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Phytocyanins (PCs) are plant-specific blue copper proteins, which play essential roles
in electron transport. While the origin and expansion of this gene family is not
well-investigated in plants. Here, we investigated their evolution by undertaking a
genome-wide identification and comparison in 10 plants: Arabidopsis, rice, poplar,
tomato, soybean, grape, maize, Selaginella moellendorffii, Physcomitrella patens,
and Chlamydomonas reinhardtii. We found an expansion process of this gene
family in evolution. Except PCs in Arabidopsis and rice, which have described in
previous researches, a structural analysis of PCs in other eight plants indicated
that 292 PCs contained N-terminal secretion signals and 217 PCs were expected
to have glycosylphosphatidylinositol-anchor signals. Moreover, 281 PCs had putative
arabinogalactan glycomodules and might be AGPs. Chromosomal distribution and
duplication patterns indicated that tandem and segmental duplication played dominant
roles for the expansion of PC genes. In addition, gene organization and motif
compositions are highly conserved in each clade. Furthermore, expression profiles of
maize PC genes revealed diversity in various stages of development. Moreover, all
nine detected maize PC genes (ZmUC10, ZmUC16, ZmUC19, ZmSC2, ZmUC21,
ZmENODL10, ZmUC22, ZmENODL13, and ZmENODL15) were down-regulated
under salt treatment, and five PCs (ZmUC19, ZmSC2, ZmENODL10, ZmUC22,
and ZmENODL13) were down-regulated under drought treatment. ZmUC16 was
strongly expressed after drought treatment. This study will provide a basis for future
understanding the characterization of this family.

Keywords: phytocyanins, expansion, evolution, expression profile, maize

Introduction

Blue copper proteins are ancient, type-I copper-containing proteins, which function as electron
transporters in bacteria and plants (Giri et al., 2004). Blue copper proteins in plant are defined
as phytocyanins (PCs), which include plastocyanins and some phytocyanin-related proteins (De
Rienzo et al., 2000). Structurally, PCs consist of two conserved disulfide bridged Cys residues,
four copper ligands, and an eight-stranded β-sandwich fold (Hart et al., 1996). According to the
glycosylation state, copper ligand residues, domain organization, and spectroscopic properties
of proteins, PCs can be divided into four groups: plantacyanins (PLCs), uclacyanins (UCs),
stellacyanins (SCs), and early nodulin-like proteins (ENODLs; Nersissian et al., 1998; Ma et al.,
2011; Li et al., 2013). PLCs contain a copper binding site consisting of one Met, one Cys, and two
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His ligands (Guss et al., 1996). And the N-terminal leader
sequences in PLCs usually contain the endoplasmic reticulum
target signal peptides (Nersissian et al., 1998). Although UCs
also include the same four residues as described above in their
copper-binding sites, they contain another domain resembling
a cell-wall structural proteins (glycoproteins; Nersissian et al.,
1998). SCs use a Gln residue as a copper ligand, while PLCs
and UCs have a Met residue in this position (Nersissian et al.,
1998). Like UCs, SCs consist of a copper-binding domain and a
glycoprotein-like domain. The structure of ENODLs is similar to
that of UCs and SCs, but ENODLs cannot bind copper, which
might be involved in process without copper-binding (Greene
et al., 1998; Mashiguchi et al., 2009; Ma et al., 2011).

Previous studies have indicated that PCs are involved
in various plant activities, including cell differentiation and
reorganization (Fedorova et al., 2002; Kato et al., 2002), pollen
tube germinating and anther pollination (Kim et al., 2003; Dong
et al., 2005), reproductive potential determining (Khan et al.,
2007), apical buds organ development (Mashiguchi et al., 2009),
and somatic embryogenesis (Poon et al., 2012), etc. In addition,
PCs may also function in stress responses, including enhancing
osmotic tolerance (Wu et al., 2011), inhibiting aluminum
absorption and protecting cell from aluminum toxicity (Ezaki
et al., 2001, 2005). Several researches have indicated that salt and
drought stresses can induce the expression of some PC genes,
suggesting the potential response to abiotic stresses (Ozturk et al.,
2002; Ma et al., 2011).

To date, through a comprehensive bioinformatics analysis,
only 38, 62, and 84 PC genes have been identified in Arabidopsis,
rice and Brassica rapa, respectively (Mashiguchi et al., 2009;
Showalter et al., 2010; Ma et al., 2011; Li et al., 2013). In the
present study, including Arabidopsis and rice, we identified the
PC gene family of 10 species in plants, and each species contains
1–89 PC genes. Considering the important roles associated with
developmental functions and stress responses, and the number
of the PC genes varied largely among plant species, it’s of
considerable interest to us to research how the PC genes have
evolved in Plantae, and how and why different plant species
have obtained such different PC genes. Here, our results indicate
that the PC gene family has an expansion process in plant
evolution, and that tandem and segmental duplications and
retrotransposition play dominant roles for their expansion. Our
studies also reveal diverse expression patterns of the PC genes in
maize.

