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FLOWERING LOCUS T (FT ) encodes a mobile signal protein, recognized as major
component of florigen, which has a central position in regulating flowering, and also
plays important roles in various physiological aspects. A mode is recently emerging
for the balance of indeterminate and determinate growth, which is controlled by the
ratio of FT-like and TERMINAL FLOWER 1 (TFL1)-like gene activities, and has a
strong influence on the floral transition and plant architecture. Orthologs of GhFT1
was previously isolated and characterized from Gossypium hirsutum. We demonstrated
that ectopic overexpression of GhFT1 in tobacco, other than promoting flowering,
promoted lateral shoot outgrowth at the base, induced more axillary bud at the axillae
of rosette leaves, altered leaf morphology, increased chlorophyll content, had higher
rate of photosynthesis and caused flowers abscission. Analysis of gene expression
suggested that flower identity genes were significantly upregulated in transgenic plants.
Further analysis of tobacco FT paralogs indicated that NtFT4, acting as flower inducer,
was upregulated, whereas NtFT2 and NtFT3 as flower inhibitors were upregulated
in transgenic plants under long-day conditions, but downregulated under short-day
conditions. Our data suggests that sufficient level of transgenic cotton FT might disturb
the balance of the endogenous tobacco FT paralogs of inducers and repressors and
resulted in altered phenotype in transgenic tobacco, emphasizing the expanding roles
of FT in regulating shoot architecture by advancing determine growth. Manipulating the
ratio for indeterminate and determinate growth factors throughout FT-like and TFL1-like
gene activity holds promise to improve plant architecture and enhance crop yield.

Keywords: florigen, FLOWERING LOCUS T (FT), floral transition, lateral shoot, leaf morphology, abscission,
tobacco

Introduction

Plants sense multiple environmental cues and endogenous signals to determine the
appropriate timing of flowering, which is an orchestrated process through the integration
of multiple environmental cues and endogenous signals. Genetic and molecular
analyses of flowering-time mutants in Arabidopsis have established the current model,
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in which five major pathways mainly control the transition
from the vegetative to reproductive phase. The photoperiodic
and vernalization pathways are responsive to the appropriate
environmental conditions, whereas the autonomous, gibberellin,
and age pathways reflect the internal status of plants (Srikanth
and Schmid, 2011; Yamaguchi and Abe, 2012), which all
converge on the ‘hubs’ known as the integrator genes. Among
them, FLOWERING LOCUS T (FT) and its paralog TWIN
SISTER OF FT (TSF), encodes a ∼20 kDa globular proteins of
the phosphatidylethanolamine-binding protein (PEBP) family,
which has a central position in mediating the onset of flowering
(Kardailsky et al., 1999; Kobayashi et al., 1999; Yamaguchi
and Abe, 2012; Hiraoka et al., 2013). FT as well as TSF
proteins including tomato SINGLE FLOWER TRUSS (SFT)
and rice HEADING DATE 3a (Hd3a; Lifschitz et al., 2006;
Corbesier et al., 2007; Mathieu et al., 2007; Tamaki et al., 2007;
Notaguchi et al., 2008), nicknamed florigen, were produced in
the phloem companion cells. They are subsequently transported
to the shoot apical meristem (SAM), where they form a
complex involving a bZIP transcription factor FLOWERING
LOCUS D (FD) to activate the expression of floral meristem
identity genes, including SUPPRESSOR OF OVEREXPRESSION
OF CONSTANS1 (SOC1), APETALA1 (AP1), and LEAFY (LFY ;
Abe et al., 2005; Wigge et al., 2005; Yoo et al., 2005; Kaufmann
et al., 2010), which are important regulatory of hubs in the control
of flowering time.

Phylogenetic studies of PEBP-like genes in angiosperms
revealed that they fall into three subfamilies: the FT-like, the
TEMINAL FLOWER1 (TFL1)-like and the MOTHER OF FT
AND TFL1 (MFT)-like (Chardon and Damerval, 2005; Hedman
et al., 2009). FT-like and TFL1-like genes modulate flowering
transition and inflorescence architecture (Kobayashi et al., 1999;
Hanzawa et al., 2005; Ahn et al., 2006), but their functions
in flowering control are opposite. FT promotes the transition
to reproductive development and flowering, whereas TFL1
represses this transition.

Numerous studies have concluded, FT orthologs possessing
floral inductive function in woody perennials (Hisada et al.,
1997; Endo et al., 2005; Böhlenius et al., 2006; Hsu et al., 2006;
Carmona et al., 2007; Kotoda et al., 2010; Song et al., 2013);
grasses (Yan et al., 2006; Tamaki et al., 2007; Kikuchi et al.,
2009; Meng et al., 2011; Wu et al., 2013; Coelho et al., 2014);
legumes (Kong et al., 2010; Ono et al., 2010; Hecht et al., 2011;
Laurie et al., 2011); ornamental (Hayama et al., 2007; Hou and
Yang, 2009; Imamura et al., 2011), CsFTL3 from chrysanthemum
(Chrysanthemum seticuspe; Oda et al., 2012; Xiang et al., 2012;
Li et al., 2013); and others such as BvFT2 from sugar beet
(Beta vulgaris; Pin et al., 2010), NtFT4 from tobacco (Nicotiana
tabacum; Harig et al., 2012), StSP3D form potato (Solanum
tuberosum; Navarro et al., 2011), AcFT2 from onion (Allium
cepa; Lee et al., 2013), PaFT from avocado (Persa americana;
Ziv et al., 2014), LsFT from lettuce (Lactuca sativa; Fukuda
et al., 2011; Above information was listed in Supplementary Table
S1). Previously study suggests a conserved ancestral function
of FT-like proteins in transmitting inductive signals in plants.
However, recent studies showed that FT-like genes in numerous
species play important roles in various physiological aspects

