to allow
plant adaptation according to the N presence or limitation. In
this scenario, many studies comprising miRNAs responsive to N
stimulus have been developed.

Several miRNAs have been characterized in association
to N stresses (Pant et al., 2009; Liang et al., 2012) and
are summarized in Table 1. Some of these miRNAs were
observed to be upregulated or downregulated depending the
specie, tissues, and experiment design. For example, reverse
transcription quantitative real-time polymerase chain reaction
(RT-qPCR) detected that some conserved miRNAs can be either
repressed or induced in N-limited seedlings of Arabidopsis
(Pant et al., 2009). The rapessed (Brassica napus) phloem sap
was investigated about the N-responsive miRNAs, and in this

species, it was observed that miR2111, miR169, and miR827-
like sequences were strongly dependent on the N status (Pant
et al., 2009). Liang et al. (2012), through deep sequencing
technology, observed that members from the same miRNA
families displayed differential expression in response to N
deficiency in Arabidopsis. One year later, Vidal et al. (2013)
studying N-responsive genes in Arabidopsis roots, discovered
a new miRNA (miR5640) and its respective target (AtPPC3
protein) which seems to integrate the N and carbon metabolism.
The AtPPC3 protein is one of the four phosphoenolpyruvate
carboxylase isozymes and is involved in the carbon metabolism
that catalyzes the β-carboxylation of phosphoenolpyruvate
to yield oxaloacetate. In C3 plants and algae, AtPPCs are
important for the production of carbon skeletons used for N
assimilation. Despite, the missing information about AtPPC3
function in N metabolism, Vidal et al. (2013) observed that this
protein was nitrate-induced, being a good candidate for further
investigation.

In maize, Xu et al. (2011) studied a detailed response
of miRNAs in shoots and roots under long-term and short-
term low N condition. The results were interesting, since they
showed some miRNAs having different behavior across the
different N starvation kinetic, like was the case of miR169
in roots. However, the other high conserved miRNA, miR172
presented the same profile in leaves in both experimental
conditions. Investigating the molecular biology of miRNAs
underlying N sensing/signaling in this same crop, Zhao et al.
(2012) constructed four small RNA libraries from shoot and
root under N-sufficiency and deficiency. The sequencing data
analysis showed that in shoots and roots the expression of
some conserved miRNAs was variable under N deficiency.
Also, in this study, the authors showed that RT-qPCR and
small RNA northern blot results are consistent with the results
obtained by sequencing, which is not a rule, once in several
cases, discrepancies are observed across those methodologies.
Trevisan et al. (2012a,b) also observed the N effect on
miR528ab, miR169ijk, miR166jkn, and miR408b transcripts
accumulation. Since they employed the in situ hybridization
methodology, the inspection of tissue localization of these
miRNAs was possible. All miRNAs analyzed showed transcript
accumulation in N-supplied roots, while signals became weaker
in N-depleted roots. In N-supplied roots, miR169ijk, and
miR166jkn were present exclusively in the root vascular tissues,
miR528ab in pericycle cells and miR408b in epidermis tissue.
However miR169ijk was only found in nitrate-supplied root
tips, while the others miRNA were detected also in N-deficient
roots.

Rice is the other important crop which has being investigated
about miRNAs expression under N stresses. Nischal et al. (2012)
investigated microarray-based miRNA expression in N-tolerant
and N-sensitive rice genotypes under low N condition. They
detected the expression of some miRNAs and their respective
targets. In both tissues analyzed, miRNAs were downregulated
and their respective targets expressions were significantly higher
in low N-tolerant genotype than low N-sensitive genotype.
The majority of miRNAs targets identified were transcription
factors and proteins associated with metabolic processes or
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TABLE 1 | N-responsive miRNAs with respective expression profiles according to different treatments, tissues, and species.

Plant species miRNAs Expression
profile

Samples/
tissue

N condition Reference

Arabidopsis
thaliana

miR156e, miR156g, miR157d Upregulated Seedlings N-deficient Pant et al. (2009)

miR169h, miR169i, miR169j, miR169k, miR169l,
miR169m, miR169n, miR398

Downregulated

miR160, miR780, miR826, miR842, miR846 Upregulated Whole
seedlings

N-deficient Liang et al. (2012)

miR169, miR171, miR395, miR397, miR398,
miR399, miR408, miR827, miR857

Downregulated

miR5640 Downregulated Roots 1 h after N
addition

Vidal et al. (2013)

Brassica napus miR156, miR399 Upregulated Phloem sap N-deficient Pant et al. (2009)

miR159, miR169, miR2111 Downregulated

Glycine max miR172l-3p, miR396bcdfg-5p, miR396bcg-3p,
miR398ab-3p, miR1511-3p, miR4413a-5p

Upregulated Roots N-deficient
(short-term
treatment)

Wang et al. (2013)∗

miR156p-5p, miR171n-3p, miR171o-5p,
miR390ac-3p, miR482a-3p, miR4348-5p

Downregulated

Oryza sativa miR156, miR164, miR528, miR820, miR821,
miR1318

Downregulated Leaves N-deficient
(low-N
tolerante/low-N
sensitive
genotype)

Nischal et al. (2012)

miR164, miR167, miR168, miR528 Downregulated Roots

Phaseolus
vulgaris

miR167, miR169, miR319, miR399, miR408 Downregulated Leaves/roots N-deficient Valdés-López et al. (2010)

miR396 Upregulated Leaves

Populus
tomentosa

miR393, miR395,miR396abe Upregulated Whole plantlets N-deficient Ren et al. (2015)

miR159, miR160, miR162, miR166, miR167,
miR168, miR169, miR171, miR172, miR390,
miR396c, miR399, miR403, miR475, miR482,
miR1448, miR6427, miR6445, miR6462

Downregulated

Zea mays miR167, miR169, miR395, miR399, miR408,
miR528

Downregulated Roots Long term
N-deficient

Xu et al. (2011)

miR164, miR172, miR827 Upregulated Leaves

miR169, miR397, miR398, miR399, miR498,
miR528

Downregulated

miR160, miR168, miR169, miR319, miR395,
miR399

Upregulated Roots Short-term
N-deficient

miR172 Upregulated Leaves

miR397, miR398, miR827 Downregulated

miR162, miR167, miR394 Upregulated Shoots N-deficient Zhao et al. (2012)

miR169, miR397, miR398, miR408, miR528s Downregulated

miR162, miR167s Upregulated Roots

miR169, miR169cr, miR395abdefghijnp, miR397s,
miR408s, miR528s, miR395s, miR827

Downregulated

miR166jkn, miR169ijk, miR408b, miR528ab Downregulated Roots N-deficient Trevisan et al. (2012a,b)

∗These data are from RT-qPCR analysis, this paper also presents a huge set of miRNAs profile from deep sequencing analysis.