Materials and Methods

Identification of the PC Genes Plants and
Bioinformatics Analysis
We first used Arabidopsis, rice and B. rapa PC sequences
(Mashiguchi et al., 2009; Showalter et al., 2010; Ma et al., 2011;
Li et al., 2013) as queries in basic local alignment search tool
(BLAST) searches against the phytozome1 (Goodstein et al., 2012)
with -1 expect (E) threshold to identify potential members of the

1http://www.phytozome.net

PC gene family in plants. The sequences were then confirmed
as encoding PC for the presence of a plastocyanin-like domain
(PCLD) signature by the Pfam (Punta et al., 2012) searches.
Subsequently, SignalP 4.1 Server (Petersen et al., 2011) was
used to check the signal peptide (SP) of all proteins. Big-PI
Plant Predictor (Eisenhaber et al., 2003) was used to predict the
glycosylphosphatidylinositol (GPI)-anchor signal. In addition,
we also used NetNGlyc 1.0 Server2 to predict the N-glycosylation
sites in PC proteins. Putative arabinogalactan (AG) glycomodules
were predicted mainly following the previously described criteria
(Schultz et al., 2002; Showalter et al., 2010; Ma et al., 2011).
The structure characteristics of PCs are shown in Supplementary
Table S1.

Phylogenetic Analyses of the PC Gene Family
in Plants
We used MUSCLE 3.52 (Edgar, 2004) to perform multiple
sequence alignments of full-length protein sequences. And
neighbor-joining (NJ) method in MEGA v5 (Tamura et al.,
2011) was used to carry out phylogenetic analyses of the
PC proteins with Dayhoff methods and default assumptions.
Bootstrap analyses with 1,000 replicates were used to test support.

Estimation of the Maximum Number of Gained
and Lost PCS
Next, we divided the phylogeny into different clades to determine
the expansion extent of PC gene family in different plant lineages.
Nodes among lineages denoted the most recent common
ancestor (MRCA) and were labeled as V: Viridiplantae; E:
Embryophyte; T: Tracheophyte; A: Angiosperm; G: Grass; Eu:
eudicots; R: Rosid. Notung v2.6 (Chen et al., 2000) was used to
infer gene loss and duplication events.

Conserved Motifs Analyses
MEME program3 (Bailey et al., 2006) was used to identify
motifs in the plant PC proteins. This program was run with the
following parameters: maximum number of motifs = 8, number
of repetitions = any, and with optimum motif widths between 6
and 50 residues.

Chromosomal Location and Exon–Intron
Structure Analysis
We used the annotation information of the PC genes on
phytozome1 (Goodstein et al., 2012) to determine their
chromosomal locations. The segmental duplication (or syntenic)
regions of the different chromosomes in maize and Arabidopsis
genomes were calculated with the SyntenyMapping and Analysis
Program (SyMap; Soderlund et al., 2011). Genomicus4 online
tool (Louis et al., 2013) was used to explore the PC gene
organization information within and between genomes. The
exon–intron structure of PC genes was also collected from
genome annotations.

2http://www.cbs.dtu.dk/services/NetNGlyc/
3http://meme.sdsc.edu
4http://www.dyogen.ens.fr/genomicus/
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Estimating the Age of Duplicated Paralog Gene
Pairs
We first determined paralogous gene pairs by the protein
phylogeny, and used them as references for a multiple alignment
of DNA coding sequences using embedded ClustalW (codons)
software in MEGA v5 (Tamura et al., 2011). And we used
K-Estimator 6.0 program (Comeron, 1999) to estimate the Ka
and Ks values of paralogous genes. The approximate data of
the duplication event for each of gene pair was calculated using
the formula (T = Ks/2λ), assuming the clock-like rate (λ) is
1.5× 10−8 and 6.5× 10−9 synonymous/substitution site/year for
Arabidopsis (Koch et al., 2000) and for maize (Gaut et al., 1996),
respectively.

Microarray-Based Expression Analysis
We used the Plant Expression Database (PLEXdb; Dash et al.,
2012) for expression analyses of maize PC genes. One experiment
(ZM37) contributed by Kaeppler group in Sekhon et al. (2011)
was selected in this study. Expression data in 34 selected tissues
were gene-wise normalized in the Genesis (v 1.7.6) program
(Sturn et al., 2002).

