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How to let go: pectin and plant cell
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Plant cells do not, in general, migrate. They maintain a fixed position relative to
their neighbors, intimately linked through growth and differentiation. The mediator of
this connection, the pectin-rich middle lamella, is deposited during cell division and
maintained throughout the cell’s life to protect tissue integrity. The maintenance of
adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There
are developmental processes that require cell separation, such as organ abscission,
dehiscence, and ripening. In these instances, the pectin-rich middle lamella must
be actively altered to allow cell separation, a process which also requires cell wall
modification. In this review, we will focus on the role of pectin and its modification
in cell adhesion and separation. Recent insights gained in pectin gel mechanics will
be discussed in relation to existing knowledge of pectin chemistry as it relates to cell
adhesion. As a whole, we hope to begin defining the physical mechanisms behind a
cells’ ability to hang on, and how it lets go.
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Introduction

Most plant cells maintain a fixed position during development, attached to their neighbors by a
shared cell wall interface. Since plant development relies on the harmonious combination of cell
division, cell expansion and cell differentiation, it is essential that individual cells coordinate their
development with that of their neighbors- with precise maintenance of cell adhesion or permission
of cell separation when required. Within this review we will paint a picture of the interconnected
roles of the cell wall and the cytoskeleton in cell adhesion, and in its release, by summarizing data
from across decades and species.

In order to understand how the cell wall mediates cell–cell adhesion, we must first examine its
composition and organization, focusing on the primary cell wall. Polysaccharides (mainly cellulose,
hemi-cellulose, and pectin) represent about 90% of the cell wall mass with the remaining 10%
comprising structural and polysaccharide-modifying proteins (Albersheim et al., 1996). Cell wall
polysaccharides are synthesized at the level of the plasmamembrane or delivered via the cytoskeleton
and the secretory pathway (Moore and Staehelin, 1988; Lerouxel et al., 2006; Toyooka et al.,
2009; Kang et al., 2011; Worden et al., 2012; Kim and Brandizzi, 2014). Modifying proteins are
also delivered by cytoskeletal routes, and as such these materials and their delivery are key to
understanding cell adhesion and separation. Furthermore, we must understand how the cell wall
interface between two cells is formed, organized, and maintained.

In Arabidopsis leaves, roughly 50% of the cell wall is pectin and it comprises the matrix
in which the cellulosic elements are embedded (Zablackis et al., 1995; Harholt et al., 2010).
Pectin polysaccharides are galacturonic acid polymers and are represented by three major types:
homogalacturonan (HG), rhamnogalacturonan-I (RG-I), and rhamnogalacturonan-II (RG-II)
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FIGURE 1 | The structure of the cell wall at the cell–cell
interface. This diagram illustrates the position of the middle lamella
(pectin-rich, blue) and the primary cell walls (pectin-hemicellulose-

cellulose, brown) at the junction of three cells. The characteristic
“tri-junction” is evident. Spheres inside cells represent cell nuclei for
illustration.

(Atmodjo et al., 2013). Pectic polysaccharides are synthesized
in the golgi and delivered to the cell wall by secretory vesicles
moving primarily along the actin cytoskeleton (Toyooka et al.,
2009; Kim and Brandizzi, 2014), although there is recent evidence
for kinesin-dependent pectin delivery viamicrotubules (Zhu et al.,
2015).

The cell wall is formed during cell division when a cell plate is
formed between two new cells, resulting from a massive directed
exocytosis, and possible contributions from endocytosis, of HG-
pectin-containing vesicles (Dhonukshe et al., 2006; Reichardt
et al., 2007; Miart et al., 2014; Drakakaki, 2015). Soon afterward,
cellulose synthases arrive, hemicellulose delivery commences, and
a new wall is generated for each cell with a pectin-rich area, the
middle lamella, between them (Figure 1). Callose is also deposited
at the cell plate during cytokinesis, but after cell division ends it is
restricted to the plasmodesmata in the primary walls of growing

cells (Northcote et al., 1989; Scherp et al., 2001). As such, the
pectin-rich middle lamella is the major physical mediator of cell
adhesion and separation. For the bulk of this review we will focus
on the role of pectin, and its modifiers, in the middle lamella,
and on their role in maintaining cell adhesion or permitting cell
separation.

