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This short review aims to summarize the current developments and applications of
mass spectrometry-based methods for in situ profiling and imaging of plants with
minimal or no sample pre-treatment or manipulation. Infrared-laser ablation electrospray
ionization and UV-laser desorption/ionization methods are reviewed. The underlying
mechanisms of the ionization techniques–namely, laser ablation of biological samples
and electrospray ionization–as well as variations of the LAESI ion source for specific
targets of interest are described.
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Introduction

Sample preparation is an important step that precedes acquisition of many kinds of data. However,
often sample preparation is associated with artificially altering the biological or biochemical
status of the system under study. In order to minimize this effect, we would like to have little
to no sample preparation. If we can perform analysis directly in vivo, our data might fully
represent the actual system. The usual workflow relies on sample dissection, solvent or thermal
extraction and subsequent analysis using chromatographic methods connected to a detector with
the needed selectivity. Minimal sample preparation facilitates the analytic process, by allowing
people with minimal experience in analytical chemistry to perform the necessary steps without
highly involved training. The sheer number of emerging ionization techniques involving minimal,
ambient pressure sample preparation demonstrates the current interest, but, sadly, an alphabet
soup of abbreviations has been created. Recent reviews (Bhardwaj and Hanley, 2014; El-Baba et al.,
2014; Venter et al., 2014) summarize established techniques for most of the possible applications
to date, providing an excellent guide for beginners to the field. These techniques are especially
interesting for the life sciences (Alberici et al., 2010; Shrivas and Setou, 2012), due to the delicate
nature of biological samples. Biological mass spectrometry imaging (MSI) is profoundly profiting
from these developments.

In addition to being the least intrusive approach, spatial resolution is an important feature for
any imaging technique. Secondary ion mass spectrometry (SIMS) is the ionization technique for
mass spectrometry (MS) that offers highest spatial resolution down to reported values of below
one micron (Svatos, 2010). Because it uses an ion beam to create secondary ions from the sample
(Figure 1A), SIMS is not considered a soft ionization technique. Molecules tend to fragment upon
ionization, and the utilization of SIMS is intrinsically linked to extensive sample preparation. SIMS
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FIGURE 1 | Simplified schematic of (A) secondary ion mass
spectrometry (SIMS), (B) matrix-assisted laser desorption/ionization
(MALDI), and (C) laser ablation electrospray ionization (LAESI) mass
spectrometry imaging (MSI). (D) Color overlay showing the 15N/14N ratio
measured with NanoSIMS (I) and the corresponding secondary electron
image (II) of Chorizanthe watsonii cells, scale bars 5 µm. Adapted with
permission from (Mohr et al., 2013). (E) Optical image (I) and color overlays
of Arabidopsis thaliana petal LDI-MSI in negative ion mode corresponding to

kaempferol (II), quercetin (III), and kaempferol rhamnoside (IV) with mass to
charge ratios (m/z) of 285, 301, and 431, respectively. Adapted with
permission from (Hölscher et al., 2009). (F) Viola petals (I) as sampled with
conventional LAESI (top) and HA-LAESI (bottom). The color overlays II & III
show the spatial distribution of the selected ion m/z 919.3 as sampled from
the smaller petal with conventional LAESI (II) and from the bigger petal with
HA-LAESI (III). Adapted with permission from (Vaikkinen et al., 2013).
Copyright 2012 American Chemical Society.

has successfully been used on biological samples for imaging
(McMahon et al., 1995). In 2013, SIMS was successfully used to
investigate the dynamics of nitrogen gas fixation of cyanobacteria
at the level of a single cell (Mohr et al., 2013; Figure 1D).
MSI of intact biomolecules, however, struggles to reach the level
of a bacterial cell. In contrast, recent advances report single-
cell resolution on eukaryotes with matrix-assisted ionization
techniques, involving extensive sample preparation prior to
analysis (Boggio et al., 2011). In early 2015, single-cell imaging
was done within a tissue (Li et al., 2015b) utilizing laser ablation
electrospray ionization (LAESI), which requires considerably less
sample preparation.

