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Plants have the ability to grow and successfully reproduce in radio-contaminated
environments, which has been highlighted by nuclear accidents at Chernobyl (1986)
and Fukushima (2011). The main aim of this article is to summarize the advances of the
Chernobyl seed project which has the purpose to provide proteomic characterization of
plants grown in the Chernobyl area. We present a summary of comparative proteomic
studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas
during two successive generations. Using experimental design developed for radio-
contaminated areas, altered abundances of glycine betaine, seed storage proteins, and
proteins associated with carbon assimilation into fatty acids were detected. Similar
studies in Fukushima radio-contaminated areas might complement these data. The
results from these Chernobyl experiments can be viewed in a user-friendly format at
a dedicated web-based database freely available at www.chernobylproteomics.sav.sk.
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Introduction

Radioactive minerals have accumulated on the Earths surface since early Achaean times
(3500-4000 million year ago) and probably helped precipitate and concentrate organic carbon-
rich matter (Parnell, 2004). The first scientific recordings indicating that radioactivity affects living
matter dates back to late 19th and early 20th century when Marie Sktodowska-Curie mentioned
in her thesis that “The action of radium upon the skin can take place across metal screens, but
with weakened effect” (Richards, 1915). Similarly, Henri Becquerel observed negative effects of
radioactivity on his own body, after he carried a small tube of impure radium in his pocket for
a few hours (Baskerville, 1905). Early experiments on the effect of ionizing radiation (IR) on
plants were performed during late 19th and early 20th century (Gager, 1908). It was soon realized
that radiation is a powerful mutagen (Nadson and Philippov, 1925), can induce variations within
species (Goodspeed and Olson, 1928; Olson and Gilbert, 1928), and can control rates of mutations
(Babcock and Collins, 1929).

Plants can easily cope with increased levels of IR. This has been demonstrated in the radio-
contaminated Chernobyl (Shkvarnikov, 1990) and Fukushima (Mimura et al., 2014) environments,
as well as their successful growth in space (Dubinin et al, 1973). Plant radio-resistance is
maybe not surprising since radioactive materials occurred on the Earth’s surface when plants
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first appeared during the Mid-Ordovician period, about 460-
470 million years ago (Wellman and Gray, 2000; Karam and
Leslie, 2005). It has also been proposed that present day
areas with high-levels of background natural radiation and the
reduced levels of plant migration may have both contributed
to plant radio-resistance (Moller and Mousseau, 2013). To
investigate the molecular aspects of this process in plants,
various analyses have been undertaken (Moller and Mousseau,
2015). Recent meta-analysis of 45 published studies on DNA
mutations in Chernobyl showed that plant growth in radio-
contaminated environment is associated with increased levels
of mutation (Moller and Mousseau, 2015). It appears that
DNA methylation and increased extra chromosomal homologous
recombination events also contribute to successful plant growth
in radio-contaminated environments (Kovalchuk et al., 2003,
2004).

However, transcript expression and protein abundance are
found to poorly correlate (Chen et al, 2002; Griffin et al,
2002; Orntoft et al., 2002; Pascal et al., 2008; Hornshoj et al.,
2009; Hajduch et al, 2010), including plants growing in
radio-contaminated areas. Therefore, the complementation of
expression studies with proteomics can provide new insight into
molecular mechanisms of plant growth in radio-contaminated
environments. Indeed, proteome alterations induced by IR
are the subject of increased research interest, especially in
mammalian systems (Azimzadeh et al, 2014; Leszczynski,
2014). In plants, this is also appears to be the case, as
differential abundances of proteins associated with defense
and stress responses were detected in leaves harvested from
rice grown in the soil taken around Chernobyl reactor site
(Rakwal et al., 2009). Importantly, it has been demonstrated that
proteome changes increase with irradiation dose; observations
were based on the analysis of X-rays irradiated plantlets
of the reference plant Arabidopsis thaliana (Gicquel et al,
2011).

Experimental Design of the Chernobyl
Seed Project

Experimental design for ecological field experiments should
include several experimental fields to avoid pseudoreplication
(Hurlbert, 1984). However, it is often difficult to establish
and manage several experimental fields in heavily controlled
radio-contaminated areas. Therefore, experimental design for
Chernobyl (Figure 1) was modified and included (i) two
non-radioactive fields (control) and one radio-contaminated
experimental field (Supplementary Figures S1A,B), (i) two
plant species, and (iii) two successive years. An important aspect
of this experimental design (Figure 1) is the changed location
of the non-radioactive field after the first year. The logic behind
this is to exclude alterations related to the differences between
experimental fields (soil, pests, weather, etc).