other than flowering (Pin and Nilsson, 2012). In Arabidopsis,
FT and TSF regulates stomatal guard cells opening by activating
H+-ATPase (Kinoshita et al., 2011), meristem maintenance
in cooperation with SHOOT MERISTEMLESS (STM) and FD
during inflorescence development (Smith et al., 2011), and
prevention of indeterminate growth, floral reversion and aerial
rosette (Melzer et al., 2008). FT and TSF modulate lateral
shoot outgrowth in Arabidopsis, and link the floral transition
and lateral shoot development to maximize the reproductive
success of a plant (Hiraoka et al., 2013). FT has also been
demonstrated to be involved in multiple steps of axillary bud
development, likely to coordinate axillary shoot development
with flowering (Niwa et al., 2013). Ectopic overexpression of FT
in cotton through virus-induced flowering uncouples flowering
from photoperiodic regulation and promotes determinate growth
habit in all aerial organs (McGarry and Ayre, 2012). In tomato,
SINGLE FLOWER TRUSS (SFT) regulates reiterative growth and
termination of shoots, influences leaf maturation, compound
leaf architecture, stem growth, and abscission zone formation
(Shalit et al., 2009). Florigen is thus established as a plant protein
functioning as a general growth hormone. Also, allelic variation
at the SFT locus is implicated in heterosis of yield (Krieger
et al., 2010), suggesting a single overdominant gene may improve
productivity in other agricultural organisms, which supports the
overdominance model for heterosis. PtFT1 controls short-day
(SD) induced growth cessation and bud set in autumn (Böhlenius
et al., 2006). Some members of FT-like gene family modulate
growth of underground storage organs. StSP6A functions as a
mobile ‘tuberigen’ that induces the photoperiod-sensitive process
of tuberization in potato (Navarro et al., 2011), and AcFT1 and
AcFT4 play role in bulb formation in onion (Lee et al., 2013).

The Gossypium (Cotton) is one of the most important cash
crops worldwide, having a large impact on our economy and
everyday life. Gossypium species are naturally a photoperiodic
that does not flower until the shorter days of late summer
or fall. Domestication of the two allotetraploid that comprise
the majority of world-wide cultivations, Gossypium hirsutum
and G. barbadens gradually lose their photoperiod sensitivity
(McGarry and Ayre, 2012). Cotton originated from a tropical
region, and its growth is very sensitive to low temperature and soil
conditions in temperate cultivation regions. Flowering earliness
is an important objective in most cotton breeding programs.
However, the molecular mechanisms regulating the transition
from vegetative to reproductive growth in cotton are less well
characterized than in other plant species, mostly due to the
complexity of cotton genome and scarcity of cotton flowering
time mutants. In previous study, we isolated and characterized
an FT-like gene GhFT1 from G. hirsutum, and we investigated
its temporal and spatial expression profile during cotton multiple
develop stages (Guo et al., 2015). Overexpression of GhFT1 in
Arabidopsis obviously generated early flowering phenotypes in
both LD and SD conditions, showing that GhFT1 is a putative
FT ortholog inG. hirsutum that regulates floral transition, similar
to Arabidopsis (Guo et al., 2015). In this study, we further
dissected its roles by ectopic expression of GhFT1 in wild-
type (WT) tobacco. As expected, GhFT1 obviously promotes
the floral transition in transgenic tobacco plants by producing
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terminal flower. However, boosting flowering is just one of
the pleiotropic functions of GhFT1. In addition to precocious
flowering, we observed that tobacco plants carrying 35S::GhFT1
had more lateral shoots outgrowth at the base, axillary buds
at rosette axil, altering leaves morphology and causing flower
abscission. Our data suggests that sufficient level of transgenic
cotton FT homolog might disturb the balance of endogenous FT-
like proteins and disorder the ratio of inducer and repressors,
resulting in inflorescence and plant architecture change.

Materials and Methods

Plant Materials and Growth Conditions
The seeds ofN. tabacum cv. NC89 andN. benthamiana preserved
in our lab were surface-sterilized for 20 min with 2.8% sodium
hypochlorite solution containing 0.1% surfactant (Triton X-100,
Sigma-Aldrich, Munich, Germany), and rinsed several times with
sterile water. Then seeds were stratified for 3 days at 4◦C in
darkness and then plated on the Petri dishes with half-strength
Murashige and Skoog (MS) medium containing MS salt (pH 5.7;
Duchefa, Haarlem, the Netherlands) mixture, 1% (w/v) sucrose
and 0.8% (w/v) agar. Petri dishes were then placed in light growth
incubator at 28◦C for 15 days under SD conditions (8 h light/16 h
dark). The aseptic seedlings of N. tabacum for transformation
were then transferred into a sterile flask containing half-strength
MS medium at 28◦C for another 30 days. The N. benthamiana
seedlings for transient expression assay were transplanted into
soil after germination and grown in phytotron under long-day
(LD) conditions (16 h light/8 h dark), and the light intensity for
tobacco growth is 200 µmol m−2 s−1.

Constructions of Overexpression Vectors
35S::GhFT1, 35S::GFP, and 35S::GhFT1-GFP constructs were
the same vectors that were used in Guo’s study (Guo et al.,
2015). We first replaced the GUS fragment in the binary
vector pCAMBIA1301 (CAMBIA, Canberra, ACT, Australia) by
525 bp of GhFT1 encoding sequence (digested with Nco I and
Bst EII restriction, respectively) to construct pCAMBIA1301-
GhFT1. The 5.7 kb upstream sequence of Arabidopsis thaliana
FT was amplified by polymerase chain reaction (PCR) using
pDONR207-8.1kbAtFTpro plasmid as template and next cloned
into the Pst I and Nco I restriction site of the pCAMBIA1301-
GhFT1 vector to construct the 5.7kbAtFTpro::GhFT1 plasmid.
35S::GhFT1, 35S::GhFT1-GFP and 5.7kbAtFTpro::GhFT1 were all
transfected into Agrobacterium tumefaciens GV3101(pMP90RK)
by electroporation.

Tobacco Transformation
Tobacco plants (N. tabacum cv. NC89) were transformed
with 35S::GhFT1, 35S::GhFT1-GFP, and 5.7kbAtFTpro::GhFT1,
respectively, using Agarobacterium-mediated tobacco transform
of leaf disks method (Horsch et al., 1986). We generated
numerous homozygous transgenic lines carrying 35S::GhFT1,
35S::GhFT1-GFP, and 5.7kbAtFTpro::GhFT1. For phenotypic and
gene expression analysis, all transgenic lines and WT tobacco
plants were sown in pot containing soil and cultivated in

phytotron under LD and SD conditions with 200 µmol m−2 s−1

light intensity, respectively.