A prominent ionization technique used in MSI
of large biomolecule imaging is matrix-assisted laser
desorption/ionization (MALDI; Caprioli et al., 1997; Bjarnholt
et al., 2014; El-Baba et al., 2014). MALDI instrumentation for
MSI is commercially available with a spatial resolution of 10 µm
(FLEX series, Bruker, Bremen, Germany). MALDI requires the
samples to be pre-processed extensively by dissolution in and
co-crystallization together with a matrix. Originally restricted to
vacuum application (Feigl et al., 1983; Karas et al., 1985, 1987),
MALDI has since been adapted to work under atmospheric

pressure (Laiko et al., 2000; Li et al., 2007). Desorption and
ionization of co-crystallized samples with matrix is facilitated
by an ultraviolet (UV) laser and recently has also been used
in conjunction with infrared (IR) lasers. The matrix molecules
absorb most of the energy deposited to the sample by the laser
and transfer the energy to the sample analytes more gently than
via direct irradiation (Caprioli et al., 1997; Karas and Kruger,
2003), as depicted in Figure 1B. With MALDI, scientists can
ionize very big molecules, e.g., proteins, non-destructively,
which is one of the reasons why MALDI is used in protein
MSI analysis. The method requires reliable matrix deposition
and high ion yield (Karas and Kruger, 2003; El-Baba et al.,
2014). To image plant cells – some as large as 50 µm – the
spatial resolution of commercial instruments is sufficient. Laser
desorption ionization (LDI) works similarly to MALDI but does
not require an externally applied matrix. Because samples are not
pre-treated with a matrix, spatial resolution is not compromised
by matrix crystals, which could be larger than the studied
cells.

Electrospray ionization (ESI) was originally designed to ionize
long polymer chains (Dole et al., 1968) and has subsequently
evolved (Yamashita and Fenn, 1984; Whitehouse et al., 1985)
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to a commonly used ion source in mass spectroscopy. ESI has
become very popular (Bhardwaj and Hanley, 2014), for example,
in combination with liquid chromatography (Whitehouse et al.,
1985) and been used for MSI as well, especially in the form
of desorption electrospray ionization (DESI; Bjarnholt et al.,
2014) and the closely related nano-DESI (Lanekoff et al., 2012).
These techniques have been shown to achieve 50 and 20 µm
spatial resolution, respectively (Campbell et al., 2012; Lanekoff
et al., 2012). Instead of extracting analytes prior to analysis, both
techniques extract analytes in situ prior to ionization directly
from the sample surface (Venter et al., 2014). Control over the
amount of sample surfaces wetted becomes imperative to avoid
cross contamination and maintain spatial resolution.

In 2007, LAESI was introduced (Nemes and Vertes, 2007).
The basic principle of LAESI combines LDI and ESI: ablation
with a laser, and ionization via ESI, as shown in Figure 1C.
However, LAESI uses an IR laser and relies on water present in
the sample as a makeshift matrix (Apitz and Vogel, 2005; Nemes
et al., 2012), a condition that most samples in life sciences fulfill.
This way the deposition of an external matrix is not required,
sample handling is simplified and the need to manipulate the
samples prior to analysis is reduced. In a LAESI source, IR-laser
light of 2940 nm wavelength is used to irradiate samples. At this
wavelength, water has a major peak in its absorption spectrum
and thus acts as a chromophore absorbing the deposited energy
(Hale and Querry, 1973; Downing and Williams, 1975). Essential
work describing the physics of ablating biological tissue with a
laser was done recently (Vogel and Venugopalan, 2003b). The
event of sample ablation can be split into at least two different
phases based on the tensile strength of the sample (Vogel and
Venugopalan, 2003a; Apitz and Vogel, 2005). Initially, irradiated
sample material is heated and vaporization of molecules from
the surface takes place (Vogel and Venugopalan, 2003a). When
the energy deposition of the laser is larger than the energy
consumption of the vaporization process, the water content of
the sample is further heated and driven into a superheated
state, leading to phase explosion upon relaxation to a stable
state (Vogel and Venugopalan, 2003a; Apitz and Vogel, 2005;
Chen et al., 2006). This results in material expulsion as well as
tissue rupture and is primarily responsible for ablation efficiency

(Apitz and Vogel, 2005). The resulting ablation plume consists
mostly of neutral matter in the form of nanoparticles, droplets,
and large particulates. Experimental data suggest droplets from
the electrospray plume intercept and fuse with the ablation
plume nanoparticles, extracting analytes in the process (Nemes
and Vertes, 2007). At this point, post-ionization by ESI takes
over. A review of the research done on most of the aspects
governing ESI (Kebarle and Verkerk, 2009) provides an excellent
introduction to the field. Once ions have been generated from the
sample, mass analyzers provide the means of detection.

The following section provides examples of instrumentation
to illustrate the capabilities of the LAESI technique. LAESI
displays promising potential for application in animal and plant
metabolomics (Stolee et al., 2012; Stopka et al., 2014) and MSI
of living plant tissue (Nemes and Vertes, 2007; Li et al., 2015b).
For more information on different types of MSImethods, refer to
Table 1.