Holding on: The Establishment and
Maintenance of Cell Adhesion

The middle lamella between two cells is rich in pectin;
its levels and chemical modification are key to regulating
adhesion. Modification of pectin affects its ability to gel and
act as glue between cells. HG pectin is gelled by calcium-
mediated crosslinking. Newly delivered HG-pectin is highly
methyl-esterified which makes it more fluid. The activity of a
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FIGURE 2 | Model for cell adhesion and cell separation. Cross linking of
the de-esterified pectin polymers maintains cell adhesion at the level of the
middle lamella. Degradation of the de-esterified pectins by enzymes like

polygalacturonases weakens connections and leads to cell separation. HG:
homogalacturonan; RG: rhamanogalacturonan; PME: pectin methyl-esterase;
PG: polygalacturonase.

wall-modifying protein, pectin methyl-esterase (PME), removes
the methyl groups of HG. De-esterified HG is readily cross-
linked by calcium leading to a stiffer material and altering the
mechanical properties of the cell wall (Micheli, 2001; Willats
et al., 2001; Peaucelle et al., 2011; Braybrook et al., 2012).
PME activity can be counteracted by the activity of another
family of cell wall proteins, pectin methyl-esterase inhibitors
(PMEIs) and as such the balance of these two proteins and their
activities have effects on the mechanical properties of the middle
lamella.

Homogalacturonan pectin, in its de-esterified or low esterified
form, is found in the middle lamella and in the corners of
cell junctions (Figure 2; Bush et al., 2001; Parker et al., 2001;
McCartney and Knox, 2002; Guillemin et al., 2005). Since de-
esterified HG tends to form Ca2+ gels readily it is also important
to note that calcium ions are enriched in the middle lamella
(Figure 2; Rihouey et al., 1995; Huxham et al., 1999; Bush et al.,
2001). The role of HG-Ca2+ gels in cell adhesion is underscored
by the effects of treatment with calcium chelators such as EDTA
(ethylenediaminetetraacetic acid), HMP (sodium hexameta-
phosphate) and CDTA (1,2-Diaminocyclohexanetetraacetic)
which result in cell separation in various plants (Letham, 1960;

Ng et al., 2000; McCartney and Knox, 2002). Arabidopsis pme3
mutants, as well as lines overexpressing the PME inhibitors
AtPMEI-1 and AtPMEI-2, display an increased efficiency in
protoplast isolation from leaf mesophyll tissue, which indicates
that cells were less adhesive and more easily separated from each
other (Lionetti et al., 2015).

The effect of PME alteration is not Arabidopsis specific,
implying a wide role for PMEs in cell adhesion across species;
anti-sense-mediated down-regulation of PME in tomato fruit led
to a loss of fruit integrity and a change in the ionic composition
of the fruit (Tieman and Handa, 1994). The importance of pectin
in adhesion even extends beyond land plants; the calcium cross-
linked HG-rich extracellular matrix of the green algae Penium
margaritaceum has been shown to be crucial for cell adhesion
(Domozych et al., 2014). Together, these data position pectin
de-esterification and calcium-mediated gelling as a key positive
regulator of cell wall adhesion.

Given the role of HG methyl-esterification in pectin gelling,
it follows that the methyl transferases which act during pectin
biogenesis are key for adhesion as well. Localized in the
golgi, they transfer methyl groups onto newly synthesized HG-
pectin. Mutations in putative methyl-transferases in Arabidopsis
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have severe effects on growth and cell adhesion. The qua2
mutant shows a 50% reduction in HG and severe cell adhesion
defects (Mouille et al., 2007). The qua2-allelic tumorous shoot
development (tsd2) mutant shows cell adhesion defects in
the shoot apex, leaves and hypocotyl (Frank et al., 2002;
Krupková et al., 2007). Interestingly, neither qua2 nor tsd2
show a difference from wild-type in their relative pectin
esterification levels, evidence which indicates that while relative
amounts of esterification may not be important absolute levels
may be. Additionally, mutants in, or over expression of, the
closely related methyl-transferase QUA3 show no change in
cell adhesion (Miao et al., 2011), indicating that the roles
of different methyl-transferases in cell adhesion are likely
highly specific, or alternatively highly redundant, in a QUA
family containing 29 genes in Arabidopsis (Atmodjo et al.,
2013).