Plant Materials and Treatment
We used 1-week-old maize (Zea mays L. inbred line B73)
seedlings to examine the expression patterns of PC genes under
salt and drought stresses. Plants were grown in a plant growth
chamber at 23 ± 1◦C with a 14 h light/10 h dark photoperiod.
Control (CK) seedlings were grown with normal irrigation. For
salt treatment, the maize seedlings were kept in 150 mMNaCl for
24 h. For drought treatment, the seedlings were dried between
folds of tissue paper at 23 ± 1◦C for 3 h. Each sample was
conducted three replicates.

RNA Isolation and Quantitative Real-Time PCR
(QRT-PCR) Analysis
Trizol total RNA extraction kit (Sangon, Shanghai, China) was
used to extract total RNA. Next, moloney murine leukemia virus
(M-MLV) reverse transcriptase (TakaRa, Dalian, China) was used
to perform reverse transcription. Triplicate quantitative assays
were performed using SYBR Green Master Mix (TakaRa) with an
ABI 7500 sequence detection system. Nine maize PC genes were
randomly selected for real-time quantitative reverse transcription
polymerase chain reaction (qRT-PCR) analysis. The gene-specific
primers (Table 3) were synthesized in Sangon. The expression
level ofActin 1 (GRMZM2G126010) gene was used as a reference.
2−��CT method (Livak and Schmittgen, 2001) was used to
calculate the relative expression level of the PC genes.

Results and Discussion

Identification of PC Multigene Family in Plants
Phytocyanins are plant-specific ancient blue copper proteins
which function as electron transporter. Though some researches
(Mashiguchi et al., 2009; Showalter et al., 2010; Ma et al., 2011;
Li et al., 2013) have been made in the characterization of plant
PCs during the past decade, studies on this gene family are still

scarce. In order to identify PC multigene families in other plant
species, we used Arabidopsis, rice and B. rapa PC proteins as
queries to perform a genome-wide search in eight genomes in
Viridiplantae. The returned sequences were further confirmed
as encoding PC by the Pfam (Punta et al., 2012) searches for
the presence of a plastocyanin-like domain (PCLD) signature
conserved in other PC proteins. As we know, the Arabidopsis
and rice PCs have been bioinformatically and systematically
studied in previous study (Ma et al., 2011; Li et al., 2013), so,
the previous published data were also used to carry out deeper
analysis. As a result, a total of 465 PC genes were identified
from 10 plants in the phytozome database (Table 1). Our analysis
shows that the number of PC genes ranged from 1 to 89
across the different plant species (Table 1). The soybean genome
contains a maximum of 89 PC genes, while, chlamydomonas has
only one. About 60 and 77 putative PC genes were identified
from maize and poplar, respectively. Poplar has about two
times PC genes than Arabidopsis, whereas rice and maize have
a similar number of the PC genes when compared with that
of poplar. By searching the Genome database of NCBI5, we
found that the poplar, Arabidopsis and maize genomes contain
42,577, 33,583, and 39,454 genes, respectively, which are 39.4,
9.9, and 29.2% larger than that of rice (30,534), respectively.
This implied that the number of PCs is not proportional to the
size of the genomes. Obviously, there will be some forces to
prompt the number change of this gene family in different plant
species.

Structural Analysis of the Putative PC Proteins
To further investigate the structural characteristics of
PC proteins, we used several bioinformatics websites as
described in the materials and methods section to predict
the AG glycomodules, SPs, GPI-anchor signals (GASs), and
N-glycosylation sites of PCs. Our results (Supplementary
Table S1) indicated that 292 PCs were predicted to contain

5http://www.ncbi.nlm.nih.gov/genome

TABLE 1 | PC genes identified in 10 sequenced plants.