Application of LAESI

The first realization of a LAESI ion source, as described by Nemes
and Vertes (2007), consisted of a custom-built electrospray
system, an Er:YAG laser tuned to a wavelength of 2940 µm,
and a time-of-flight (TOF) mass spectrometer. One of the proof-
of-concept experiments carried out was metabolic profiling of
Tagetes patula seedlings in vivo. Several tentative assignments of
metabolites from roots, leaves and stems were made. For that,
accurate mass measurements, isotope patterns and metabolomic
databases of model organisms such as Arabidopsis thaliana were
considered. Cautious use of these databases was justified under
the presumption that plants share certain metabolomics features
(Nemes and Vertes, 2007; Nemes et al., 2008). Although LAESI
is classified as a destructive method, seedlings subjected to the
single-shot laser ablation were reported to survive the 350 µm
wide ablation craters in roots, leaves, and stems.

Nemes et al. (2008) used a combination of LAESI and TOF
mass analyzer techniques to show the usability of LAESI for MSI
of plant tissues. Leaves of Aphelandra squarrosa with variegation
patterns were subjected to two-dimensional imaging with a

TABLE 1 | Ionization techniques used for mass spectrometry imaging (MSI) of biological samples.

Ionization technique Typical spot size/spatial resolution Requirements/sample preparation Reference

Secondary ion mass spectrometry
(SIMS)

∼100 nm, subcellular resolution
possible

Sample must be stable enough in
vacuum environment

McMahon et al. (1995), Colliver
et al. (1997), Mohr et al. (2013)

Matrix-assisted laser
desorption/ionization (MALDI)

∼10 µm with commercially available
instruments

Matrix molecules need to be
co-crystalized with sample

Karas and Kruger (2003), El-Baba
et al. (2014)

Laser desorption/ionization (LDI) ∼5 µm with commercially available
instruments

UV-absorbing analytes increase
desorption/ionization

Hölscher et al. (2009), Kroiss et al.
(2010), Hoelscher et al. (2014)

Matrix-assisted laser desorption
electrospray ionization (MALDESI)

Spot size is 250–300 µm, spatial
resolution of 45 µm with oversampling
reported

Similar to MALDI but higher ion yield
achievable through post ionization step

Sampson et al. (2006), Robichaud
et al. (2014)

Desorption electrospray ionization
(DESI)

50–20 µm spatial resolution, depending
on source instrumentation

No particular sample preparation needed
but sensitive to surface wetting

Campbell et al. (2012), Lanekoff
et al. (2012)

Laser ablation electrospray ionization
(LAESI)

350–15 µm spot size, depending on
source instrumentation

Water in sample, e.g., in the form of
cytosol

Nemes and Vertes (2007), Shrestha
and Vertes (2009)
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spatial resolution of 400µm and depth profiling with a resolution
of 50 µm. The actual spot size of the laser was reported as
350 µm, but a bigger step size was chosen to limit cross-talk in
the acquisition of mass spectra. Nemes et al. (2008) were able to
show that localization of the secondary metabolites kaempferol
and luteolin, as well as certain derivatives with sugar moieties,
coincides with the variegation pattern. The spatial distribution
was then combined with the information gathered from depth
profiling to visualize the spatial distribution of secondary plant
metabolites in three dimensions. Depth profiling was realized
by consecutive irradiation of the same spot (Nemes et al., 2008,
2009).

The work of Nemes et al. (2008, 2009) showed the feasibility
of a LAESI ion source for analyzing and imaging metabolites
in plant samples. Shrestha and Vertes (2009) improved upon
the LAESI concept by using an etched, GeO2-based glass fiber
to focus and deliver the laser to the sample. This made it
possible to decrease the diameter of the ablation marks to
slightly larger than 2R, with R being the radius of the glass
fiber tip’s curvature, reported as roughly 15 µm in size and as
forming ablation craters of ca. 30 µm. The metabolome of single
epithelial cells from Allium cepa and Narcissus pseudonarcissus
bulbs was analyzed and compared across species, but also
compared to relative species within a particular sample tissue.
Interestingly, the same cell type, A. cepa bulb epithelial cells and
their N. pseudonarcissus equivalent, showed different contents
of metabolites, with oligosaccharides and alkaloid, respectively,
abundant (Shrestha and Vertes, 2009). By looking at epithelia
from different layers of the same bulb, differently aged A. cepa
cells were compared. The content of arginine was reported to
decrease with increasing cell age, while the alliin gradient was
oriented the other way around. Cells in an A. cepa bulb are
older when located in the outer layers. Shrestha et al. (2011) also
determined the influence of ablating event on single cells within
a tissue on the surrounding cells and found no major disturbance
compared to similar cells in undisturbed areas of the sampled
tissue.