stress responses. In soybean, Wang et al. (2013) performed a
massive sequencing of 16 different libraries. Using the sequencing
data, they found that multiple members of the miR169 family
were repressed in both roots and shoots of two soybean
varieties under low N stress. Other conserved miRNA family, the
miR156, also showed a variable response according the different
experimental parameters. Aside from the sequencing data, the

authors also performed RT-qPCR to predict some miRNAs
expression (data showed in Table 1). Previous study exploring
the miRNA expression in other legume, the blackbean (Phaseolus
vulgaris), also detected the repression of some conserved in leaves
and roots during N starvation; being the miR396 the unique
conserved miRNA upregulated in leaves tissues (Valdés-López
et al., 2010).
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Recently, the Chinese tree, Populus tomentosa, was
investigated about its responsive miRNAs to N stress. In
this study Ren et al. (2015) identified conserved and new
miRNAs, and also employed RT-qPCR to determine the miRNAs
dynamic and responses to low N stress at different time points.
In general, they observed a variable behavior across the miRNAs
families with a consistency among the members of each family.
The family miR396 was the unique to present an inconsistency
variation among their members, for example, miR396a, miR396b,
and miR396e were upregulated in response to low N stress, but
miR396c was downregulated.

Taking all these published work that were summarized
above, as well as in Table 1, we can observe that in
general the miRNAs tend to be downregulated during N

deficiency. However, there are lots of variations according
to different species, tissues, and experimental conditions
that can affect a miRNA expression and results in an
unstable behavior. Usually in these studies, the expression
analyses are done in a high throughput way providing
a huge amount of data. Global analyses are very helpful
once they supply a plethora of possible miRNAs that are
involved in particular process, facilitating the selection of
potential candidates to be further explored. So, on the
next sections we will discuss about some miRNAs, as also
their respective targets, that have been deeply analyzed and
experimentally confirmed to be involved in N response
and symbiotic N fixation. The results of these studies are
summarized in Figure 1.

FIGURE 1 | The microRNA (miRNA) regulatory network in Nitrogen (N)
signaling. The miRNAs expression patterns during N-deficient (−N) or
N-sufficient (+N) in shoot (top balloon) or root (bottom balloons) tissues.
Arrows pointing down and up indicate downregulation and upregulation,
respectively. Each miRNA is associated with the mRNA target gene that is

inhibited. Depending of the miRNA regulation, the target will be induced or
repressed which will consequently affect plant structures and biological
processes (described in white boxes). The black star indicates the miRNAs
and respective targets that were explored about N signaling in both root and
shoot tissues.
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The Nitrogen Responsive miRNAs and Their
Targets
miR156 and Squamosa Promoter Binding Protein
Like (SPL)
The miR156 is one of the most conserved and ubiquitous
miRNAs in plants and is conserved throughout the plant
kingdom (Axtell and Bowman, 2008). In Arabidopsis, miR156
targets 11 out of the 17 members from the SPL gene family
(Rhoades et al., 2002; Xing et al., 2010; Gou et al., 2011). The
miR156 and its SPLs targets define an essential regulatory module
that controls phase transitions, leaf trichome development, male
fertility, embryonic patterning, and anthocyanin biosynthesis
(Wang et al., 2009a, 2014b; Nodine and Bartel, 2010; Xing
et al., 2010; Yu et al., 2010). SPL proteins play critical roles in
maintaining normal growth throughout plant life cycle. These
miRNAs are involved in phase change via their targets, members
of the SPL transcription factors. The miR156a and miR156c
levels have been shown to be repressed by a factor produced by
leaf primordia, as defoliation generates high levels of miR156
(Yang et al., 2011). Recent work showed that the leaf-derived
signal might be glucose or a glucose-derived metabolite, since
glucose represses the expression of miR156 genes promoting
vegetative phase change (Yang et al., 2013; Yu et al., 2013). These
results suggest that products of photosynthesis can act as positive
signals for the plant to proceed into the adult phase. Similarly,
N limitation can induce the expression of miR156 in Arabidopsis
seedlings (Pant et al., 2009; Liang et al., 2012; Fischer et al.,
2013). Analysis of the transcriptome of N-limited plants shows
that one of the miR156 targets, SPL3, is downregulated (Krapp
et al., 2012), suggesting that a miR156/SPL3 module might act by
repressing vegetative phase change under limiting N availability.
Furthermore, miR156 acts as a negative regulator of miR172 by
controlling miR172 expression via its targets SPL9 and SPL15
(Wu et al., 2009a). Consistently, N starvation represses miR172
in Arabidopsis leaves (Liang et al., 2012; Fischer et al., 2013).
However, no changes in transcript levels of miR172 targets are
induced by N starvation in Arabidopsis leaves (Krapp et al.,
2012).

miR160 and Auxin Response Factor 16 (ARF16)
In a study performed with Arabidopsis, was demonstrated
that the abundance of miR160 was strongly increased during
N-deficient compared with N-sufficient conditions (Liang et al.,
2012). In this study, the authors observed that the expression
induction of miR160a was co-related with the downregulation
of its ARFs targets under N-deficient conditions. ARFs are
DNA binding proteins that control auxin-regulated transcription
and are only present in plants. They bind to auxin-responsive
promoter elements, which are found in early auxin responsive
genes. Some previous studies showed that miR160 regulates
the number of lateral root by controlling ARF16, being this
auxin responsive factor already characterized to control root
cap formation (Wang et al., 2005). Investigating whether the
accumulation of miR160 facilitates lateral root formation during
N-deficiency, Liang et al. (2012) produced transgenic plants
overexpressing miR160a. As expected by the authors, the miR160
overexpressing mutants had higher number of lateral roots than

control plants, once that N-deficiency induces expression of
miR160, which increases ARF16 degradation and consequently
supports lateral root formation.

miR167 and Auxin Response Factor 8 (ARF8)
The complex process of adventitious rooting is controlled by
several endogenous and environmental factors. Some years ago,
Gutierrez et al. (2012) demonstrated that the auxin response
factors ARF6 and ARF8, targets of the miR167, are involved
in the induction of adventitious rooting. Once that is already
known that N concentration can stimulate lateral root elongation
(Zhang and Forde, 1998; Lopez-Bucio et al., 2003), Gifford et al.
(2008) decided to investigate the role of miR167 and ARF8 in
response to N stimulus in Arabidopsis. Analyzing how tissues
respond separately and coordinate their responses to N signals,
the authors looked for different gene expression in a range
of cell types from inner to outer layers of root tissues. They
found that ARF8 was highly expressed in the pericycle and
the lateral root cap cells during N treatment, while its miRNA
regulator was repressed. In wild type phenotypes, N causes an
increase ratio of initiation versus emergence of lateral roots.
According to Gifford et al. (2008), this is a strategy that plants
employ to control root architecture under N variations. If the
environment is rich in N signal, the lateral root formation is
initiated; however, the stimulus for lateral root outgrowth only
occurs under N-starvation. Additionally, these authors observed
that transgenic Arabidopsis overexpressing miR167 and null
mutants for arf8 exhibited a complete loss of N control over
lateral root emergence. These finds showed that the cell-specific
adjustment in ARF8 by miR167 transcripts can lead to the
lateral root emergence regulation as a strategic response to N
influx.