Lineage Organism Genome
size (Mb)∗

No. of
predicted
genes∗

No. of PC
genes

Algae Chlamydomonas
reinhardtii

120.41 14488 1

Moss Physcomitrella patens 477.95 35936 28

Lycophytes Selaginella
moellendorffii

212.5 34782 20

Dicots Arabidopsis thaliana 119.67 33583 38

Populus trichocarpa 485.67 42577 77

Vitis vinifera 486.26 28268 41

Solanum lycopersicum 781.51 27466 49

Glycine max 973.49 50202 89

Monocots Oryza sativa 382.78 30534 62

Zea mays 2065.7 39454 60

Total 465

∗The data come from www.ncbi.nih.gov/genome/.
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an N-terminal SP required for targeting to the endoplasmic
reticulum. In addition, 217 PCs were expected to have GASs
responsible for plasma membrane localization. The subcellular
localizations of plant PCs have been found to correlate with their
specific functions. For example, AtSC3/AtBCB, an Arabidopsis
blue copper binding protein, was strongly localized in the plasma
membrane and induced by aluminum stress and oxidative stress,
suggesting that the plant PCs may participate in some abiotic
stress responses (Ezaki et al., 2001, 2005). Additionally, PC
proteins accumulated in the sieve element plasma membrane
may be involved in determining reproductive potential (Khan
et al., 2007). Moreover, 281 PCs had putative AG glycomodules
in the (Pro, Ala, Ser, Thr)-rich region. These 281 PCs might be
AGPs for the existence of AG glycomodules and SPs. According
to the distribution of the SP, PCLD, AGP-like region (ALR)
and GAS, these PCs were separated into ten types (Figure 1).
Type I PCs had typical properties, including an N-terminal SP, a
PCLD, an ALR, and a C-terminal GAS. Type II PCs were short of
GAS, while other features were similar to type I. Both GAS and
ALR were absent from type VI, VIII, and IX PCs. Interestingly,
we also found that type III, IV, VIII, and X PCs possessed two
PCLDs, and type V had three PCLDs. The domain repeats are
usually thought to evolve through recombination events and
intragenic duplication (Björklund et al., 2006). The creation of
new multi-domain architectures is an important mechanism that
provides opportunities for the organism to expand its repertoire
of cellular functions, such as transcriptional regulation, protein
transport and assembly (Andrade et al., 2001; D’Andrea and
Regan, 2003; Weiner et al., 2006). Furthermore, protein domain
repeats may constitute a source of variability. In human genome,
duplications are more common in genes containing repeated
domains than in non-repeated ones (Björklund et al., 2010).
The domain repetition is quite important in evolution, since it
provides a path where proteins can evolve through removing
or adding functionally similar or distinct blocks (Light et al.,
2012). In this study, we identified some multi-PCLD domains in

PCs. This presence of PCLD domain repeats contribute to the
complexity of this gene family. Its effect on the function of PC
proteins remains to be examined. However, our findings suggest
that the PCLD repeats may play an important role in PC protein
evolution.

Origin and Contrasting Changes in the
Numbers of Plant PC Genes
It has been suggested that the Chlorophycean is the primitive
species in Viridiplantae from which all land plants have evolved
(Misumi et al., 2008). The earliest PCs possibly originated about
1 billion years ago in algae (Merchant et al., 2007; Misumi
et al., 2008). Our search for PCs in Chlamydomonas reinhardtii
found only one member. Therefore, the origin of the plant
PC genes could be traced to the ancient algae. The PC gene
family appeared to expand by duplication events. For example,
Physcomitrella patens has 28 PC genes, which soybean exhibites
89 paralogous gene sequences representing about 19% of total 465
identified PCs, which might be due to at least three whole genome
duplications (Schmutz et al., 2010). As we know, expansion and
conservation of a gene family in evolution imply important roles
during organism adaptation to environment (Cao et al., 2011;
Cao and Shi, 2012). Next, we also estimated the number of PC
genes in theMRCA to better understand how this family gene has
evolved in Viridiplantae. Reconciliation of the species phylogeny
with the gene trees suggested that one ancestral PC gene exist
in the MRCA of Viridiplantae. Furthermore, we identified 32
orthologous genes in the Embryophyte MRCA and 44 in the
MRCA of Tracheophyte (Figure 2). We also found that the
number of PCs remained relatively increased from the land plants
(P. patens) to the angiosperms. Eudicot ancestral PCs once more
expanded significantly after the separation frommonocot species
about 145 million years ago (Xu et al., 2009). We identified
about 109 ancestral PC genes in the MRCA of eudicots. After
that, many PC genes have lost in the eudicots. It appeared that
the PC family had been reduced in all the analyzed eudicot

FIGURE 1 | Graphical representation of 10 types of PCs and their comparative analysis among the eight plant species.
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FIGURE 2 | Gain and loss of the PC genes in plant evolution. Seven internal nodes (V, Viridiplantae; E, Embryophyte; T, Tracheophyte; A, Angiosperm;
G, Grass; Eu, eudicots; R, Rosid) are shown in the rectangles. Plus and minus signs indicate gene gain and loss events, respectively.

species compared with the number of MRCA in eudicots. For
example, the number of PCs decreased approximately 65.1 and 55
percent for Arabidopsis and tomato, respectively. Whereas when
compared the number of ancestral PC genes, it appeared that this
family had expanded in all the extant species. In addition, this
expansion was uneven among these plant species. For instance,
there are 77, 60, 41, and 28 genes in poplar, maize, grape, moss,
respectively, while the estimated numbers of genes in the MACA
of Viridiplantae are seven. Therefore, poplar, maize, grape and
moss have gained 70, 53, 34 and 21 genes, respectively, since their
splits. The numbers of genes gained in the soybean lineage are
much greater than that in other lineages.