The same experimental set-up was also used to find
biomarkers in the oil glands of Citrus aurantium leaves. For the
initial mass spectra from achlorophyllous cells of C. auratium,
leaf oil glands and epidermal cells from distant parts of the same
leaf were first measured and then compared. Different terpenes
and terpenoids were found in the oil gland cells, which are
absent in the epidermal cells and which contained flavonoids
compounds not present in the gland cells (Shrestha et al., 2011).

The step to subcellular resolution was taken by Stolee et al.
(2012). The LAESI set-up described previously (Shrestha and
Vertes, 2009) was improved upon by adding a micro-dissection
needlemade out of tungsten. Prior to sample irradiation by the IR
laser, the needle with a tip diameter of approximately 1 µm was
used to cut open and peel back the cell wall of A. cepa epithelial
cells. Metabolites such as hexose and alliin were reportedly found
with higher abundance in cytosolic areas of a cell, whereas the
amino acids arginine and glutamine were found more commonly
in the area of the cell nucleus (Stolee et al., 2012). However,
the improvement made by ablating the sample precisely goes
hand in hand with the small sample volume from which ions

can be generated. This limitation obviously reduces sensitivity
of the method and poses a general problem of spatially confined
ionization techniques.

Depending on the properties of the electrospray solution used,
imaging substances with strongly diverging polarities may be
difficult to ionize simultaneously. A LAESI source was modified
to address this problem (Vaikkinen et al., 2013). By adding
a nebulizer chip blowing heated nitrogen gas toward the MS
orifice, a more efficient ionization of both polar and non-
polar compounds was expected (Careri et al., 1999; Boscaro
et al., 2002). Compared to an unmodified LAESI ion source,
heat-assisted LAESI (HA-LAESI) has shown to better ionize
compounds with low polarity, as demonstrated on Persea
americana mesocarp (Vaikkinen et al., 2013). A high abundance
of signals assigned to triglycerides was observed in the MS
spectrum measured with HA-LAESI. These particular peaks were
less pronounced when using LAESI. To demonstrate imaging
capabilities, Vaikkinen et al. (2013) used Viola flower petals and
visualized the distribution of glycosides known to be present
in Viola (Saito et al., 1983) as shown in Figure 1F. To further
improve on ionizing low and non-polar compounds, a krypton
discharge lamp for photo-ionization was added to the LAESI
set-up to ionize anisole molecules with UV light that in turn
ionize analytes in subsequent reactions taking place in the gas
phase. The electrospray was exchanged for a nebulizer chip
with an anisole and heated nitrogen gas flow (Vaikkinen et al.,
2014), very similar to HA-LAESI. The technique was called
laser ablation atmospheric pressure photoionization (LAAPPI).
MSI was performed on Salvia officinalis leaves, and tentative
assignment of multiple terpene and terpenoid compounds could
be made (Vaikkinen et al., 2014). Because the IR light was focused
using a lens instead of an etched glass fiber (Shrestha and Vertes,
2009) as described by Nemes et al. (2008), spatial resolution was
reported as 400 µm.

Until recently, MSI was performed by measuring a sample
step-wise using a predefined raster. Resolution of the mapping
thus depended on the smallest possible step preventing pixel
cross-talk. Li et al. (2015b) reported a procedure for LAESI-
MSI, integrating light microscopy to assess and identify single
cells within a sample tissue. An imaging raster consisting of
cells defining that particular sample tissue was then created and
used for systematic cell-by-cell imaging. Feasibility and proof-
of-concept experiments on A. cepa bulb and Lilium longiflorum
were performed using the precision of LAESI with an etched,
GeO2-based glass fiber (Shrestha and Vertes, 2009). The capacity
for separating isobaric and structurally isomeric ions in LAESI-
MSI experiments was demonstrated by Li et al. (2015a) on
Pelargonium peltatum leaves and mouse brain tissue.

Trying to make LAESI more compatible with complementary
methods such as light microscopy, Compton et al. (2015) tried
to spatially separate laser ablation from ESI. After ablation, the
produced plume was carried into transfer tubing with nitrogen
gas, and analytes were ionized with ESI after emerging from the
60 cm long tubing. Parts of Viola and Acer sp. were analyzed
using remote-LAESI as proof-of-principle experiments. Signal
strength was reported to be 27% of the intensity detected using
conventional LAESI (Compton et al., 2015).
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Laser ablation electrospray ionization was recently used as
one of the methods to confirm the quantitative MSI of surface-
occurring glucosinolate on A. thaliana leaf surfaces (Shroff et al.,
2015). Data obtained from LAESI and liquid extraction surface
analysis (LESA; Kertesz and Van Berkel, 2010) unambiguously
supported the data obtained using a 9-aminacridine matrix
sublimed on the leaves and imaged using vacuumMALDI-MSI.