miR169 and Nuclear Factor Y Subunit A (NFYA)
In Arabidopsis, members from the transcription factors family
NFYA also called heme-activated protein (HAP) or CCAAT-
box binding-factor (CBF), were characterized to be regulated by
miR169 (Jones-Rhoades and Bartel, 2004; Li et al., 2008). Plants
NFYA have being associated with nodule differentiation and
drought tolerance (Combier et al., 2006). During N starvation,
was observed that three members of this family, NFYA3, NFYA5,
and NFYA8, are strongly induced in shoots and roots, while
their repressor miR169 is suppressed (Zhao et al., 2011). Nutrient
deficiency, like N, can trigger oxidative stresses signals and the
NFYA5 was described to modulate downstream genes involved
in oxidative stress responses, such as those encoding a subunit of
the cytochrome b6-f complex, glutathione S-transferases (GST),
peroxidases and an oxidoreductase family protein (Li et al.,
2008). In a previous study performed by Wenkel et al. (2006),
the overexpression of NFYA (or HAP2) was associated with
flowering delay due a reduction of the florigen Flowering locus
T (FT) levels. Some years later, a study evaluating several
miRNAs and their respective targets through mimicry assays,
validated the miR169 and NFYA (HAP2), and also showed
that the downregulation of miR169 caused reduced rosette
size in Arabidopsis plants (Todesco et al., 2010). In the study
performed by Zhao et al. (2011), they showed that miR169 was
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critical for the N-starvation response in Arabidopsis. Analyzing
transgenic Arabidopsis plants overexpressing miR169a, they
showed a decrease in N accumulation. These plants showed
higher sensitivity to N limitation comparing to the wild type,
showing leaf yellowing, which can be related to the impaired
capacity of N-absorption since NFYA regulates the nitrate
transporters NRT1 and NRT2 (Zhao et al., 2011). Interestingly,
miR169 was also reported to be N responsive in maize and
soybean (Xu et al., 2011; Liang et al., 2012; Trevisan et al.,
2012b; Zhao et al., 2012; Wang et al., 2013; Zeng et al.,
2014).

miR171 and Scarecrow-Like 6 (SCL6)
The SCL transcripts are already characterized to be targeted
by miR171 (Wang et al., 2010). This miRNA was associated
with primary root elongation decrease through cleavage of three
SCL6 transcripts (Wang et al., 2010). Quantitative RT-PCR
analyses demonstrated that the miR171c expression was threefold
higher under N-deficient than under N-sufficient conditions.
Consistently, the three miR171 targets were downregulated at
the same conditions. These results point to a miR171 induction
promoted by N-starvation, which outcomes with a inhibitory
effect over their targets (SCL6-II, SCL6-III, and SCL6-IV), and
consequently repress the elongation of primary roots during this
stress condition (Liang et al., 2012).

miR393 and Auxin Signaling F-Box Protein 3 (AFB3)
To investigate the small RNAs (sRNAs) role, Vidal et al.
(2010) performed high throughput sequencing from Arabidopsis
seedling submitted or not to N treatment. The authors observed
that miR393 was induced by nitrate and also detected some
target transcripts for this miRNA: a basic helix-loop-helix
(bHLH) transcription factor and the auxin receptors TIR1,
AFB1, AFB2, and AFB3. However, from all these miR393 known
targets, only AFB3 was regulated by nitrate in roots under the
experimental conditions. They showed that nitrate is able to
transcriptionally induce expression of AFB3 in roots and that
N metabolites produced after nitrate reduction and assimilation
lead to a downregulation of AFB3 levels due tomiR393 induction.
This regulatory module, revealed an incoherent feed-forward
mechanism that is induced by nitrate and repressed by N
metabolites generated by nitrate reduction and assimilation.
The observed regulation of AFB3 expression by nitrate and
metabolites produced downstream of nitrate reduction might
constitute a mechanism to rapidly and precisely adjust root
growth depending on external and internal nitrate availability.
As several miRNA targets encode transcription factors in plants,
incoherent feed-forward loops are probably also a common
feature of plant gene networks (Vidal et al., 2010). The rapid
downregulation of AFB3 by miR393 provides a fine-tuned
mechanism of the root system to dynamically respond to N in
real time. In this same work, Vidal et al. (2010) investigated the
miR393/ARF3 pathway analyzing the root architecture of ARF3
mutants and miR393 overexpressors, and they observed that
these plants had primary and lateral roots growth unresponsive
to N stimulus. With these findings, the authors conclude that
miR393/ARF3 is the responsible mechanism to repress primary

root elongation and induce lateral root emergence under the
presence of N. This interaction is an excellent example about how
a small regulatory molecule integrates nitrate availability with
auxin signaling.

miR444 and MADS-Box Transcription Factor
The monocot specific miR444 has been demonstrated to regulate
four MIKC-type MADS-box transcriptional factor genes in
rice (OsMADS23, OsMADS27a, OsMADS27b, and OsMADS57;
Sunkar et al., 2005; Lu et al., 2008;Wu et al., 2009b; Li et al., 2010b;
Yan et al., 2014). Phylogenetic analysis grouped the miR444
targets with Arabidopsis ANR1clade (Lee et al., 2003; Arora
et al., 2007), which is a pivotal regulator in NO3

− signaling
pathway in lateral root growth (Zhang and Forde, 1998). Yan et al.
(2014) showed that the miR444a regulates NO3

− signaling in rice
root growth and nitrate accumulation. Plants overexpressing this
miRNA presented a decrease in the expression of the fourMADS-
box genes, and a reduced nitrate induced lateral root growth.
These plants also showed altered primary and adventitious
root architecture in response to different nitrate concentrations,
indicating that miR444a participates in the NO3

− signaling
pathway through ANR1-homologous genes in rice. Additionally,
overexpression of this miRNA caused a shoot decrease at the
early seedling stage; as well as a higher NO3

− level in rice
shoots and roots under sufficient nitrate amount. An impaired N
remobilization from old to young leaves was observed in these
transgenic plants under N-limiting conditions, suggesting that
miR444a participates in nitrate translocation in shoots under
N-starvation conditions. So far, this work showed the crucial role
of miR444 in NO3

− signaling for root and shoots development
and nitrate accumulation in rice.