Subcellular Location Analysis
For analysis of the subcellular localization of GhFT1 protein
using GFP reporter gene, the 35S::GhFT1-GFP construction (Guo
et al., 2015) was transformed into N. tabacum cv. NC89 plants
stably byA. tumefaciens strain GV3101(pMP90RK). Hypocotyl of
selected 35S::GhFT1-GFP homozygous transformants were used
to detect GFP fluorescent by confocal lase scanning microscopy
(CLSM; Zeiss, LSM510, Jena, Germany).

The transient expression assays in tobacco were performed
according to the method described by Voinnet et al. (2003). The
A. tumefaciens strain GV3101 (pMP90RK) carrying 35S::GhFT1-
GFP was grown at 28◦C in LB medium with kanamycin
and rifampicin to OD600 = 0.5−0.6. The agrobacteria cells
were centrifuged and re-suspended in 10 mmol L−1 MgCl2,
10 mmol L−1 MES-KOH (pH 5.7) and 150 µmol L−1

acetosyringone to OD600 = 0.5. The agrobacteria cells were left
to standing for 3 h at room temperature and then infiltrated into
the abaxial side of leaves of 4-weeks-old N. benthamiana plants.
After 3–5 days the infiltrated leaves were selected to detect GFP
fluorescent by CLSM.

Gene Expression Analysis
Total RNA was isolated using Trizol reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacture’s protocol. The
cDNA synthesis reactions were performed using the Superscript R©

First-Strand Synthesis System (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions with 1 µg of total
RNA per reaction used as template. qRT-PCR was carried out
using Applied Biosystems 7500 Fast Real-Time PCR System and
Fast SYBR R© Green Master Mix (Life Technologies, Foster City,
CA, USA) to detect the expression of GhFT1 and endogenous
genes in transgenic tobacco lines and WT plants. Primers
information used in this research are listed in Supplementary
Table S5. NtActin-F and NtActin-R were used to amplify the
NtActin gene (GenBank accession no. U60495), which was used
as an internal control. At least three replicate assays were
performed with independently isolated RNA for all experiments.
Each RT reaction was loaded in triplicate for qRT-PCR analysis.
qRT-PCR data were analyzed using the PCR analysis program
7500 software v2.0.6 (Life Technologies, Foster City, CA,
USA).

Semi-quantitative RT-PCR was performed as described by Xu
et al. (2013). Gene-specific primers GhFT1-F2 and GhFT1-R2
were used to analyze the expression ofGhFT1 in 35S::GhFT1-GFP
transgenic tobaccos, and NtActin was used as an internal control.
Amplification was performed for 28 cycles at 94◦C for 30 s, 58◦C
for 30 s, and 72◦C for 30 s. PCR products were subsequently
separated on a 1.2% (w/v) agarose gel, then stained with ethidium
bromide and photographed under UV light.

Chlorophyll Content Determination
Determination of chlorophyll content in transgenic plants grown
under LD and SD conditions were estimated according to the
method described by Xu et al. (2013). 0.1 g plant tissue was
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homogenized in 80% acetone and incubated in dark for 6 h.
The homogenate was centrifuged at 10,000 rpm for 10 min.
Supernatant obtained was read at 649, 665 nm in Spectra Max
plus-384 (Molecular device, USA).

Leaf Mass Per Area (LMA) Measurements
Leaf area was measured using paper-cutting method described
by Hattersley (1984) with some modification. We digitally
photographed leaves of different transgenic tobacco lines and
WT plants. Photos of different lines were printed randomly
with A4 paper (No. 3954, Deli, Ningbo, China). Then the
printed photos were cut off carefully. Weight of leaves (W1)
and their corresponding cut-off papers (W2) were weighed.
Then LMA was calculated using the following formula:
LMA = (7 × W1)/(1000 × W2) cm−2. At least three replicate
assays were performed independently in this experiment.

Photosynthetic Rate Curve
The photosynthetic rate of tobacco plants under LD and SD
conditions were measured by LI-6400 (LI-COR Inc., Lincolin,
NE, USA) with auto-measure program. The CO2 concentrations
in sample phytotron were controlled at 400 µmol CO2 mol−1.
And different red-blue light intensity 2000, 1800, 1500, 1200,
1000, 800, 500, 300, 200, 100, 50, and 0 µmol m−2 s−1

were applied to measure the net CO2 uptake rate. Light curve
data were analyzed using the built-in program in LI-6400
system.

Results

Cytoplasm and Nucleus Location of GhFT1
Protein
We previously confirmed that GhFT1 located in the cytoplasm
and nucleus by detecting the fused green fluorescence protein

(GFP) in the Arabidopsis root cells carrying 35S::GhFT1-GFP
(Guo et al., 2015). In this study, we initially generated up
to 12 independent 35S::GhFT1-GFP transgenic tobacco plants
by transformation with A. tumefaciens. We next to observed
the green fluorescence using CLSM. As expected, root tip
cells expressing GhFT1-GFP fusion protein revealed strong
fluorescence in the nucleus, and GFP signal was also obvious
in the cell membrane (Supplementary Figure S2), which was
similar to that of the 35S::GhFT1-GFP transgenic Arabidopsis
seedling (Guo et al., 2015). To exclude the possibility of cell
wall association of GhFT1-GFP, we performed the plasmolysis
assay by sucrose treatment. However, we were not able to
observe an ideal picture of plasmolysis due to the very thick
cell wall of tobacco root tips. Furthermore, the resulting
construct of 35S::GhFT1-GFP (Supplementary Figure S1A)
was transformed transiently into N. benthamiana. We next
monitored the subcellular location of the GhFT1-GFP fusion
protein by CLSM in the leaf epidermal cells of N. benthamiana.
Green fluorescence was detected in the peripheral cytoplasm
(surrounding the vacuole) as well as in the nucleus, which was
similar to the cells expressing GFP alone (Figure 1). As our
previous report (Guo et al., 2015), we further confirmed that
GhFT1 localized in both the cytoplasm and nucleus in plant
cells.