Supporting a hypothesis for a pectin-level-effect on cell
adhesion (and resultant effect on the de-methyl-esterified pectin
level), several glycosyl transferase mutants display cell adhesion
defects; glycosyl transferases are responsible for pectin synthesis
in the golgi. The quasimodo-1 (qua1) mutant in Arabidopsis
displays reduced HG content, a decreased esterification level
and cell adhesion problems (Bouton et al., 2002; Leboeuf et al.,
2005). Note that qua1 is also defective in xylan biosynthesis
(Orfila et al., 2005). The ectopically parting cells 1 (epc1) mutant
affecting a glycosyl transferase displays reduced cell adhesion in
the cotyledons and hypocotyl (Singh et al., 2005). When these
data are taken into account it becomes clear that while the balance
between esterified and de-esterified pectin is important, so is the
overall level of HG pectin.

As previously introduced, there are two other pectins to
consider as well—RG-I and RG-II, although their roles in
cell adhesion are more complex and less well studied. In
tobacco, the nolac-H18 mutant has reduced RG-II pectin and
exhibits crumbled shoots and abnormal meristem cell adhesion
indicating a role in adhesion (Iwai et al., 2002). On the
other hand, in the Arabidopsis echidna (ech) mutant RG-I and
xyloglucan are low but cell adhesion is wild-type (Gendre et al.,
2011, 2013). These discrepancies indicate specificities in pectin-
mediated cell adhesion that extend beyond a simple story where
pectin-equals-glue. They hint at a complex story for pectin within
the middle lamella and its influences on cell adhesion.

Keeping it Together: Actin and Cell
Adhesion

The delivery of pectin and its modifying proteins occurs mainly
via the actin cytoskeleton. It is therefore unsurprising that defects
in actin filament organization affect cell adhesion. The Actin-
related protein2/3 complex (Arp2/3) is highly conserved and is
the key component in regulating branching and nucleation of
actin filaments (Higgs and Pollard, 2001). Mutants in ARP2/3
complex subunits have been characterized in Arabidopsis where
they are associated with disorganization of the actin cytoskeleton,
defects in cell shape, and ectopic cell separation in hypocotyls
(Le et al., 2003; Li et al., 2003; Mathur et al., 2003a,b; El-Assal
et al., 2004; Saedler et al., 2004). Mutants in up-stream regulators

of the Arp2/3 complex also display defects in cell adhesion as
seen in the spike1 mutant (Qiu et al., 2002). Interestingly, no
difference in cell wall composition between wild-type and the
arp2 mutant has been observed. The only observed difference
was an abnormal thickening at the three-way wall junction
of the mutant, possibly indicating altered composition at the
middle lamella (Dyachok et al., 2008). We still have only a basic
understanding of how actin structure might ultimately affect cell
adhesion, and we cannot exclude effects on wall components
beyond pectin; but the evidence presented here points toward the
delivery of components and pectin-modifying proteins to the cell
wall.

It is perhaps not just delivery of components and modifying
proteins to the cell wall that affect adhesion but also their
recycling. Actin is a key player in endocytosis in plants,
yeast and animals (Moreau et al., 1997; Roszak and Rambour,
1997; Schaerer-Brodbeck and Riezman, 2000; Insall et al., 2001;
Merrifield et al., 2004; Benesch et al., 2005; Kaksonen et al.,
2006). Given the adhesion defects described above, when actin is
disrupted, it is plausible that actin-mediated endocytosis might
also be involved in maintaining cell wall integrity. Recycling
of cell wall components has been demonstrated in germinating
Arabidopsis seeds and maize root tip cells (Baluška et al., 2002;
Pagnussat et al., 2012). Cell wall modifying proteins may also
be recycled, as seen in the case of PMEI endocytosis in growing
pollen tubes (Röckel et al., 2008). These data suggest that recycling
from the cell wall by endocytosismay be necessary tomaintain cell
wall integrity and cell adhesion, but this area needs to be further
explored.