miR3979 and Anthranilate
Phosphoribosyl-Transferase (AnPRT)
The rice-specific miR3979 was reported to be preferentially
expressed in roots tissues (Jeong et al., 2011; Jeong and Green,
2013). Once roots are responsible for N absorption, this miRNAs
has being investigated about its regulation under N stress.
Jeong et al. (2011) observed that miR3979 is downregulated
on roots during N starvation. This miRNA was predicted to
target a transcript encoding an AnPRT which is involved in
tryptophan (Trp) biosynthesis. According to Zhao et al. (1998),
Trp biosynthetic genes are generally induced by amino acid
starvation as well as abiotic and biotic stresses. Besides to its role
in protein biosynthesis, Trp is also involved on the production
of secondary metabolites like the phytohormone auxin and the
phytoalexin camalexin (Kutchan, 1995; Radwanski and Last,
1995; Jeong and Green, 2013). Once that auxin is involved
in lateral root formation, the upregulation of Trp expression
due the repression of miR3979 can be one of the regulatory
mechanisms by which plants triggers lateral root initiation during
N limitation.

miR826/miR5090 and Alkenyl Hydroxalkyl Producing
2 (AOP2)
Other miRNA characterized as N-responsive is the miR826
which was described to be upregulated during N depletion
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(Liang et al., 2012). The miR826 targets the AOP2 gene, which
encodes a 2-oxoglutarate-dependent dioxygenase, involved
in glucosinolate biosynthesis. The data generated by high
throughput sequencing showed an expressive induction of
miR826 in roots and shoots by N starvation, associated with
significant repression of its target, AOP2. Glucosinolates are
a class of plant secondary metabolites rich in N and sulfur
mainly found in Brassicaceae. For this reason, the suppression of
AOP2 by miR826 could reduce the glucosinolates biosynthesis
and consequently decrease the demand for N. Two years
later, He et al. (2014) detected a new miRNA, miR5090, from
the complementary transcript of the miR826 gene. Similar
to miR826, miR5090 is also induced by N deficiency, and
both miRNAs target AOP2. To further prove the AOP2 is
regulated by these miRNAs, an experiment overexpressing
both miRNAs and the target were performed. The authors
observed that AOP2 mRNA levels decreased considerably when
coexpressed with both miRNAs compared to the control level.
To confirm the cleavage site of AOP2, synonymous substitutions
were introduced to generate miR826- and miR5090-resistant
versions of AOP2. In this way, miR826 or miR5090 were
coexpressed with the resistant version of AOP2, resulting in
an unaffected AOP2 mRNA level. These data confirmed that
AOP2 is the common target of miR826 and miR5090. In this
same work, the authors also observed that AOP2 transcript
level was negatively correlated with miR826 and miR5090 under
N deficiency, corroborating with results observed by Liang
et al. (2012). Besides of low AOP2 expression, the transgenic
plants overexpressing miR826/5090 also accumulated fewer
Met-derived glucosinolates, phenocopying the aop2 mutants.
Plants inhibit the expression of several glucosinolate synthesis
genes as a mechanism to avoid the N consumption during
N scarcity. So, in this work, He et al. (2014) showed that
miRNA transgenic plants with less glucosinolate displayed
enhanced tolerance to N starvation, including high biomass,
more lateral roots, increased chlorophyll, and decreased
anthocyanin. With this study was possible to figure out that
the miR826/5090 – AOP2 regulatory system is involved in the
plant adaptation to N-limited environment. Since AOP2 is
a key enzyme in glucosinolate synthesis, its downregulation
during N starvation decreases this pathway, allowing the
use of N for other metabolites biosynthesis, like products
necessary for plant growth and development during N
limitation.

miRNAs and Symbiotic N Fixation
Plants have evolved several strategies to improve the nutrients
uptake with the help of beneficial soil microorganisms, known
as N-fixing bacteria. They are the agents of the biological
N fixation, which consists to reduce dinitrogen into NH4

+
that is subsequently assimilated by the host plant. One of the
best studied symbioses involves plant legumes and bacteria,
collectively known as rhizobia. These partners cooperate in a
N-fixing symbiosis of major ecological importance that occurs on
all continents and accounts for a fourth of the N fixed annually
on earth (Masson-Boivin et al., 2009). In roots of host plants,
the interaction starts with a chemical signaling between partners,

which will be necessary to confirm host specificity. The symbiosis
establishment involves several molecular signals, like plant
flavonoid compounds (which will be recognized by compatible
rhizobia species) and bacterial lipochitooligosaccharide which
are known as Nod factors. An extensive review about legumes
and rhizobium signal molecules involved in the interaction was
published by Janczarek et al. (2015). The detection of Nod
signals and the colonization of root hairs by rhizobia cells will
trigger several root alteration with a consequent development
of structures called infection threads. Concomitantly, several
divisions occur in cortex and pericycle cells producing the
nodule primordium. Infection threads transport rhizobia into
the developing nodules, where they differentiate into bacteroides
and fix N. Finally, symplastic and vascular connections are
formed promoting transport of nutrients to and from the mature
nodules (Murray, 2011; Turner et al., 2013). Aside from their
roles in N-sensing signaling, miRNAs are also being characterized
in plant–microbe symbiosis. Extensive studies investigating
miRNAs during symbiosis are being developed with the legumes
Glycine max andMedicago truncatula.

One of the earliest studies involving miRNAs and N symbiotic
fixation was performed by Subramanian et al. (2008). They
investigated the potential miRNAs regulators of the earliest
stages of nodule development under Bradyrhizobium japonicum
inoculation. A kinetic evaluating three points after inoculation
was carried out. The authors found some miRNAs, like miR168,
and miR172 which were upregulated at the first hours and
after decreased at a basal level. They found that miR159
and miR393 were continually induced, while miR160 and
miR169 were downregulated during the response to rhizobia.
Interestingly, two of those miRNAs, miR393, and miR160,
were already identified in plant–pathogen interactions and
seem to be involved in plant basal immunity promotion
(Subramanian et al., 2008; Simon et al., 2009). In a related study,
Wang et al. (2009b) investigating soybean nodules harvested
28 days post inoculation with B. japonicum detected four
miRNA families (miR1507, miR1508, miR1509, and miR1510)
in common to Subramanian et al. (2008) study. They also
examined the expression of some miRNAs in nodule tissues.
The miR172 and miR2107 were significantly upregulated in
N-fixing nodules, while downregulation of miR396, miR1508,
and miR1509 became evident in the nodules. Consistent with
many previous studies, the majority of predicted targets detected
by Wang et al. (2009b) are transcription factors, which are
involved in hormone signaling and plant defense responses.
Posterior studies have also corroborated the pioneer’s works
involving soybean nodulation. Barros-Carvalho et al. (2014)
detected the presence of miRNAs miR1530, miR1520, and
miR1522 in soybean root inoculated with B. japonicum. These
miRNAs were, previously identified by Subramanian et al.
(2008) and are involved in the early stages of nodulation.
Other miRNA identified in this tissue was miR4393, early
identified by Joshi et al. (2010). Interestingly, besides of
some conserved miRNAs which are widely detected in plant
genomes, the majority of miRNAs detected in these studies
were Fabaceae specific miRNAs, like miR1507 to miR1510,
or soybean species-specific as miR1520, miR1522, miR1530,
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miR2107, and miR4393. The G. max and M. truncatula were
already characterized to have high proportion of species-specific
miRNA genes (Cuperus et al., 2011). Lelandais-Briere et al. (2009)
also detected M. truncatula specific miRNAs, like miR2586. In
situ analysis demonstrated that this miRNA accumulated in
the nodule meristem. This is very interesting, once species-
specific miRNAs are developed later during plant evolution,
these miRNAs could have evolved in the symbiotic interaction
pathways.