We next transferred all the 35S:GhFT1-GFP transgenic
tobacco plants into pots containing soil. Under SD conditions,
these transgenic plants flowered at 63 ± 6.6 days after sowing
with 14.5 ± 0.6 leaves (Supplementary Figure S3A), compared
with 94.5 ± 3.3 days in the WT tobacco plants with 15.7 ± 0.5
leaves (Supplementary Table S2). To investigate whether GhFT1
was highly expressed in the 35S::GhFT1-GFP transgenic lines,
semiquantitative reverse transcription-polymerase chain reaction
(RT-PCR) was performed. As shown in Supplementary Figure
S3B,GhFT1 was expressed in all the selected transgenic lines, and

FIGURE 1 | Nucleus and cytoplasm subcelluar location of
GhFT1-green fluorescent protein (GFP) in N. benthamiana.
Micrographs showing cells expressing GFP (control, upper lane) or
GhFT1-GFP (bottom lane) fusion protein, which were examined under

fluorescent-field illumination (left) to examine GFP fluorescence, and under
bright-field illumination (middle), and by confocal microscopy (right) for an
overlay of bright and fluorescent illumination. Arrow, plasma membrane;
triangle, nucleus.
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the flowering time was positively correlated with expression level
of GhFT1 in transgenic lines.

Ectopic Expression of GhFT1 Promoted
Flowering in N. tabacum
Our previous research showed that overexpression of cotton
GhFT1 in Arabidopsis caused early flowering both LD and
SD conditions (Guo et al., 2015). To explore the potential of
GhFT1 in the regulation of flowering in tobacco, this gene was
overexpressed in N. tabacum under the control of the strong
and constitutive cauliflower mosaic virus (CaMV) 35S promoter
by transformation with 35S::GhFT1 construct (Supplementary
Figure S1B). We obtained numerous transgenic lines from two
times of independent transform assays, and all of them were
confirmed by PCR (data was not provided). The majority of
35S::GhFT1 primary transformants flowered much early than the
WT, both in terms of time and the number of leaves before
flowering (Supplementary Table S2). In the homozygous T3
plants, 14 showed significantly early flowering phenotype under

LD (line 1 and line 2 are shown as an example in Figure 2A),
and 12 also showed precocious flowering compared with the WT
plants under SD conditions (line 15 and line 16 are shown as an
example in Figure 2B). In LD conditions, the flowering time in
the 35S::GhFT1 transgenic lines was 45.8 ± 4.8 days after sowing
by producing 8 ± 0.7 leaves, compared with 106.3 ± 4.8 days
by producing 16 ± 0.8 leaves in the WT (Supplementary Table
S2). Likewise, under SD conditions, the flowering time of the
35S::GhFT1 transgenic lines was about 57.2 ± 4.9 days by
producing 7 ± 0.9 leaves, compared with 94.5 ± 3.3 days by
producing 15.7 ± 0.5 leaves in the WT siblings (Supplementary
Table S2). In addition, transgenic lines had rapidly elongated
internodes and reduced internodal length, and thereby developed
dwarf stature when flowering than the controls under both
conditions.

Previously, it has been shown that a transgene consisting
of 5.7-kb sequence upstream of the Arabidopsis FT translation
start site fused to the FT cDNA was sufficient to rescue the
late flowering phenotype of ft-10 plants grown under inductive

FIGURE 2 | Phenotype analysis of transgenic tobacco (Nicotiana
tabacum) lines that ectopically expressed GhFT1. (A) Appearance of
41 days wild-type (WT) tobacco and 35S::GhFT1 transgenic tobacco line 1
and line 2 grown in phytotron under long-day (LD; 16 h light/8 h dark)
conditions. (B) Detection of GhFT1 expression by quantitative real-time
PCR (qRT-PCR) in the 35S::GhFT1 transgenic lines and WT control under
LD conditions. (C) Appearance of 54 days WT tobacco and 35S::GhFT1
transgenic tobaccos line 15 and line 16 grown in phytotron under

short-day (SD; 8 h light/16 h dark) conditions. (D) Detection of GhFT1
expression by qRT-PCR in the 35S::GhFT1 transgenic lines and WT control
under SD conditions. (E) Appearance of 53 days WT tobacco and
5.7kbAtFTpro::GhFT1 transgenic tobacco lines grown in phytotron under SD
conditions. (F) Detection of GhFT1 expression by qRT-PCR in the
35S::GhFT1 transgenic lines and WT control under LD conditions. Scale
bars: 3.0 cm. Values are mean ± SE of results from three independent
replicates (n = 3).

Frontiers in Plant Science | www.frontiersin.org 5 June 2015 | Volume 6 | Article 454

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Li et al. Overexpression of GhFT1 in tobacco

extended SD conditions (Adrian et al., 2010). To further analyze
the function of GhFT1 in promoting flowers, we designed the
5.7kbAtFTpro::GhFT1 construction by using 5.7-kb Arabidopsis
FT gene promoter fused to the GhFT1 cDNA (Supplementary
Figure S1C). We next generated up to 14 independent transgenic
lines expressing GhFT1 cDNA by transformation with A.
tumefaciens. All of them flowered earlier than the WT plants
under non-inductive SD conditions (Figure 2E). The average
flowering time for these 5.7kbFTpro::GhFT1 transgenic lines
was approximately 50.5 ± 2.1 days average by producing
13.5 ± 1.0 leaves, whereas the flowering time in WT sibling was
94.5 ± 3.3 days by producing 15.7 ± 0.5 leaves (Supplementary
Table S2). These data combined with previous report by Guo
et al. (2015) further supported that the gene product of
GhFT1 function as a floral activator to promote flowering in
cotton.

To explore whether the early flowering phenotype
correlated with GhFT1 expression in the transgenic tobacco
lines, we used quantitative Real-time PCR (qRT-PCR)
methods to analyze gene expression level. As shown in
Figures 2B,D,F, higher GhFT1 expression was observed in
early flowering transgenic lines more than in those with a
less phenotype, whereas no GhFT1 expression was seen in
WT.