In 2007, local varieties of soybean (Glycine max [L.]
Merr., variety Soniachna) and flax (Linum usitatissimum, L.,
variety Kyivskyi) were sown in radio-contaminated experimental
fields (soil radioactivity 20650 £ 1050 Bqkg~! of ¥7Cs,

and 5180 + 550 Bqkg™! of ?°Sr) located near the village
Chistogalovka approximately 5 km from the Chernobyl Nuclear
Power Plant (CNPP). The non-radioactive control experimental
field (1350 & 75 Bq.kg ™! for 1*”Cs and 490 £ 60 Bq.kg~* for *°Sr)
was established near Zhukin, a village approximately 100 km
from CNPP (Supplementary Figure S1A). Soybean and flax
seeds were harvested and mature seed proteomes comparatively
analyzed in biological triplicate (Figure 1). In 2008, soybean
and flax seeds harvested from the first generation of plants were
sown onto the same radio-contaminated field, but a different
non-radioactive field in the Chernobyl area (Supplementary
Figure S1B), to obtain the second generation of seeds. A new
non-radioactive experimental field was established directly in
the town of Chernobyl, in an area with soil radioactivity
of 1414 + 71 Bqkg™! of ¥’Cs and 550 + 55 Bqkg™!
of ?°Sr (Supplementary Figure S1B). The Chernobyl area is
characterized by sod-podzolic soil (pH5.6-pH6.6, 12% clay, 2.0%
organic compounds) which is a typical soil in the Ukrainian
region of Polessia. Generally, in this area, the content of aleurite
(silt) and pelitic soil ranges from 20 to 30% (Rashydov and
Malinovskiy, 2002).

Advances in the Establishment of Protein
Abundance Profiles and Web-Based
Database

In soybeans of the first generation, only 9.2% 2-DE spots,
out of 698 quantified, were found differentially abundant
between mature seeds harvested from non-radioactive and radio-
contaminated Chernobyl areas (Danchenko et al., 2009). Similar
to this, the analysis of the first generation of mature flax seeds
showed differential abundance only in about 4.9% of resolved
features from 720 quantified 2-DE spots (Klubicova et al,
2010). However, the results from these initial soybean and flax
generations do not represent a large enough dataset upon which
it is possible to base solid conclusions; it appears that growth
in radio-contaminated environments has a relatively small effect
on the seed proteome. Similar effects of IR have been previously
shown on animal proteomes (Park et al., 2006; Guipaud et al,,
2007) and support the notion that the exposure to low levels of
IR do not significantly alter overall metabolism. Such speculation
may be further supported by a study on the roots of the reference
plant Arabidopsis thaliana under low levels of 1’ Cs, where only a
small percentage of the transcriptome was differentially expressed
(Sahr et al., 2005).

In order to provide a more detailed insight into the
seed proteome in radio-contaminated environments, protein
abundances profiles were established from developing soybean
and flax seeds (Figure 2) from the second generation which
were harvested from both Chernobyl experimental fields
(Supplementary Figure S1B). Protein abundance profiles are
capable of comprehensively characterizing protein abundances
during seed filling. The approach has been used successfully
in soybean (Hajduch et al, 2005), canola (Hajduch et al,
2006), castor (Houston et al., 2009), and Arabidopsis (Hajduch
et al, 2010). In these Chernobyl studies, protein abundance
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analyses. The following year, seeds not used for the analyses were planted into
the same radio-contaminated field (R), but different non-radioactive (C2)
experimental fields to obtain seeds from the second generation. To exclude
alterations in seed proteomes related to field locations, only those differentially
abundant proteins commonly observed across the two soybean and flax
generations were considered.

FIGURE 1 | Experimental design in the Chernobyl area during the
two-year proteomic survey. In the first year, local varieties of soybean
(Glycine max [L.] Merr., variety Soniachna) and flax (Linum usitatissimum, L.,
variety Kyivskyi) were planted in radio-contaminated (R) and non-radioactive
(C1) experimental fields in the Chernobyl area (Supplementary Figure S1).
Seeds were harvested in biological triplicate and subjected to proteomic

Seed filling in Chernobyl
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FIGURE 2 | Schematic overview on the establishment of protein
abundance profiles - modified from Klubicova et al. (2012a). Briefly,
developing soybean seeds were harvested at 4, 5, 6 weeks after
flowering (WAF) (flax seeds at 2, 4, and 6 WAF) and at a mature stage
from plants grown in non-radioactive and radio-contaminated Chernobyl
experimental fields (Supplementary Figure S1). Isolated total protein was

resolved by two-dimensional protein electrophoresis (2-DE) in biological
triplicate. The 2-DE gels were matched to the pooled (reference) gels
using ImageMaster 4.9 software. Finally, abundance profiles from both
experimental fields were matched and joint abundance profiles, i.e.,
profiles for the same spot across seed filing in non-radioactive and
radio-contaminated experimental fields, were established.
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profiles were first established for each experimental field and
then matched to obtain joint abundance profiles (Figure 2).
Using this approach, it was possible to provide a detailed
overview of protein abundances during seed filling in soybean
(Klubicova et al., 2012a) and flax (Klubicova et al., 2010)
across both experimental fields. For instance, it was revealed
that B-conclycinin significantly decreased during seed filling
in radio-contaminated areas in the second soybean generation
(Klubicova et al., 2012a). These analyses also revealed alterations
of proteins associated with carbon metabolism in the cytoplasm
and plastids and to the carboxylic acid cycle in the mitochondria
(Klubicova et al., 2012a). In flax, increased abundance of
proteins associated with isocitrate dehydrogenation, L-malate
decarboxylation, pyruvate biosynthesis, and ethanol oxidation
to acetaldehyde were detected at early stages of seed filling
(Klubicova et al., 2013).