Recent works are going deeper in understanding of how
miRNAs can affect soybean nodulation. Turner et al. (2013)
showed that ectopic expression of miR160 resulted in a decrease
in nodulation. The authors overexpressed the miR160, which
regulates the ARF10/16/17 (as discussed before), resulting
in a silencing of a set of repressor auxin response factor
transcription factors. These plants presented root hypersensitive
to auxin and had significantly reduced nodule primordium
formation. On the other hand, elevated expression of miR482,
miR1512, and miR1515 caused increased nodulation in soybean
(Li et al., 2010a). Opposite roles have been described for
miR156 and miR172 in controlling the expression of both
symbiotic and non-symbiotic hemoglobins to modulate the
extent of nodulation in soybean, with enhanced levels of
miR156 being consistent with reduced nodule numbers while
miR172 acting as a positive regulator of nodule formation
(Yan et al., 2013). One of the last discoveries involving the
soybean miRNA172 and nodule regulation was done by Wang
et al. (2014a) and proved that the miR172c modulates both
rhizobium infection and nodule organogenesis. This miRNA
was induced in soybean roots inoculated with either compatible
B. japonicum or lipooligosaccharide Nod factor and was highly
upregulated during nodule development. Reduced activity and
overexpression of miR172c caused dramatic changes in nodule
initiation and nodule number. In this way, miR172c regulates
nodule formation by repressing its target gene, Nodule Number
Control1, which encodes a protein that directly targets the
promoter of the early nodulin gene, ENOD40. Interestingly,
transcriptional levels of miR172c were regulated by both
Nod Factor Receptor1α/5α-mediated activation and by auto
regulation of nodulation-mediated inhibition.

Medicago truncatula is a model organism broadly employed
in genetic legume studies. Combier et al. (2006) explored
this species to investigate the miR169 role during nodule
development. As earlier demonstrated, miR169 targets the HAP2
transcription factor (Jones-Rhoades and Bartel, 2004), which
was observed to be significantly induced in during symbiotic
interactions (Combier et al., 2006). To prove the participation
of miR169 and HAP2 during nodulation, these authors
performed experiments involving miR169 overexpression and
HAP2 silencing by RNAi. The miR169 overexpression caused
a repression of HAP2 gene resulting in a deficient N-fixation
phenotype. The RNAi assay also showed a delay in nodule
development being associated with a consequent inability of N2
fixation. Additionally, the HAP2 expression was restricted to the
nodule meristematic zone, indicating that miR169 is controlling
the spatial regulation of HAP2 during this stage in N-fixing cell
(Combier et al., 2006; Simon et al., 2009).

Other conserved miRNAs, like miR166 and miR396, have
also being investigated in nodule development and symbiosis
interactions in M. truncatula. The miR166 was observed to have
a similar spatial expression of its target, a class III HD-ZIP
transcription factor (Boualem et al., 2008). Overexpression of
this miRNA leads to a reduction of HD-ZIP transcripts causing
alterations in roots vascular bundle patterning and decreasing
lateral root and nodule formation (Boualem et al., 2008; Simon
et al., 2009). Similarly, miR396 was observed to be expressed
in roots, with a differential pattern during lateral root and
nodule formation (Bazin et al., 2013). It’s known that this
miRNA regulates a growth-regulating factor gene (GRF) and was
proved to limit mycorrhizal colonization (Bazin et al., 2013).
However, experiments overexpressing miR396 or inactivating
it by mimicry didn’t affect nodule density, morphology, or
cellular organization after inoculation with the symbiotic bacteria
Sinorhizobium meliloti. This scenario shows how important is to
perform a deep investigation about a miRNA role, once is not
possible to predict its function based only on a miRNA and its
target expression. Although, both miRNA396 and GRF target are
expressed in mature nodules, seems that they are not involved in
the nodulation process.

A third species of legume was investigated about miRNAs
and symbiotic N fixation is Lotus japonicus. De Luis et al.
(2012) identified two miRNAs responsive to symbiotic infection
and nodule function. The authors observed that the induction
of a non-canonical miR171 isoform, which targets the key
nodulation transcription factor Nodulation Signaling Pathway 2,
correlates with bacterial infection in nodules. These finds were
very interesting, since the conserved miR171 target a SCL gene
family, showing the importance to explore the miRNA isoforms
which can regulate alternative targets and provide different roles
in plant biology. The second miRNA analyzed was the miR397,
which is systemically induced in the presence of active N-fixing
nodules but not in non-infected or inactive nodule organs. This
miRNA, which targets a member of the laccase copper protein
family, is involved in N fixation-related copper homeostasis,
being a link between two different nutrient metabolisms.

Phosphorus and Plant miRNAs

Phosphorus is an essential macronutrient required for plant
growth, development, and propagation. The element corresponds
to about 0.2% of plants dry weight and is a component of
important macromolecules, being involved in the energetic
metabolism and in transduction cell signaling pathways (Kuo
and Chiou, 2011). The type of phosphate that can be directly
assimilated by plants (orthophosphate or Pi) is rather scarce in
the soil due to its precipitation with cations and decomposition.
These factors make P one of the less available macronutrients
to plants. These, in turn, led to the development of several
adaptations designed to surpass such deprivation (Raghothama,
1999).

The uptake and assimilation of P in plants is orchestrated by
an intricate network of proteins and tissues. Two proteins are
known to play key roles in the process: phosphate transporter
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1 (PHT1) and phosphate 1 (PHO1). PHT1 composes a family
of transmembrane transport proteins expressed in roots and
other plant tissues (Mudge et al., 2002). PHT1 proteins are
able to use energy to cotransport Pi and H+ and are therefore
involved in Pi acquisition (Okumura et al., 1998). In Arabidopsis,
there are at least nine genes (thirteen in Oryza sativa) encoding
PHT1 (Okumura et al., 1998; Mudge et al., 2002) and Pi
deprivation stimulates the expression of most of these genes,
whose products are located in the plasma membrane of cortical
and epidermal root cells, indicating their involvement in nutrient
uptake (Karthikeyan et al., 2002). PHO1, on the other hand, is
involved in the loading of acquired Pi into xylem, facilitating
therefore the root-to-shoot transport of this macronutrient in
plant (Poirier et al., 1991; Hamburger et al., 2002).