In addition, LAESI has been applied to human- and animal-
derived samples. The applicability of LAESI to blood and
serum samples for medical purposes as well as antihistamine
quantification directly from human urine samples has been
shown (Nemes and Vertes, 2007). Since then, metabolomic and
lipidomic analysis of the electric organ of Torpedo californica
(Sripadi et al., 2009), rat and mouse brain (Nemes et al., 2010;
Shrestha et al., 2010), fish gills (Shrestha et al., 2013), and other
samples (Parsiegla et al., 2012; Shrestha et al., 2014) has been
reported. A LAESI system, DP-1000 LAESI, is now available
commercially from Protea Bioscience (Morgantown, WV, USA).
The spatial resolution of the system is ca. 200 µm and can be
attached to diverse mass spectrometers. Early data on MSI of
pesticides, mycotoxines, and plant metabolites from lemon or
rose leaves have recently been published (Nielen and van Beek,
2014) using this source.

Application of LDI-MSI in Planta

Laser desorption ionization can be applied in planta, as many
important secondary metabolites contain conjugated double-
bond systems like aromatic/heteroaromatic rings and show
strong UV adsorption at 337 or 355 nm; both levels are emitted
by the most common UV lasers. Plant pigments and compounds
of the polyketide family readily absorb UV light and serve to
desorb/ionize themselves. Elimination of MALDImatrices makes
MSI in cellular resolution possible; see, for example, hypercins
in glandular pigment cells of Hypericum perforatum or quercetin
glucosides in A. thaliana petals or sepals as demonstrated by
Hölscher et al. (2009) and shown in Figure 1E. A vacuumMALDI
system Ultraflex (Bruker) with smart beam technology provided
10 µm spatial resolutions. Hypercins were shown to co-localize
with dark pigment glands. A recent advance in developing
systems with even higher spatial resolution as well as mass
accuracy was commercialized in the AP-SMALDI imagine10
(TransMIT, Giessen, Germany) source attached to a Q-Exactive
system with orbital mass analyzer (Thermo Scientific, San Jose,
CA, USA). Laser spot sizes smaller than 5 µm are possible,
and LDI measurements can be performed at ambient conditions
thus preventing plant sample desiccation and deformation. This

method is not limited to plants as was documented by MSIs
of nematodes ingesting plant toxins from infected banana roots
(Hoelscher et al., 2014) or on various MSI of antibiotics produced
by actinomycetes on beewolf cocoons (Kroiss et al., 2010). LDI
coupled with a plasma torch, also known as laser ablation
inductively coupled plasmaMS (LA-ICP-MS), is used for imaging
distribution of metals in planta (Becker et al., 2010) or to localize
proteins labeled with antibodies containing a metal-reporter ion
(Bendall et al., 2011). This method shows extreme sensitivity, and
as desorbed tissue debris undergoes post-ionization in a plasma
torch, the technique is also quantitative.

Conclusion

Although plant tissues have been employed to characterize LAESI
since the introduction of the technique in 2007, its application in
plant metabolomics and MSI is still limited to proof-of-concept
experiments, for example, with onion (A. cepa) bulbs. This
limited use may be a result of the apparent dominance of MALDI
applications in imaging with high spatial resolution and the initial
barrier of acquiring a LAESI source, since instrumentation with
high spatial resolution is not yet commercially available. Even
custom-built realizations do not reach the benchmark resolutions
reported for MALDI. Advantages such as the absence of an
external matrix and the potential for direct correlation with
microscopically gathered data through the means of software
evaluation may, however, promote the use of LAESI over
time. Interdisciplinary work, in particular, which is usually
characterized by a wide variety of methods and thus depends on
data correlation, might profit from these ionization techniques.
As the literature reviewed here shows, the performance of the
LAESI ion source is sufficient for utilization in larger studies
of plant metabolomes, especially in MSI of target metabolites,
and for answering current biological questions. The same can be
said about LDI. It is less intrusive than MALDI, because it does
not require an externally applied matrix. Additionally, the spatial
resolution is not compromised by the matrix crystals, which
could be larger than the studied cells. Typically, using diverse
orthogonal methods can be fruitful and is of help in reducing
experimental bias.
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