Ectopic Expression of GhFT1 Caused Lateral
Shoot Outgrowth in Tobacco
Nicotiana tabacum is an annually grown herbaceous plant
with little branches. Many flowered inflorescences arise at the
terminal after floral transition of the plant (Amaya et al., 1999).
Axillary buds are formed at the axillae of foliage leaves, and
will further develop into an inflorescence shoot (Figure 3A).
Surprisingly, we also observed that the 35S::GhFT1 transgenic
plants produced more axillary buds after floral transition under
LD conditions, but these axillary buds could not further develop
into lateral shoots (Figures 3B,D), whereas the WT tobacco
plants could. Conversely, more lateral shoots were generated
at the base of transgenic plants, which do not usually appear
in the WT plants of laboratory accession, N. tabacum cv.
NC89 (Figures 3C,E; Supplementary Figures S4A,B). Under SD
conditions, the formation of axillary buds in all the 35S::GhFT1
transgenic plants were not as obvious as in the LD conditions.
They also could not develop into lateral shoots finally, and
more lateral shoots were generated from stem base at early
buds stage (Figures 3F,G; Supplementary Figure S4C). These
observations suggested that ectopic expression of GhFT1 in
tobacco could modulate lateral shoot outgrowth and axillary bud
set in additional to floral transition.

Overexpression of GhFT1 Influenced Leaf
Morphology in Tobacco
Surprisingly, we also noted that change of leaf morphology
appeared in all the 35S::GhFT1 transgenic plants. To decipher the
function of GhFT1 further, the 35S::GhFT1 transgenic line 5 and
line 6 were used to observe their leaves phenotype under LD and
SD conditions. We compared leaves morphology from apical to
basal position among the transgenic lines and the WT tobacco

FIGURE 3 | Ectopical overexpression of GhFT1 promotes lateral shoot
outgrowth in tobacco. (A) The non-transformed WT tobacco plant develops
lateral shoots (white arrow) at the axillary buds after flowering. (B,D) The
35S::GhFT1 transgenic tobacco lines developed more axillary buds (white
arrows) after flowering under LD conditions. (C,E) The 35S::GhFT1 transgenic
tobacco plants developed lateral shoots (white arrows) at stem base under LD
conditions. (F,G) The 35S::GhFT1 transgenic tobacco plant lines developed
lateral shoots (white arrows) from stem base at early buds stage under SD
conditions. Scale bars: 2 cm.

siblings. The leave area in the transgenic lines was significantly
smaller than in the WT plants. Under LD conditions, the leaves
in line 5 appeared to be much longer and narrower than that
in the WT plants, but leaves in line 6 appeared to be much
shorter and wider (Figure 4A). We next measured the leaf length
to width (L/W) ratio in the transgenic lines and WT tobacco
plants, respectively. Accordingly, line 5 had the largest L/W
ratio value, followed by the WT plant and Line 6, respectively
(Figure 4B). Strikingly, the leaves of all the 35S::GhFT1 transgenic
lines looked much more green and fleshy than the WT plants.
We then measured chlorophyll content, suggesting both line 5
and line 6 had higher total chlorophyll content than the WT
plants (Figure 4C). Similar phenotype was also observed in the
35S::GhFT1 transgenic lines in SD conditions (Supplementary
Figure S5A). Leaf mass per area (LMA) is a key trait in plant
growth and an important indicator of plant strategies, which is
most closely correlated with a relative growth rate, and has been
used wildly in plant ecology, agronomy, and forestry (Poorter
et al., 2009). The transgenic lines showed higher LMA values
than the WT plants (Figure 4D), contributing to more fleshy
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FIGURE 4 | Overexpression of GhFT1 in tobacco has a powerful
influence on leaf development. (A) Comparison of apical (left), medial (middle
two), and basal (bottom) leaves among WT plant and the 35S::GhFT1
transgenic line 5 and line 6 (at 7 weeks) under LD conditions. Scale bar: 1 cm.
The ratio of leaf length to width (L/W; B), chlorophyll content (C) and Leaf mass

per area (LMA; D) were determined among WT plant and the 35S::GhFT1
transgenic tobacco line 5 and line 6 (at 7 weeks) under LD conditions,
respectively. Data represent the mean ± SE of three independent experiments
(n = 4). The asterisks indicate significant differences compared with the WT
plants (P < 0.05, Student’s t-test).

leaves compared with the WT plants in LD conditions. Similar
to LD conditions, all the 35S::GhFT1 transgenic plants (line 15
and line 16 were shown as an example) had higher L/W ratio,
chlorophyll content and LMA values than the WT under SD
conditions (Supplementary Figure S5).

We next set out to explore whether the change of
leaf morphology and increasing of chlorophyll content
in transgenic plants could enhance photosynthesis. The
efficiency of photosynthesis was determined by LI-6400 portable
photosynthesis system in different light intensity. As shown
in Figure 5, the transgenic tobacco lines showed higher
photosynthetic efficiency than the WT plant in LD as well as
SD conditions. This suggests, GhFT1 might play important
roles in the modulation of leaf development in cotton by
increasing photosynthesis and chlorophyll content other than
floral transition.

Ectopic Overexpression of GhFT1 Caused
Flowers Abscission
Nicotiana tabacum cv. NC89 is a typical cymose inflorescence in
which the first-formed flower develops from the growing region
at the top of the flower stalk, and the development of the flower
at the apex is followed by two new flower axes developing from
buds opposite on another (Amaya et al., 1999; Figure 6A). Both

LD and SD conditions, strikingly, overexpression of GhFT1 in
tobacco caused extremely early flowering (Figure 2). In addition,
86% tobacco plants overexpressing GhFT1 showed obvious
premature flowering abscission in early flower developmental
stages. For example, in the 35S:GhFT1 line 18, after the first
flower opened, it abscised form the stalk (Figure 6B) under SD
conditions, so it produced very few flowers and fewmature seeds.
In transgenic line 17, it could not present the regular flowers, due
to their abscission before opening (Figure 6C). One of the reasons
may be their flowers failed to enter meiosis, and eventually
the plants did not produce any seed capsules. No cymose
inflorescences similar to the WT plants (Figure 6A) were formed
in all these transgenic lines. Similar to SD conditions, we also
observed that these transgenic lines showed buds abscission at the
initiation of early bud set under LD conditions (Figures 6D,E).
However, the extent of floral bud abscission was alleviated, and
flowers could normally open and seed set at later developmental
stage (Figures 2A,C).