Upon Pi stress, plants trigger the expression of several
homeostatic mechanisms called Pi Starvation Responses (PSR;
Raghothama, 1999). It is believed that around 900–3000 genes
are involved in these responses. Since, PHT1 and PHO1 proteins
are central in the assimilation and allocation of Pi in plants,
PSR try to maximize their expression through several direct or
indirect pathways, including post-transcriptional regulation by
miRNAs. The MYB transcription factors Phosphate Starvation
Regulator 1 (PHR1) and Phosphate Starvation Regulator 1-
like (PHR1-LIKE1) have an important function in PSR by
initiating a cascade regulation that ultimately leads to PHT1
and PHO1 over-accumulation. This function is mediated by
directly or indirectly inducing their expression or by indirectly
inhibiting their repressors. For example, PHR1 and PHR1-
LIKE1 induce the expression of Phosphate Transporter Traffic
Facilitator 1 (PHF1), a protein that facilitates the transport of
PHT1 to membranes, increasing therefore their availability for
Pi assimilation (Gonzalez et al., 2005; Hsieh et al., 2009; Bayle
et al., 2011). In phf1 Arabidopsis mutant plants, PHT1 is retained
in the endoplasmic reticulum, being less available in membranes
(Gonzalez et al., 2005; Bayle et al., 2011). Many genes associated
to Pi starvation are also constitutively expressed in phf1 mutants,
indicating the importance of PHF1 in the response regulation.
At the same time, PHR1 and PHR1-LIKE1 may also trigger the
expression of two miRNAs: miR399 and miR827.

The miRNAs miR399 and miR827 are important players in
PSR since they repress genes involved in the repression of PHT1
and PHO1, contributing to their accumulation during stressed
periods (Figure 2). The miRNA family miR399 (a–f) was the
first one to be associated to Pi deficiency status. Members of the
family are usually upregulated in response to the stress (Fujii
et al., 2005) andwhen overexpressed by transgenes inArabidopsis,
the translocation of Pi from roots to shoots is enhanced and
consequently the accumulation of Pi in shoots are from five to
six times higher than in wild type plants (Chiou et al., 2006). In
Solanum lycopersicum, in addition to the aforementioned effect,
transgenic plants overexpressing miR399 also exhibit increased
elimination of acid phosphatase and protons through roots,
facilitating hydrolysis of organic phosphorus in the soil (Gu
et al., 2010). In spite of several genes been predicted as targets
of miR399, only an ubiquitin binding enzyme E2 encoded by the
PHO2 gene was validated as being regulated by it (Allen et al.,
2005). This is primarily a gene expressed in the plant vascular

system and downregulated in Pi deficient states. Multiple miR399
target sites were identified in the 5′-UTR region of PHO2 (Aung
et al., 2006; Bari et al., 2006; Chiou et al., 2006). As an E2 ligase,
PHO2 mediates the ubiquitination of the Pi/H+ transporters
during normal Pi conditions, preventing their trafficking to
membranes (Huang et al., 2013; Park et al., 2014). PHO2 also
mediates a post-translational inhibition of PHO1 (Liu et al.,
2012). Therefore, by repressing PHO2, miR399 contributes to
the accumulation of both PHT1 and PHO1 during Pi starvation.
Interestingly, miR399 species act as mobile signals, as their
biogenesis take place at the shoots (Lin et al., 2008; Pant et al.,
2008). Since, miR399∗ are also detected in roots, the miRNA is
probably loaded as dsRNA into the phloem sap and systemically
transported to roots. The identification of miR399 sequences in
phloem sap of Pi-starved plants supports this model of action
(Buhtz et al., 2008). On the other hand, miR399 family members
can be regulated by the long non-coding gene Induced by
Phosphate Starvation 1 (IPS1) in Arabidopsis. IPS1 has sequence
complementary to miR399, but with unpaired nucleotides in
the predicted cleavage site. It has been shown that IPS1 is not
cleaved, but instead sequesters miR399 and block its action
adding another level of regulation in PSR (Franco-Zorrilla et al.,
2007).

Similar to miR399, miRNA, miR827 also repress a protein that
is involved with PHT1 ubiquitination (Hsieh et al., 2009; Pant
et al., 2009). Apart from being ubiquitinated during trafficking
by PHO2, PHT1 may also suffer ubiquitination when already
located in the plasma membrane by the Nitrogen Limitation
Adaptation (NLA) protein, an E3 RING ubiquitin enzyme (Kant
et al., 2011; Lin et al., 2013). NLA-mediated ubiquitination
of PHT1 leads to endocytosis and degradation of the protein.
Accordingly, a reduction of PHT1 endocytosis is observed in nla
mutants (Lin et al., 2013). The post-transcriptional regulation of
the NLA encoding gene by miR827, therefore, helps to stabilize
PHT1 levels during stress conditions. Interestingly, O. sativa
miR827 apparently also coordinate Pi stress responses, but by an
independent pathway, since NLAhomologues are not targeted by
the miRNA in the plant (Lin et al., 2010; Wang et al., 2012).

Apart from miR399 and miR827, several other miRNA
families have been associated to Pi responses (Table 2). Some
of them are young clade-specific miRNAs, acting on specific
molecular adaptations in response to Pi issues, while others
are highly conserved (Hsieh et al., 2009; Pant et al., 2009; Gu
et al., 2010; Lin et al., 2010; Lundmark et al., 2010; Matts et al.,
2010; Valdés-López et al., 2010; Zeng et al., 2010; Kuo and
Chiou, 2011). In a particular species, some miRNA families
are up or downregulated in one or more tissues. There are
still some families which are exclusively expressed in one plant
tissue. This spatial limited activation of miRNAs is related to
particular ways in which these areas organize their responses
to P deficiency. In Lupinus albus, 35 miRNAs families were
identified as differentially expressed; roots, stems, and leaves
had, respectively, 24, 15, and 22 miRNAs families up or
downregulated, demonstrating the possible overlapping nature of
the response (Zhu et al., 2010). However, most of the conserved
miRNAs misregulated under PSR are also responsive to other
types of stresses, including nutrient deprivation. Their functions

Frontiers in Plant Science | www.frontiersin.org 10 June 2015 | Volume 6 | Article 451

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Kulcheski et al. NPK macronutrients and microRNA homeostasis

FIGURE 2 | The miRNA399 and 827 pathway involved in plant
P-deficiency. Pi starvation triggers the homeostatic mechanism known
as “Pi starvation responses” (PSR), which leads to induction of MYB
transcription factors (MYB-TF) called Phosphate Starvation Regulator 1
(PHR1) and PHR1-like proteins. The increased levels of these proteins
are related with an upregulation of miR399 and miR827. These

miRNAs repress phosphate 2 (PHO2) and Nitrogen Limitation
Adaptation (NLA), respectively. Both proteins are involved in the
repression of phosphate transporter 1 (PHT1), and PHO2 also repress
PHO1. Repression of NLA and PHO2 leads to PHT1 and PHO1
accumulation and consequently increase the Pi uptake as well as the
accumulation of Pi in shoots.