The data from these experiments can be viewed in a user-
friendly format at dedicated web-based database that is freely
available at www.chernobylproteomics.sav.sk. The aim of this
online data depository is to allow scientific community (but
also general public) to access the data from this project in
user-friendly format. At the time of the database establishment
(Klubicova et al., 2012b) the database contained the data from
first, second soybean and first flax generation. Since then, the data
from second flax (Klubicova et al., 2013) and third (Gabrisova
et al,, in review) generations were uploaded.

Chernobyl Seed Project Suggested the
Identity of Proteins Putatively Associated
with Plant Growth in
Radio-Contaminated Environments

The aim of these studies was to detect alterations in seed
proteomes related to the radio-contaminated environment.
However, the alterations in seed proteomes described above
might also be associated with the differences between the
experimental fields (soil, pests, weather etc). To exclude this
possibility, data were further analyzed and alterations common
for both plant generations and plant species identified.

Altered abundance of enzymes associated with the glycine
betaine biosynthetic pathway was jointly detected in the first
generation of soybean (Danchenko et al, 2009) and flax
(Klubicova et al., 2010). It is tempting to speculate that glycine
betaine is involved at early stages of plant response toward the
radio-contaminated environment. Interestingly, the involvement
of glycine betaine in protection against IR was shown previously
in human blood (Monobe et al, 2005). Since plants with
altered levels of glycine betaine have already been produced
(Waditee et al., 2007) it should be possible to directly test the
putative protective role of glycine betaine in radio-contaminated
environments.

The mobilization of seed storage proteins (SSP) and alteration
of proteins associated with carbon assimilation and fatty acid
metabolism were observed jointly in both generations of soybean
and flax. These data support the notion that SSPs are involved in

seed defense against various threats, as has been shown previously
with their role in defense against Bruchids (Sales et al., 2000).
Interestingly, the application of salicylic acid during germination
Arabidopsis thaliana resulted in mobilization of SSPs (Rajjou
et al., 2006). Furthermore, it has been proposed that class 2S
albumin SSPs are defensive proteins (Regente and De La Canal,
2001), while salt stress has been shown to alter the abundance of
p-conglycinin SSP (Aghaei et al., 2009).

An interesting aspect of these Chernobyl studies are
differential abundance of proteins associated with carbon
assimilation and fatty acid metabolism in both generations of
soybean and flax. As a result of this, the second generation
of soybean (Klubicova et al., 2012a) and flax (Klubicova et al.,
2013) showed altered total oil content in mature seeds. However,
additional studies are needed to determine whether altered seed
oil content is the result of genetic mutation or has an epigenetic
or posttranslational explanation.

Studies in Fukushima
Radio-Contaminated Environment

Similar to the disaster at the CNPP in 1986, the accident at the
Fukushima Daiichi Nuclear Power Plant in 2011 contaminated
large areas with radioactivity (Buesseler et al., 2011; Kinoshita
et al, 2011; Yasunari et al., 2011). Unfortunately, nuclear
accidents provide unexpected justifications for research aimed
at understanding plant survival and adaptation in radio-
contaminated environments. Indeed, Hayashi at al. (2014)
performed a pioneering study in the Fukushima radio-
contaminated areas through the investigation of rice seedlings
under continuous low-dose radiation. This study provided an
overview of the transcriptome response in rice toward low level
of gamma radiation and identified large numbers of genes with
altered expression patterns (Hayashi et al., 2014).

It will be interesting to compare results from the
Chernobyl studies using similar experimental setups in the
Fukushima radio-contaminated area. The web based database
(chernobylproteomics.sav.sk) might be a good tool for quick
data comparison. Ideally, follow-up studies in Fukushima
should include several non-radioactive and radio-contaminated
experimental fields to avoid pseudoreplication (Hurlbert,
1984). If this is not feasible due to restricted/closed areas, an
experimental design for radio-contaminated areas presented in
this current study (Figure 1) could be applied.

Conclusion

The outcome of these Chernobyl studies was the identification
of several proteins with differentially abundances in soybean
and flax seeds harvested during two successive generations.
It is tempting to speculate that these proteins are associated
with plant growth and adaptation in radio-contaminated
environments. However, follow-up studies in both the Chernobyl
and Fukushima radio-contaminated areas are required to further
develop these hypotheses.
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