Viewed form outside, the transgenic plants showed normal
flower development, produced fertile flowers and normal
seeds (Supplementary Figures S6A,E). To investigate whether
overexpression of GhFT1 affected flower organs development
in tobacco, we dissected the flowers of −1 days of anthesis
(DOA) and 0 DOA in the WT and 35S::GhFT1 transgenic
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FIGURE 5 | Overexpression of cotton GhFT1 increased photosynthetic
efficiency in tobacco. Photosynthetic efficiency among the WT and the
35S::GhFT1 transgenic tobacco lines was determined of using LI-6400
portable photosynthesis system at different light intensity under LD conditions
(A) and SD conditions (B), respectively. The WT plant and transgenic plants
were 7 weeks-old after transfer to the phytotron. Data represent the
mean ± SE of three independent experiments (n = 4). Asterisk denotes
significant difference compared with WT plants at P < 0.05, according to the
Student’s t-test, respectively.

lines, respectively. For example, line 5 and line 6 showed
a smaller flower than the WT control, but no difference of
phenotype in stamen, stigma, petal, ovary, and sepal were
observed (Supplementary Figures S6B–D), suggesting that the
product of GhFT1 had no influence on the development of flower
organs.

Influence of GhFT1 Overexpression on the
Expression Level of Other Genes in Tobacco
In the present model, FT protein, is now widely established as
a major component of florigen, a systemic signal that induces
flowering in responsible to daylength, which is translocated
through the phloem to the SAM (Corbesier et al., 2007;
Mathieu et al., 2007; Notaguchi et al., 2008), where they form
a complex involving a bZIP transcription factor FD to promote
the transition to flowering by activating the expression of
multiple flower meristem identity genes, such as SOC1 and
AP1 (Abe et al., 2005; Fornara et al., 2010). The MADS-
domain transcription factor AP1 is a key regulator of Arabidopsis
flower development, controlling the onset of flower development
(Wigge et al., 2005; Kaufmann et al., 2010). SOC1 integrates
multiple flowering signals including photoperiod, temperature,
hormone, and age-related signals, involving in the process of
floral organ formation, meristem determinacy, and prevention

FIGURE 6 | Flower abscission behavior of transgenic tobacco lines
that overexpressing GhFT1 with severe phenotype. (A) The cymose
inflorescence in the WT flowers with no flowers abscission at flower opening.
(B) The 35S::GhFT1 transgenic line 18 showed flowers abscission after the
first flower opened under SD conditions. (C) The 35S::GhFT1 transgenic line
17 could not present the regular flowers, all of which abscised before opened
under SD conditions. The 35S::GhFT1 transgenic tobacco line 9 (D) and line
10 (E) showed flowers abscission at the buds stage under LD conditions.
Arrow indicated the abscised flower. Scale bars: 1 cm.

of secondary growth and shoot longevity (Lee and Lee, 2010;
Hiraoka et al., 2013). LFY, which encodes a plant specific
transcription factor, plays dual roles in determining floral
meristem identity and floral organ patterning via AP1 and
other floral homeotic genes (Moyroud et al., 2010). We next
detected the expression profiles of the tobacco flower meristem
identity genes among the transgenic and the WT siblings by
qRT-PCR. The results indicated that NtAP1, NFL (the likely
Nicotiana FLO/LFY homolog; Amaya et al., 1999) and NtSOC1
were obviously upregulated in the transgenic lines under LD
conditions (Figures 7A–C). Under SD conditions, the three
genes were also obviously upregulated in 35S::GhFT1 transgenic
tobacco plants (Figures 7D–F).

Four FT-like genes have been identified in N. tabacum
genome, NtFT1, NtFT2, NtFT3 and NtFT4, which acts
antagonistically to regulate floral initiation (Harig et al., 2012).
The NtT1, NtFT2, and NtFT3 proteins are floral inhibitors,
whereas NtFT4 is a floral inducer (Harig et al., 2012). To explore
whether the early flowering phenotype was correlated with the
endogenous NtFTs expression in 35S::GhFT1 transgenic lines,
we next further detected the expressions profile of the four FT
paralogs. As is shown in Figure 8A, higher NtFT4 expression
was observed in line 5 and line 6 than the WT plants under
LD conditions. NtFT4 was also observed highly expressed in
transgenic tobacco plants under SD conditions (Figure 8B).
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FIGURE 7 | Expression patterns of tobacco endogenous
flowering-related gene in WT and 35S::GhFT1 transgenic lines. Total RNA
isolated from the 35S::GhFT1 transgenic tobacco line 5 and line 6 and one WT
tobacco plant under LD and SD conditions was used as template, respectively.
The expression level of NtAP1 (A,D), NtSOC1 (B,E) and NFL1 (C,F) was

determined by qRT-PCR, respectively. Data represent the mean ± SE from three
biological replicates (n = 3), and NtActin was used as internal control. NtAP1,
JQ686939.1; NFL1, JQ686928.1; NtSOC1, JQ686938.1; NtActin, U60495. The
asterisks indicate significant differences compared with the WT plants
(P < 0.05, Student’s t-test).

Surprisingly, the expression of NtFT2 and NtFT3 were also
upregulated in the 35S::GhFT1 transgenic line 5 and line 6
under LD condition (Figures 8C,E). However, both NtFT2
and NtFT3 were downregulated expressed in line 5 and line 6
in SD conditions (Figures 8D,F). It was previously reported
that overexpression of NtFT2 and NtFT3 showed a delayed
flower phenotype, but the exact biological functions of NtFT2
and NtFT3 remain unclear. We were unable to detect NtFT1
expression under both conditions, while Harig et al. (2012)
were unable to detect the expression of these genes under LD
condition, which may be associated with the different tobacco
varieties.

Discussion

Conserved Fuctions of FT-Like Proteins as
Floral Promotes
A wide spectrum of research of FT orthologs from angiosperms
has been demonstrated their conserved function in the
regulation of flowering time (Pin and Nilsson, 2012). However,
the developmental mechanisms targeted by FT orthologs to

transform vegetative meristems into reproductive organs remain
unclear. We previously identified a FT-like gene GhFT1 from
cotton (G. hirsutum), which was highly expressed in all the
tissues except in root, and the strong sequence identity and
critical amino acids residues Tyr88 (Y) and Gln144 (Q)
to FT-orthologous genes of other species indicates that the
GhFT1 might be also involved in the control of flowering.
Ectopic expression of GhFT1 promoted precocious flowering
under both LD and SD conditions in Arabidopsis (Guo et al.,
2015), suggesting that GhFT1 is a potential FT ortholog
that regulates floral transition in cotton. To investigate the
developmental mechanism targeted by GhFT1 protein, we
further unveiled its overall growth effects by overexpressing
GhFT1 in tobacco.