Letting go: Cell Separation as a Necessary
Developmental Process

During some developmental processes cell adhesion is
purposefully dissolved leading to cell separation. For example,
natural phenomena that require cell separation are observed
in leaf abscission, fruit dehiscence, fruit ripening, tetraspore
separation, pollen release and root cap cell sloughing. The study
of these processes gives us an insight into the mechanisms
controlling cell adhesion and separation in plants. Next we
will examine how pectin (and its regulation) contributes to the
phenomenon of cell separation.

Unsurprisingly, given its role in adhesion, there are several
examples of pectin alterations which block regulated cell
separation. Inhibition of PME activity prevents separation of root
border cells in pea (Wen et al., 1999). In Arabidopsis, the mutants
quartet1 (qrt1), a PME, and quartet3 (qrt3), a polygalacturonase
(PG), result in the failure of tetraspores separation (Rhee
et al., 2003; Francis et al., 2006). This implies that both PME
and PG activity are necessary to separate the tetrads: PME
removes the methyl groups from HG and subsequently PG
breaks down the pectins, releasing the individual pollen
grains (Figure 2). With respect to cell separation, it is worth
considering the interplay between PME and PG in some more
detail.

Polygalacturonases are enzymes that cleave de-esterified HG
backbones via hydrolysis; as such they depend on PME activity.
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They are represented by a large gene family in Arabidopsis with
diverse expression profiles (Kim et al., 2006; González-Carranza
et al., 2007). PGs have been implicated as positive regulators of cell
separation, fruit ripening, abscission, cell growth and dehiscence
(Jenkins et al., 1999; Sander et al., 2001; Atkinson et al., 2002, 2012;
González-Carranza et al., 2007; Xiao et al., 2014). Mutations in
the PG coding genes QRT2 and QRT3 lead to problems in organ
dehiscence, abscission and tetraspore separation in Arabidopsis
(Rhee et al., 2003; Ogawa et al., 2009). PGs are involved in
silique dehiscence in Arabidopsis and Brassica (Jenkins et al.,
1999; Roberts and McCann, 2000; Sander et al., 2001) and silique
development is also accompanied by an increase in PME activity
which reinforces the interconnected roles of PME and PG (Louvet
et al., 2011). These analyses indicate that PG-mediated, PME-
dependent, pectin degradation is a key event in cell separation
during development.

Our information surrounding the role of PG in promoting
cell separation goes well beyond Arabidopsis, again highlighting
an ancient role for pectin in cell connectivity: overexpression of
a PG1 subunit, OsBURP16, in rice decreased cell adhesion and
overexpression of PG in apple caused premature leaf shedding
due to reduced adhesion in the abscission zone (Atkinson et al.,
2012; Liu et al., 2014). Conversely, down-regulation of PG in
apples increased fruit firmness and cell adhesion (Atkinson et al.,
2012). This correlates well with findings in strawberry where
the down-regulation of PG reduced fruit softening (Quesada
et al., 2009). Interestingly, the effect of PG alteration in tomato
is incongruent with all other evidence. Down-regulation of a
fruit-ripening-specific PG in tomato only slightly reduced fruit
softening (Kramer et al., 1992; Langley et al., 1994). In line with
this phenotype, the down-regulation of PG only yielded a slight
reduction in pectin de-polymerisation in fruits (Brummell and
Labavitch, 1997). Lastly, overexpression of PG in tomato could
restore ripening in a ripening and softening inhibited mutant
(rin) but not softening (Giovannoni et al., 1989). While these data
indicate that PG has only a minor role in tomato fruit ripening (in
contrast to strawberry and apple, as above), PG activity was much
higher in tomato fruit homogenates compared to the intact tissue
indicating that PGmediated softening in tomatomay be regulated
less by the quantity of the enzyme, and more by activity through
the biochemical environment (Kramer et al., 1992). Overall, there
is a strong trend for the importance of PG in mediating cell
separation, further underlining the role of pectin in the process
as well.