Chromosomal Distribution and Duplication
Patterns of PC Genes in Plants
Gene duplication, which usually occurs via segmental
duplication, tandem duplication and retrotransposition,
plays important roles in organismal evolution (Chen et al., 2014;
Cao and Li, 2015). To search for duplication mechanisms for
PC genes, as examples, we examined their genomic distribution
in Arabidopsis and maize. The results showed that PC genes
are dispersed throughout Arabidopsis and maize genomes
(Figure 3). We also found that about 79.5 and 96.7% of PC
genes locate on the duplicated segments of chromosomes
in Arabidopsis and maize, respectively. Within identified
duplication events, 5 of 11 pairs (AtENDOL14/AtENODL15,
AtENODL5/AtENODL6, AtUC4/AtUC5, AtENODL1/AtENOD
L2, and AtENODL11/AtENODL12) in Arabidopsis and 7
of 20 pairs (ZmUC6/ZmUC10, ZmUC13/ZmUC14, ZmS
C1/ZmSC2, ZmUC22/ZmPLC2, ZmENODL4/ZmENODL19,
ZmENODL12/ZmENODL21, ZmENODL16/ZmENODL24) in
maize are retained (Figure 3). In addition, evolutionary dates
of these duplicated PC genes were also estimated (Table 2).
The result indicated that duplication events for Arabidopsis six
pairs and maize seven pairs occurred within the past 19.73–
28.58 million years and 11.72–21.16 million years, respectively

(Table 2). These periods coincide with the time of the secondary
large-scale genome duplication in Arabidopsis and maize (Gaut
et al., 1996; Koch et al., 2000). In addition, we also observed some
earlier segmental duplication events occurred around from 41.63
to 58.33 MYA in the PCs of Arabidopsis (AtENODL1/AtENODL2
and AtENODL11/AtENODL12) and maize (ZmUC3/ZmUC23
and ZmUC22/ZmPLC2), nearly within or following grasses
origination (Kellogg, 2001). Interestingly, we also found that
about 31.67% of PC genes were tandemly clustered in maize,
and only one clustered PCs (AtUC7-AtUC3) were also identified
in Arabidopsis (Figure 3), suggesting that tandem duplication
may be another factor generating the family genes. In a word,
segmental duplication and tandem duplication contribute to the
expansion of the PC gene family.

Similar expansion patterns were also found in Oryza sativa
and B. rapa PC genes (Ma et al., 2011; Li et al., 2013). In the rice
genome, 20 of 62OsPC genes were segmental duplications; while,
63 of 84 BrPC genes were attributed to segmental duplications
in the B. rapa. This indicated that this type of duplication
event contributes to the expansion of the PC genes in these
plants. Tandem duplication is an important factor dramatically
expanding new copies in clusters by unequal recombination or
replication slippage (Anderson and Roth, 1977; Blanc andWolfe,
2004; Cannon et al., 2004; Thomas, 2005). Initially, tandem
duplicated genes have similar sequences and functions; but, in
the subsequent evolution, they tend to divergence in structure
and expression patterns during too many changes in the cis- and
trans-acting effects, DNA sequences, regulatory networks, and
chromatin modifications (Charon et al., 2012). Several previous
studies have investigated these divergences between duplicate
genes (Makova and Li, 2003; Li et al., 2005; Ganko et al.,
2007). During the process of evolution, some duplicated genes
were maintained the similarity of functions, while others either
gained new functions (neofunctionalization) or subdivided their
functions (subfunctionalization), or lost them (pseudogenization;
Pinyopich et al., 2003; Franzke et al., 2010; Wang and Paterson,
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FIGURE 3 | Gene locations and genomic duplication in maize
(A) and Arabidopsis (B). SyMAP v3.4 (Soderlund et al., 2011) was used
to depict the paralogous regions in the putative ancestral constituents of
the maize (A) and Arabidopsis (B) genomes. Moreover, some relationship
of orthologs or paralogs was confirmed with the Genomicus (http://www.

dyogen.ens.fr/genomicus/) online tool (Louis et al., 2013). The segmental

duplication regions are supposed to be colored with the same way to
the relevant chromosome color. For example, the color key of maize
chromosome 1 is red, which means that all red regions on the
chromosomes are segmental duplicated from the chromosome 1. Using
this method, we can get all of the paralogous regions among different
chromosomes in the genome.
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TABLE 2 | Inference of duplication time of PC paralogous pairs in Arabidopsis and maize.