are therefore probably associated to general responses triggered
in different types of stress conditions.

miRNA, Phosphorus, and Mycorrhiza
Symbiosis
One of the most widespread adaptations to P deficiency is the
interaction with arbuscular mycorrhizal fungi. In this interaction,
fungi promote a more efficient uptake of water and nutrients (P
among them) by roots and simultaneously receive carbohydrates
required for their metabolism (Delaux et al., 2013).

microRNAs are one of the mechanisms used by plants in the
regulation of this symbiosis. In the model species M. truncatula,
several miRNAs have already been predicted as participants in
this physiological response (Devers et al., 2011). The miR171h
operates in the spatial regulation of fungi root colonization
by targeting the gene encoding Nodulation Signaling Pathway
2 (NSP2), required for the production of stimulatory plant
hormones (Lauressergues et al., 2012). The miR396, which
exerts control over several transcription factors related to root
development, undertakes a repressive action in mycorrhizal
colonization in this species. Mutants overexpressing this miRNA
were less colonized than control plants, while those that
inactivated the same miRNA were significantly more colonized

by AM fungi (Bazin et al., 2013). InM. truncatula and Nicotiana
tabacum miR399 was also overaccumulated in mycorrhizal
tissues in comparison to non-mycorrhizal ones indicating a
possible role in this interaction (Branscheid et al., 2010). The
miR5229, whose expression is detected only in mycorrhizal cells,
has a Heme peroxidase as a potential target (Devers et al., 2011).
The miR169, which targets the TF MtHAP2-1, a member of
the CCAAT-binding family, was reported to be expressed in
mycorrhizal roots (Combier et al., 2006). Additionally, miR160c
was demonstrated to be another miRNA induced in mycorrhizal
tissues, while miR5204, was detected to localize among the
arbuscules as well as to be phosphate responsive (Devers et al.,
2011).

Potassium and Plant miRNAs

Potassium (K+) is an essential plant macronutrient involved in
several signaling pathways. It is important for the metabolic
adjustment during plant development and reproduction, yield
and responses to salinity, drought, cold, high light, and hormones
(Bose et al., 2014a,b,c; Demidchik et al., 2014; Straltsova et al.,
2014; Zorb et al., 2014; Daras et al., 2015; Zhang et al., 2015).
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TABLE 2 | P-responsive miRNAs with respective expression profiles in different tissues and species during P-starvation.

Plant species miRNAs Expression
profile

Tissue Reference

Arabidopsis
thaliana

miR156, miR399, miR778, miR827, miR2111-5p,
miR2111-3p

Upregulated Root Hsieh et al. (2009), Pant et al. (2009),
Lundmark et al. (2010)

miR163, miR399, miR778, miR827, miR828,
miR2111-5p, miR2111-3p

Upregulated Stem

miR169, miR395, miR398, miR402 Downregulated Root, stem

miR399, miR447, miR778, miR827, miR2111-5p,
miR2111-3p

Upregulated Seedling

miR169, miR398 Downregulated

Glycine max miR159 Upregulated Root Zeng et al. (2010)

miR166, miR319, miR398 Downregulated

Lupinus albus miR156, miR159, miR160, miR164, miR166,
miR167, miR168, miR319, miR396, miR437,
miR809, miR830, miR845, miR857, miR895,
miR896, miR1222

Upregulated Root Zhu et al. (2010)

miR168, miR171, miR395, miR399, miR447,
miR477, miR818, miR863, miR866, miR903

Downregulated

miR171, miR395, miR447, miR472, miR818,
miR854, miR866, miR903, miR904

Upregulated Stem

miR159, miR164, miR166, miR319, miR857,
miR895

Downregulated

miR168, miR171, miR395, miR399, miR447,
miR477, miR818, miR863, miR866, miR903

Upregulated Leaf

miR156, miR159, miR160,miR164, miR166,
miR167, miR396, miR397, miR530, miR830,
miR857, miR896

Downregulated

Medicago
trunculata

miR5229a,b, miR5206, miR160f, miR5205,
miR169d,l, miR169d,e.2,l,m, miR160c, miR171h,
miR167, miR5244, miR5232, miR5281b-f,
miR5250, miR2086, miR166b.2,c.2,f-2, miR396b,
miR5213, miR162

Upregulated (AM related) Devers et al. (2011)

miR4414a, miR5285a-c Downregulated

Orysa sativa miR399, miR827 Upregulated Root, stem Zhou et al. (2008), Lin et al. (2010)

Panicum virgatum miR399 Upregulated Seedling Matts et al. (2010)

Phaseolus vulgaris miR399 Upregulated Root, leaf Valdés-López et al. (2010)

miR157 Upregulated Nodules

miR397, miR398 Downregulated Leaf

Solanum
lycopersicum

miR319, miR394, miR399 Upregulated Root Chiou et al. (2006), Gu et al. (2010)

miR399 Upregulated Stem, leaf

miR158, miR862 Downregulated Root Gu et al. (2010)

miR158, miR169g, miR172, miR172b, miR319,
miR398, miR771, miR775, miR837

Downregulated Leaf

Each plant species has its physiological mechanism to the uptake
of K+. The efficiency of the uptake and physiological role of K+
has to be considered when improving crop yield, plant tolerance
to biotic and abiotic stresses (Zorb et al., 2014). A diverse set
of genes coding for K+ channels and ion transporters has been
functionally characterized to unravel the molecular physiology
of K+ in plants (Schroeder et al., 1994; Chen et al., 2008;
Adams and Shin, 2014; Cherel et al., 2014). Genes related to
the homeostasis of potassium in plants belong to classes of
AKT1 and KT/KUP/HAK types, which code for ion channels
and ion transporters, respectively (Adams and Shin, 2014). In
cell membranes, K+ channels have different physiological roles

depending on where they are functional. If expressed in guard
cells, they function in the net influx of K+ and, if expressed in
root cells, they function in the low and high affinity uptake of K+
(Schachtman, 2000). This differential expression reflects a crucial
role of K+ channels in the uptake and water balance, osmotic
potential and, in transpiration mechanisms. Also, transport
proteins underlie long distance – from root xylem to the shoots –
and intracellular movement of K+ (Adams and Shin, 2014).
Under low amounts readily available in the soil, plants have to
trigger a bunch of complex molecular mechanisms to fine tune
the absorption, transport, and efficient use of K+ (Cherel et al.,
2014).
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In plants, miRNAs are also known to be involved a wide range
of fine-tuned controls during development and in response to a
variety of stresses (de Lima et al., 2012). In humans, a few reports
reveal the regulatory role of miRNAs and potassium channel
genes in the physiology of heart and lung (Li et al., 2013, 2014;
Tatro et al., 2013). However, it is far from clear how miRNAs
are directly affected by the uptake and physiology of potassium
in plants. So far, the unique miRNA investigated with respect to
K+ signaling was the monocots specific miR444a. In the work
performed by Yan et al. (2014) miR444 was deeply evaluated
about its involvement in N and Pi accumulation. However, the
authors also explored the expression profile of this miRNA and
its respective targets (MADS-23, MADS-27a, MADS-27b, and
MADS-57) during K+ deprivation in rice roots. This condition
caused a slightly decrease of miR444a levels.MADS-23 target was
strongly induced compared to the control situation (Figure 3).
MADS-box genes encode a family of transcription factors and are
associated with several developmental regulatory pathways, from
root to flower and fruit development (Becker and Theiβen, 2003).
Other possible candidate to be investigated is the plant conserved
miRNA miR167 which putatively targets ion transporters and
genes coding for ion channel proteins (Griffiths-Jones et al.,