The transgenic tobacco plants carrying the 35S::GhFT1
construct flowered earlier and had fewer leaves at flowering than
the WT plants in both LD and SD condition. Furthermore, the
5.7kbAtFTpro::GhFT1 construction by using 5.7-kb Arabidopsis
FT gene promoter fused to theGhFT1 cDNA could also accelerate
flowering in transgenic tobacco (Figure 2E).The precocious
flowering phenotype regardless of photoperiod indicated its
conserved roles in floral induction.
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FIGURE 8 | Expression analysis for endogenous FT paralogs in
tobacco plants that ectopically expressed GhFT1. Total RNA isolated
from the 35S::GhFT1 transgenic tobacco lines 5 and 6 and one WT tobacco
plant under LD and SD conditions, was used as template to detect the
expression of NtFT4 (A,B), NtFT2 (C,D) and NtFT3 (E,F) by qRT-PCR,

respectively. Data represent the mean ± SE from three biological replicates
(n = 3), with NtActin used as internal control. NtFT2, JX679068; NtFT3,
JX679069; NtFT4, JX679070; NtActin, U60495. The asterisks indicate
significant differences compared with the WT plants (P < 0.05, Student’s
t-test).

Although FT orthologs have been identified and characterized
from numerous plant species, the subcellular distributions
of many of them have not been clearly studied. Here, we
examined the distribution of functional GhFT1-GFP fusion
protein expressed in leaf epidermal cells of N. benthamiana or in
hypocotyl of tobacco by transform with 35S::GhFT1-GFP. In both
cases, GhFT1-GFP was observed in the nucleus and cytoplasm
(Figure 1; Supplementary Figure S2), which was consistent with
Guo et al. (2015) results. Similar results using a GFP or YFP-
tagged FT were also reported inArabidopsis (Abe et al., 2005), rice
(Taoka et al., 2011), tomato (Lifschitz et al., 2006), and tobacco
(Harig et al., 2012).

FT-GFP fusion protein in transgenic plant has been detected
to move through the phloem from the leaves as the place of
light perception to the shoot apex as the position of flower
formation only in limited plant species (Supplementary Table S3).
FT-GFP fusion proteins induced early flowering were previously
reported in Arabidopsis (Corbesier et al., 2007), rice (Tamaki
et al., 2007), and tomato (Shalit et al., 2009). However, the size
of the fusion protein restricted the long-range function of FT.
The larger FT-GFP protein may move less effectively to the SAM

from the minor veins than from the larger veins (Supplementary
Table S3). The 35S::GhFT1 with C-terminal translational fusion
of GFP induced precocious flowering in tobacco, indicating
GhFT1-GFP protein has similar activity like the WT FT protein.
Previously publication have shown that overexpression of FT
orthologs in tobacco could accelerate flowering in different plant
species (Supplementary Table S4), including tomato (Shalit et al.,
2009), fig (Ikegami et al., 2013), spring orchid (Xiang et al.,
2012), London plane (Zhang et al., 2011), and tobacco itself
(Harig et al., 2012; Guo et al., 2015; Wickland and Hanzawa,
2015).

Gene expression using qRT-PCR analysis revealed that the
expression of NAP1, NtSOC1, and NFL1 were significantly more
upregulated in transgenic lines than in the WT plants under LD
or SD conditions (Figure 7). These results were consistent with
the finding that NAP1 and NFL1 were highly expressed in the
flower buds of 35S::CgFT tobacco plants (Xiang et al., 2012).
These data indicates that the expression of NAP1, NtSOC1, and
NFL1 may be regulated by FT. Therefore, GhFT1 might have
upregulated them to regulate flowering in transgenic tobacco
plants.
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Beyond Flowering Promotion: Pleiotropic
Functions of GhFT1
Tobacco is a determinate species in which main shoot terminates
by converting into a flower, with subsequent growth occurring
only from lower meristems (Figure 3A). A number of axillary
meristems generated below the apex also develop into terminal
flowers in a cymose pattern (Amaya et al., 1999). Although
florigen was originally proposed as a flowering hormone, it is
now apparent that FT is a universal growth factor affecting
several aspects of plant architecture. In addition to promoting
flowering, we observed that the transgenic tobacco plants
showed pleiotropic phenotype different from the WT control,
suggesting that GhFT1 played multifaceted roles during plant
development.

That Arabidopsis FT is involved in the promotion of lateral
shoot outgrowth and axillary bud initiation were previously
proposed (Hiraoka et al., 2013; Niwa et al., 2013), but the
single overexpression of Arabidopsis FT gene is insufficient
to promote initiation or early development of axillary buds,
and must combined with LFY (Niwa et al., 2013). However,
ectopic overexpression of GhFT1 in tobacco resulted in more
axillary buds transition (Figures 3B,D) and more lateral
shoots generation at the base of main shoot (Figures 3C,E–G;
Supplementary Figure S4).

It has been previously reported that elevation of FT
concentration promotes more determinate habit, and influences
leaf development (Shalit et al., 2009; McGarry and Ayre, 2012).
Here, we also observed that leaf morphology of the 35S::GhFT1
transgenic tobacco lines was very different from that of WT.
Firstly, the leaves of transgenic lines appeared much more dark
green and fleshy compared with WT plants. Accordingly, the
chlorophyll content in transgenic lines was higher than that in the
control plants (Figure 4C; Supplementary Figure S5C). Secondly,
compared with other WT plants, leaves were shorter and wider in
some transgenic lines, whereas leaves were longer and narrower
in other transgenic lines. However, both had bigger value of
L/W ratio and LMA under LD and SD conditions than the WT
plants (Figures 4B,D; Supplementary Figures S5B,D). Likewise,
transgenic lines showed higher photosynthetic efficiency than the
WT plants (Figure 5). The results suggested that high GhFT1
level could function to modulate leaf development by increasing
L/W ratio, LMA and photosynthesis, and developing into smaller
leaf. We surmised that GhFT1 could link the transition to floral
with leaf development.