Paralogous pairs Ka Ks Ka/Ks Duplication types Data (million years ago)

AtENODL17/AtENODL19 0.18395 0.70102 0.26243 Retrotransposition 23.37

AtENODL3/AtENODL4 0.13741 0.31929 0.43036 Retrotransposition 10.64

AtENODL14/AtENODL15 0.18437 0.70152 0.26282 Segmental duplication 23.38

AtENODL5/AtENODL6 0.22558 0.77783 0.29001 Segmental duplication 25.93

AtUC4/AtUC5 0.31272 0.85669 0.36503 Segmental duplication 28.56

AtENODL1/AtENODL2 0.46645 1.45391 0.32083 Segmental duplication 48.46

AtENODL11/AtENODL12 0.38216 1.36091 0.28081 Segmental duplication 45.36

AtSC1/AtSC2 0.19307 0.34871 0.55367 Retrotransposition 11.63

At1g45063/At3g53330 0.37509 0.71432 0.5251 Retrotransposition 23.81

AtENODL22/AtPC1 0.72483 3.00941 0.24085 Retrotransposition 100.31

AtUC3/AtUC7 0.22650 0.59184 0.3827 Tandem duplication 19.73

ZmUC6/ZmUC10 0.05401 0.18988 0.28444 Segmental duplication 17.26

ZmUC11/ZmUC24 0.32393 0.50672 0.63927 Tandem duplication 46.07

ZmUC13/ZmUC14 0.10750 0.18573 0.57879 Segmental duplication 16.88

ZmUC16/ZmPLC3 0.67658 0.88356 0.76574 Retrotransposition 80.32

ZmUC8/ZmUC19 0.49874 0.74853 0.66629 Retrotransposition 68.05

ZmSC4/ZmSC5 0.02184 0.01847 1.18246 Retrotransposition 1.68

ZmSC1/ZmSC2 0.11703 0.23277 0.50277 Segmental duplication 21.16

ZmUC1/ZmUC12 0.09926 0.15513 0.63985 Tandem duplication 14.10

ZmUC3/ZmUC23 0.40586 0.54119 0.74994 Retrotransposition 41.63

ZmUC18/ZmUC26 0.80249 0.91956 0.87269 Retrotransposition 70.74

ZmENODL20/ZmENODL22 0.64824 0.94528 0.68577 Retrotransposition 85.93

ZmUC22/ZmPLC2 0.43753 0.64158 0.68196 Retrotransposition 58.33

ZmPLC1/ZmUC9 0.05469 0.14448 0.37853 Retrotransposition 13.13

ZmUC4/ZmUC5 0.06773 0.12898 0.52512 Tandem duplication 11.72

ZmENODL2/ZmENODL25 0.56183 0.92832 0.60521 Retrotransposition 84.39

ZmENODL4/ZmENODL19 0.17464 0.33073 0.52804 Segmental duplication 30.07

ZmENODL7/ZmENODL13 0.0335 0.07531 0.44483 Retrotransposition 6.85

ZmENODL3/ZmENODL6 0.58564 0.95152 0.61548 Segmental duplication 86.50

ZmENODL12/ZmENODL21 0.07988 0.15477 0.51612 Segmental duplication 14.07

ZmENODL16/ZmENODL24 0.11364 0.31901 0.35623 Segmental duplication 29.00

2011). Plants cannot freely escape the changing environment.
Therefore, some genes associated with stress defense are required
to expand to resist these environmental stimulations. Previous
studies have indicated that tandem duplicated genes are often
involved in responses to environmental stimuli or stress in plants
(Leister, 2004; Maere et al., 2005; Fang et al., 2012). Our results
also indicated that about 31.67 and 29.03% of PC genes were
tandemly clustered inmonocots maize and rice, respectively. And
some stress responses were often associated with the PC proteins
(Ezaki et al., 2001, 2005; Ozturk et al., 2002; Ma et al., 2011; Wu
et al., 2011). Amplification of the PC genes by tandem duplication
in monocots maize and rice is regarded as a mechanism for
protecting plants from harmful stresses, which may be crucial
for organismal adaptation to different environments. Only one
clustered PCs (AtUC7-AtUC3) were identified inArabidopsis, and
no duplicated PC genes were identified from tandem duplications
in another eudicot B. rapa (Li et al., 2013), implying different
expansion types of this gene family between monocots maize and
rice and eudicots Arabidopsis and B. rapa.

We also found that the Ka/Ks values of the sequences among
PC pairs were significantly different (Table 2). Moreover, except

for the ZmSC4/ZmSC5 gene pairs, all other’s estimated Ka/Ks
values were less than 1, implying that most of the duplicated
PC sequences within these pairs are under purifying selection
pressure in evolution. The Ka/Ks value of ZmSC4/ZmSC5 pairs
is 1.18246, indicating that positive selection might be occurred
between this gene pairs after duplication about 1.68 Mya. Gene
or protein evolution is an outcome of the interplay between
mutation and selection. During evolution, some functional
regions have reached the optimal state. Therefore, most of
the mutations that altered the function will be abandoned by
purifying selection. With changes in environment, subsequent
selective pressure spurs such regions to change to improve the
fitness of the organism in a new environment accordingly. From
this point, detecting positive selection seems especially necessary,
because it can indicate selective advantages in changing the
gene or protein sequences. These selective advantages are
essential for understanding of functional regions of the gene
or protein and functional shift (Morgan et al., 2010). In this
study, one duplicated gene pairs (ZmSC4/ZmSC5) were identified
to undergo positive selection after separated by duplication,
implying that functional divergence of duplicated genes might
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FIGURE 4 | Evolution of one PC clade in poplar. (A) Phylogenetic
relationships and intron insertion; (B) Hypothetical origins of eleven poplar PC
genes by retroposition and tandem duplication. The letters “R” and “T” indicate

the positions where retroposition and tandem duplication have occurred,
respectively. Bright green vertical line represents conserved 1 phase intron
insertion position in PCLD as shown in Supplementary Figure S1.