Contradictions that Highlight Complexity

Throughout this review, we have seen several instances of
contradictory evidence surrounding the role of pectin in cell
adhesion and separation. For example, in one tissue PME
activity promotes adhesion and in another separation: high
esterification level reduces cell adhesion in the mesophyll and
the pericarp (Tieman and Handa, 1994; Lionetti et al., 2015),
but simultaneously causes increased cell adhesion and blocks
cell separation in tetraspores and root border cells (Wen et al.,
1999; Rhee et al., 2003). It is likely that this difference is due
to a complex mix of other modifying proteins and a complex

biochemical environment; as an illustration, the presence of PG
in ripening fruit would increase the likelihood that de-esterified
pectin would be depolymerised, not cross-linked with Ca2+.
This does not negate the importance of pectin and the middle
lamella, but instead highlights the complexity of cell adhesion and
separation.

The activity of PMEs is also highly diverse. The Arabidopsis
genome contains 66 PME-related genes (Tian et al., 2006) and
what little we know about their activity indicates they are
highly regulated. Solution pH has been shown to affect the
activity of PMEs in persimmon and apple (Alonso et al., 1997;
Denès et al., 2000) and PME activity is also salt dependent
(reviewed in, Jolie et al., 2010). To make the situation more
complex, it is important to recall that PME activity can be
counteracted by PMEI proteins, and interestingly some of the
predicted PMEs also contain inhibitor domains (Tian et al.,
2006). We still have very little information on how most of
the PMEs are specifically regulated and very little idea about
their developmental specificity. Again, we have more evidence
that adhesion and separation are complex processes worthy of
dissection.

Additional Components in the Mix

While the middle lamella is mostly pectin, it also contains some
hemicellulose. As such, it is not unexpected that xyloglucans
have been implicated in fruit softening (Rose and Bennett, 1999;
Vicente et al., 2007). Immuno-labelling of hemicellulose (LM15
antibody) in unripe fruits of tomato showed signal in the wall
at points of cell adhesion, which was lost in ripe fruit. As in
the case of pectins, it is not only altered levels of hemicellulose
that affect cell adhesion, but also the modification of existing
hemicellulose and its effect on cell wall structure as a whole. The
wall loosening protein expansin modifies the connection between
hemicellulose and cellulose; EXPANSIN1 (Expa1) is involved
in tomato fruit ripening and its down-regulation reduced the
amount of pectin de-polymerisation (Brummell et al., 1999). This
data simply reinforces the complex nature of the cell wall and cell
adhesion.

Summary

In the end, we can make some well-founded conclusions
about the role of pectin in cell adhesion and separation. The
physical position of the middle lamella, its pectin-rich nature
and its accumulation of calcium all point to a crucial role
for pectin in these processes. As with any cell wall-mediated
process the effect of transgenic and mutational analyses is
complicated by redundancy and compensation, and so our
current understanding is limited. Experimental evidence also
tells us that the tissue specific context involving other modifying
proteins, their deposition and recycling and the biochemical
environment are also critical. In spite of these difficulties, it is
clear that pectin and calcium are required for proper cell adhesion
and that pectin modification and degradation are strictly required
for cell separation in its various developmental contexts. The
details of which enzyme performs which task in which tissue, how
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altering delivery of such modifying proteins or pectin itself might
regulate connectivity, the role of other wall components and the
cytoskeleton remain to be ironed out. With current advances in
experimental techniques and interests in adhesion and separation
growing, understanding these processes is an achievable and
exciting goal.

Acknowledgments

The writing of this review was carried out with the help of
grant BB-L002884-1 (BBSRC, UK). We wish to thank the other
members of our research team and colleagues at The Sainsbury
Laboratory for their support and friendship.