2006; Zhang et al., 2013). In induced leaf senescence of rice
plants, miR167a-3p putatively targets intracellular trafficking and
vesicular transport genes (Xu et al., 2014). Another interesting
hypothesis emerges with the competition of NH4+ and K+
for protein transporters in barley and Arabidopsis (ten Hoopen
et al., 2010) and the possibility of miRNA regulation. The
presence of NH4+ in potassium containing medium favors
nitrogen uptake by HAK5 protein, which is suggested to be a
high affinity K+ transporter (ten Hoopen et al., 2010). Under
this nutrition circumstance, the protein AKT1 turns to be
the main K+ uptake protein even in low K+ concentrations.
Additionally, in silico tools can point to some K+ transporters
proteins, like AKT, HAK, and HKT, as potential target sites
for miRNAs in monocots and dicots species. Based on these
findings, a dual ion uptake and a possible miRNA based-
regulation point to a fine tuned physiological role of ion
transport in plants (Figure 3, right). Undoubtedly, miRNAs have
important physiological roles in plants under abiotic conditions
and nutrient availability in soils. However, the targeting of
potassium transporter genes by miRNAs remains to be validated
and the dual ion uptake mediated by miRNAs remains to be
investigated in detail.

FIGURE 3 | Proposed models of regulation of potassium
transportation by miRNAs in plants. The expression levels of MADS-23
transcription factor, involved in potassium uptake, was experimentally
demonstrated as regulated by miR444 in monocots. The transcripts of
AKT (ankyrin potassium transporter), HAK, and HKT1 (high affinity

potassium transporters) were predicted as putative targets of (?) miR167
and miR443 in rice and miR168, miR842, and miR854 in Arabidopsis.
The direct effect of miRNAs on the mRNA levels of the members of
potassium transporters inhibited by NH4

+, is an hypothesis based on in
silico analysis and remains to be confirmed.
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A range of previous works discussed the counteraction
between miRNAs and putative ion transporters and genes coding
for proteins that are potentially potassium dependent, as well
as other proteins and miRNAs that have a convincing role
in plant nutrition (Pant et al., 2009; Buhtz et al., 2010; Kehr,
2013). Additionally, targeted genes are evaluated based on
miRNA ability to chop mRNAs. Although it has been proposed
that translation inhibition is not a major miRNA regulatory
mechanism in plants, the analysis of protein levels could confirm
those ion transporters and other miRNA targets that were based
on bioinformatics approaches (Chen, 2004; Voinnet, 2009).

Differential regulation and functions of K+ responsive genes
are widely cited in the literature (Cherel et al., 2014). High
throughput analyses expand the view that ion transporters and
protein channels are putatively regulated by a series of miRNAs.
Although it still has to be extensively and experimentally
confirmed, it is suggested that miRNAs play a pivotal role in the
regulation of genes coding for proteins that sense, uptake and
transport K+ in plants.

Concluding Remarks and Future
Perspectives

It has been very well documented that environmental changes
can affect miRNA levels in plants. In this context, it would be
expected that nutrient availability should also affect miRNA levels
and homeostasis. In this review, we described a series of studies
demonstrating how the macronutrients N, P, and K can affect
miRNAs levels, triggering their increase or decrease, with an
associated effect on the expression of different target genes. Both,
excess or low level of nutrients can be sensed by plants as and
abiotic stress. This will trigger a series of common mechanisms
or specific strategies to face an emerging stress situation. Since
the role of a miRNA is directly associated with its target function,
we could observe that the majority of miRNAs involved in
NPK deprivation are associated with mechanisms involved in the
adaption to stress conditions. Actually, it was difficult to clarify
about how the miRNAs are involved in K+ metabolism, once
the literature is still scarce to help to understand the molecular
basis of miRNA/K+ interaction in plants. However, based on
the hypothesis that miR444 is involved in the K+ signaling, we
can suppose that a control of root development can also be
involved in K+ metabolism. For N and P pathways in plants,
the miRNAs roles have been extensively explored, and several
routes were already very well characterized. In general, N and P
starvation, affect miRNAs that will regulate genes involved in the

uptake or reallocation of these nutrients. At the morphological
and physiological level, miRNAs were proved to affect root
architecture (suppressing primary root elongation, increasing
lateral root), controlling NO3

− or Pi transporters, controlling
shoot growth, affecting vegetative phase transition, andmanaging
these nutrients leakage (Figures 1 and 2). Since some miRNAs
are critical in NPK metabolism control and are related to plant
adaption during these nutrients stresses, we must consider their
potential use in plant genetic breeding.

So far, we looked for miRNAs that were commonly involved
in the three nutrients routes, but no report was detailing a
route involving a miRNA regulation for NPK. A recent work
analyzed the miR444 expression during N, P, or K depletion
(Yan et al., 2014). Changes in this miRNA was observed for
all three nutrients treatment, however, the mechanism behind
this behavior were just explored for N metabolism. In this way,
we observed that there is a vast unexplored field which can
address the regulation of miRNAs when plants are exposed to
more than one nutrient stress. Another important consideration
about miRNA and NPK signaling is that analyzing the works
which describe miRNAs expression according NPK availability,
we observe that there is a gap about how these miRNAs are
controlled. So, to find out what genes are activating or repressing
these miRNAs, could help to complete the regulatory network
involved in the sensing of plant nutrients.

Despite the quite large amount of data that can be found
in the literature, it is clear that there is no standardization
among experiments carried out with distinct nutrients by
different research groups. These variations are much higher
when experiments were performed with different plant species.
As effective variables found in experiments, we observed: the
developmental stage of the plants, the tissues types, the time
kinetics of the stress, the nutrient concentrations to trigger
the stress, and the methods to evaluate the effects on miRNA
and target gene expressions. An effort should be made by the
plant community of physiologists, biochemists, and molecular
biologists in order to create models and patterns to evaluate in
a more universal way the effects of nutrients and other agents in
miRNAs and target gene expression.
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