FIGURE 5 | Expression profiles of the maize PC genes. Dynamic expression profiles of the maize PC genes in different development tissues.
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have accelerated by positive selection during long periods of
evolution. Thus, this might facilitate an adaption to different
environments for the organism.

Motif Distribution and Intron Loss in Some
Clades
We used Pfam (Punta et al., 2012) to identify the major domains
of PC proteins in plants. Results showed that all PC proteins
possessed PCLD signature that is essential for electron transport
activity. To recognize some smaller individual motifs, we used
the MEME6 (Bailey et al., 2006) to study the diversification of
PC proteins in plants. As a result, we identified eight distinct
motifs in these members (Supplementary Figure S1). Obviously,
most members in each clade have similar motif compositions,
suggesting functional conservation of the PC proteins in the same
clade (Supplementary Figure S1). Therefore, motif compositions
of the PC proteins in each clade may provide additional support
for the phylogenetic analyses (Cao, 2012).

Exon–intron structure has been used to explain the
evolutionary relationships (Cao et al., 2010; Koralewski and
Krutovsky, 2011; Chen and Cao, 2014). Next, we compared
the exon–intron organization of the PCs in 10 plants.
Supplementary Figure S1 provided a detailed illustration of the
position of introns of each PCLD domain. Our results indicated
a conserved 1 phase intron insertion in PCLD of most PC
paralogs. Interestingly, we also found that this intron insertion
has been lost in some poplar PCLD (Supplementary Figure S1).
Moreover, these intronless genes in PCLD tended to form
species-specific clusters on the poplar chromosomes 2, 6, and
15 (Supplementary Figure S1). It may be the consequences
of retroposition and tandem duplications. The loss of intron
in these PCs was likely associated with recent evolutionary
expansion, like, retroposition and tandem duplication. To test
this hypothesis, we identified the candidate donor gene based
on the following two criteria. The first criterion is that the
retrogene will have identical sequences to the donor gene after
retroposition, so they will cluster together in a phylogenetic tree
(Kong et al., 2007). Since retrogene comes from retroposition,
it usually lacks specific introns compared with the donor gene.
Therefore, the second criterion is that the donor gene can
be judged from the presence/absence of the specific intron
(Kong et al., 2007). Figure 4 shows an example of intron loss
caused by gene expansion. Genes with the conserved intron
(such as, PtENODL13) usually locate basal positions of the
phylogenetic tree, while genes without the intron (such as,
others 10 PCs in the clade as shown in Figure 4) often form
terminal clades. It is likely that PtENODL13 contains the
conserved intron and is their ancestor (donor gene), from which
the intronless retrogenes were generated by retroposition and
tandem duplication.

Expression Profiles of the PC Genes in Maize
We first used publicly available microarray data to detect the
spatiotemporal expression patterns of the maize PC genes.
Expression profiles of the PC genes were mined at 34 different

6http://meme.sdsc.edu

tissues. Only 54 probes were detected standing for the 54 ZmPC
transcripts. The remaining six transcripts with no detectable
expression signal are GRMZM2G463441, GRMZM2G136879,
GRMZM2G148624, GRMZM2G047208, GRMZM2G085504, and
AC209987.4_FGT010. The results indicated that these genes
are expressed variously in different tissues, implying that they
may be involved in many growth and developmental processes
(Figure 5). Such as, most ZmPC genes of clade A showed
high expression levels in the root, leaf and internodes, but low
expression levels in the endosperm and embryo. In contrast,
ZmPC genes in clade B presented the oppositive results compared
with clade A. That is, most members of clade B displayed high
expression levels in the embryo and endosperm, but showed low
level expression in the leaf, root and internodes. This suggested
that ZmPC genes in different clades may be involved in various
biological processes. Some ZmPCs were also found to be highly
expressed in some specific organs, such as, ZmSC5 in anthers,
ZmUC3 and ZmUC23 in embryo, suggesting that they might be
involved in the growth and development of these organs inmaize.
Similar results have also been observed in their homologs in
Arabidopsis (AtENODL1/5/6/7/11/12/16, AtAGP6/11, and FLA3;
Yu et al., 2005; Levitin et al., 2008; Li et al., 2010; Ma et al.,
2011), rice (OsENODL9/14/16/17; Ma et al., 2011), and B. rapa
(BrENODL22/27 and BrSCL8/9; Li et al., 2013), which were
highly expressed in reproductive organs. The functions of some
PC genes have been investigated in several studies. For example,
a sieve element-specific expressed gene (AtENODL9) may be
involved in determining reproductive potential in Arabidopsis
(Khan et al., 2007); AtAGP6 and AtAGP11 are involved in
pollen tube growth (Levitin et al., 2008); Over expression of
the FLA3 led to short siliques with low seed set due to the
reduced stamen filament, suggesting that the FLA3 gene is

TABLE 3 | Primers used in this study.