The leaf morphological change in the 35S::GhFT1 transgenic
tobacco lines is reminiscent of resent reports on overexpression
FT orthologs in different plant species. It was previously reported
that the florigen-dependent SFT/SP regulatory hierarchy could
determine leaf architecture in tomato and overexpression of
SFT induced simple lanceolate-like leaves (Shalit et al., 2009).
When Arabidopsis FT is ectopically overexpressed in ancestral
cotton accession TX701 through virus-induced flowering, it
also generated the lanceolate leaf shape (McGarry and Ayre,
2012). Endo et al. (2005) reported that constitutive expression
of CiFT in trifoliate orange altered the leaf shape and color;
the leaf in the transgenic plants containing 35S:CiFT was small,
lacked color on the margin, and had a leaflet at the center

of trifoliate leaf that was smaller than other leaflets. Xiang
et al. (2012) reported that transgenic tobacco lines expressing
CgFT showed the early release of axillary buds, and the rapid
elongation of internodes enabled the formation of thinner stems
and reduced leaf sizes. Teper-Bamnolker and Samach (2005)
reported that overexpression of Arabidopsis FT induced the high
level expression of FUL and SEPTAL (SEP3) in Arabidopsis and
leaded to small-sized leaves. Overexpression of tobacco NFL1 in
tobacco results in dwarf stature, reduced internode length, and
thickened leather-like leaves (Ahearn et al., 2001). Furthermore,
Flachowsky et al. (2010) reported that ectopic expression of
Arabidopsis LFY in apple showed an altered phenotype, which
is similar to the columnar phenotype, and leads to shortened
internodes and a significantly reduced length of the regrowing
shoot. The high expression of NFL1 (Figure 7) in tobacco
driven by the overexpression of GhFT1 might contribute to
the leaf shape and plant architecture. Ectopically overexpressed
transgenic plants containing FT orthologous genes exhibited
similar phenotype in leaf shape and plant architecture, suggesting
that the function of FT-like gene family is highly conserved
during evolution.

Surprisingly, we also observed obvious premature flowering
abscission in early developmental stages in the extremely early
flowering transgenic lines carrying 35S::GhFT1, resulting in fewer
mature seeds (Figure 6). In tomato, SFT was also reported to
accelerate mature and promote abscission zone formation (Shalit
et al., 2009). Overexpression of Arabidopsis FT in the ancestral
cotton accession TX701 delivered by virus-induced flowering
caused many of flowers abscission before producing mature bolls
(McGarry and Ayre, 2012). The abscission trait is considered as
an innovation in angiosperms, and is regulated by multifactor,
including auxin, ethylene, and jasmonic acid even day length
(Shalit et al., 2009). Further study would clarify the possible
mechanism for the precocious floral organ abscission in tobacco
plants overexpressing cotton GhFT1.

Overexpression of GhFT1 Might Disturb the
Balance between Inducer and Repressor of FT
Parologs in Tobacco
It is now apparent that the relative ratios of FT to other
members of the PEBP gene family have influenced the balance
of indeterminate and determinate growth in many plant species,
and play important role in the floral transition and architecture
formation. For example, the tomato SFT/SP ratio regulates the
reiterative growth and termination cycles typical of perennial
plants, accelerates leaf maturation, influences the complexity
of compound leaves, the growth of stems and the formation
of abscission (Shalit et al., 2009). The recent report showed
N. tabacum possesses four FT-like proteins (Harig et al.,
2012), suggesting that the balance of FT-clade in tobacco plays
important roles in the floral transition and plant architecture.
However, the exact mechanism in the control of floral transition
remains very unclear.

As expected, NtFT4 showed significantly upregulated
expression in all the transgenic tobacco plants under both light
conditions (Figures 8A,B). Surprisingly, the expression of NtFT2
and NtFT3 were upregulated in transgenic plants under LD
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light conditions, but their expression levels were downregulated
in SD conditions (Figures 8C–F). The contrast expression
profiles of NtFT2 and NtFT3 under LD and SD conditions leads
us to have a profound consideration of the florigen paradigm
for influencing plant architecture. The balance model predicts
that FT and TFL1 concentration fluctuate, and balance are
re-fined in local tissues to give rise to different architecture
(McGarry and Ayre, 2012). The expression levels of GhFT1
in LD condition tobaccos were much higher than that in
SD condition (Figure 2), suggesting that in LD and SD
conditions, tobacco might have different concentration of
florigen for mediating floral transition. High expression of
cotton GhFT1 completely influenced the expression level of
endogenous FT genes in tobacco. As a floral inducer, NtFT4
expression was highly upregulated under both LD and SD
conditions, whereas NtFT2 and NtFT3 expression, acting as
a floral repressor, were upregulated in LD condition and
downregulated in SD, resulting in disorders of the balance
between inducers and repressors in transgenic tobacco plants,
therefore influences the FT/TFL1 genes expression, and further
changes FT/TFL1 proteins concentration in the transgenic
tobacco. The problem balance will further influence the
expression levels of flowering meristem identity genes, such as
NAP1, NFL1, and NtSOC1 (Figure 7), resulting in developing
multifaceted phenotypes: early flowering, axillary buds set, lateral
shoot outgrowth, leaf development change and flower abscission.
However, further extensive research is needed to clarify these
scenarios.

Taken together, overexpression of cotton GhFT1 in tobacco
promotes precocious flowering uncouple from photoperiod,
showing that FT paralog evolves a conserved function of floral
promoter in fiber plants. Introducing of transgenic cotton FT
disturbs the balance of endogenous FT paralogs including
inducers and repressors, and further disturbs other PEBP family
members balance through antagonistic functions. We here
present evidences that sufficient levels of FT activity might
modulate axillary and lateral shoot outgrowth, influence leaf
development and promote flower abscission, supporting the view

that florigen functions as general growth hormone mediating
growth and termination. These finding further extends the
knowledge for plant florigen. Judicious manipulation of the ratio
for indeterminate and determinate growth factors, mediated by
a balance of FT-like and TFL1-like gene activities by transgenic
technology, holds promise for improved plant architecture
optimized for region-specific environment and enhanced crop
yield in order to meet the agricultural demand of the rapidly
expanding global population.
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