Primer names Primer sequences (5′–3′ )

ZmUC10-F GACCACCACAACACCGTACA

ZmUC10-R GCTAGCTGGACGATGACACA

ZmUC16-F TGAAGATGCAGGTGCAAGTC

ZmUC16-R AACGGAAAGTCTGCTTCGAC

ZmUC19-F AACAACATCTCCGCCTTCC

ZmUC19-R GTGCAGCAGAAGCAGCAGTA

ZmSC2-F AAGAACTTCCGTGTCGGAGA

ZmSC2-R GAGTTGGTGCAGCTGTCGTA

ZmUC21-F GTTCGTGTACCCCAAGGAGA

ZmUC21-R GCTTGTTGCAGATGAACCAC

ZmENODL10-F CGACGACCCCTACAACAACT

ZmENODL10-R CTTGTTGGATCGTGACATGG

ZmUC22-F GACGTGCTCGTGTTCAGCTA

ZmUC22-R GAAGTAGTGCGTGCCTCTGC

ZmENODL13-F GCGTCGTCTTCTTCCTTGTC

ZmENODL13-R GGTCGAGAACGAACTTGGTG

ZmENODL15-F GAAGACCAGCTTCCAGATCG

ZmENODL15-R GCTTGTCGTAGGAGGAGGTG

Actin1-F GCTGAGCGGGAGATTGTCA

Actin1-R CTTCCTGATATCAACATCA
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FIGURE 6 | Quantitative RT-PCR analysis of nine selected ZmPC genes under the salt and drought treatments. The relative expression level of each
transcript was shown here. Error bars indicate standard deviation (SD) of independent biological replicates. Asterisk indicates a significant difference from the control
(∗p < 0.05; ∗∗p < 0.01).

involved in microspore development and pollen intine formation
(Li et al., 2010). Next, we also investigated the expression
patterns of nine ZmPCs detected in maize seedlings subjected
to salt and drought treatments by qRT-PCR. The primers
were listed in Table 3. The analysis revealed that these genes
are differently expressed under salt and drought conditions
(Figure 6). Among the nine detected ZmPC genes, all members
were down-regulated under salt treatment. And five members
(ZmUC19, ZmSC2, ZmENODL10, ZmUC22, and ZmENODL13)
were down-regulated under drought treatment. Some rice
PC genes (OsENODL19, OsENODL12, OsUCL17, OsUCL20,
OsUCL7, OsUCL8, and OsUCL18) have been investigated to be
down-regulated by drought and/or salt stresses (Ma et al., 2011).
Interestingly, we also found that ZmUC16/21 were significantly
up-regulated after drought treatment, suggesting that these

ZmPCs are more likely to play key roles in maize drought
response. An increasing number of evidence has suggested
that PCs may also function in stress responses. Previous
studies reported that some PCs, such as, OsUCL23/26/27 (Ma
et al., 2011), BrUCL6/16 (Li et al., 2013), were up-regulated
under drought or salt stresses. Moreover, over-expression of
AtBCB/AtSC3 could confer aluminum resistance in Arabidopsis
(Ezaki et al., 2001, 2005). And BcBCP1 can enhance tolerance
to osmotic stress when over-expressed in tobacco (Wu et al.,
2011). The differential expression profiles of different PC family
genes may imply diverse roles of plant response to stress. On
the other hand, PC genes which are up-regulated during several
abiotic stresses are likely to be required for enhancing resistance
to stress. Therefore, PCs can function in developmental processes
and stress responses.
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Summary

A comparative genomic analysis of the PC gene family in
plants was provided in this study. This gene family had an
expansion process in the course of plant evolution. A structural
analysis of PCs indicated that 292 PCs contained N-terminal
secretion signals and 217 PCs were expected to have GPI-
anchor signals. Moreover, 281 PCs had putative arabinogalactan
glycomodules and might be AGPs. The gene organization and
motif composition are highly conserved in each clade, indicative
of functional conservation. Most PC genes may be originated
from the tandem and segmental duplications. In addition,
expression profiles of the maize PC genes also provided better
understanding in possible functional divergence. The results
provide a base for further functional and evolutionary study of
the PC gene family in plants.
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