References

Albersheim, P., Darvill, A., O’Neill, M., Schols, H., and Voragen, A. (1996). An
hypothesis: the same six polysaccharides are components of the primary cell
walls of all higher plants. Pectins Pectinases 14, 47–53. doi: 10.1016/S0921-
0423(96)80245-0

Alonso, J., Howell, N., and Canet, W. (1997). Purification and characterisation
of two pectinmethylesterase from persimmon (Diospyros kaki). J. Sci. Food
Agric. 75, 352–358. doi: 10.1002/(SICI)1097-0010(199711)75:3<352::AID-
JSFA885>3.0.CO;2-G

Atkinson, R. G., Schröder, R., Hallett, I. C., Cohen, D., and MacRae, E. A. (2002).
Overexpression of polygalacturonase in transgenic apple trees leads to a range
of novel phenotypes involving changes in cell adhesion. Plant Physiol. 129,
122–133. doi: 10.1104/pp.010986

Atkinson, R., Sutherland, P., Johnston, S., Gunaseelan, K., Hallett, I., Mitra, D., et al.
(2012). Down-regulation of POLYGALACTURONASE1 alters firmness, tensile
strength and water loss in apple (Malus × domestica) fruit. BMC Plant Biol.
12:129. doi: 10.1186/1471-2229-12-129

Atmodjo, M. A., Hao, Z., and Mohnen, D. (2013). Evolving views of pectin
biosynthesis. Annu. Rev. Plant Biol. 64, 747–779. doi: 10.1146/annurev-arplant-
042811-105534

Baluška, F., Hlavacka, A., Šamaj, J., Palme, K., Robinson, D. G., Matoh, T., et
al. (2002). F-actin-dependent endocytosis of cell wall pectins in meristematic
root cells. Insights from brefeldin A-induced compartments. Plant Physiol. 130,
422–431. doi: 10.1104/pp.007526

Benesch, S., Polo, S., Lai, F. P. L., Anderson, K. I., Stradal, T. E. B., Wehland, J., et
al. (2005). N-WASP deficiency impairs EGF internalization and actin assembly
at clathrin-coated pits. J. Cell Sci. 118, 3103–3115. doi: 10.1242/jcs.02444

Bouton, S., Leboeuf, E., Mouille, G., Leydecker, M.-T., Talbotec, J., Granier,
F., et al. (2002). QUASIMODO1 encodes a putative membrane-bound
glycosyltransferase required for normal pectin synthesis and cell adhesion in
Arabidopsis. Plant Cell Online 14, 2577–2590. doi: 10.1105/tpc.004259

Braybrook, S. A., Hofte, H., and Peaucelle, A. (2012). Probing the mechanical
contributions of the pectin matrix: insights for cell growth. Plant Signal. Behav.
7, 1037–1041. doi: 10.4161/psb.20768

Brummell, D. A., Harpster, M. H., Civello, P. M., Palys, J. M., Bennett, A. B., and
Dunsmuir, P. (1999). Modification of expansin protein abundance in tomato
fruit alters softening and cell wall polymer metabolism during ripening. Plant
Cell Online 11, 2203–2216. doi: 10.1105/tpc.11.11.2203

Brummell, D. A., and Labavitch, J. M. (1997). Effect of antisense suppression of
endopolygalacturonase activity on polyuronide molecular weight in ripening
tomato fruit and in fruit homogenates. Plant Physiol. 115, 717–725.

Bush, M. S., Marry, M., Huxham, M. I., Jarvis, M. C., and McCann, M. C. (2001).
Developmental regulation of pectic epitopes during potato tuberisation. Planta
213, 869–880. doi: 10.1007/s004250100570

Denès, J.-M., Baron, A., Renard, C. M. G. C., Péan, C., and Drilleau, J.-F. (2000).
Different action patterns for apple pectin methylesterase at pH 7.0 and 4.5.
Carbohydr. Res. 327, 385–393. doi: 10.1016/S0008-6215(00)00070-7

Dhonukshe, P., Baluška, F., Schlicht, M., Hlavacka, A., Šamaj, J., Friml, J., et al.
(2006). Endocytosis of cell surface material mediates cell plate formation during
plant cytokinesis. Dev. Cell 10, 137–150. doi: 10.1016/j.devcel.2005.11.015

Domozych, D. S., Sørensen, I., Popper, Z. A., Ochs, J., Andreas, A., Fangel, J.
U., et al. (2014). Pectin metabolism and assembly in the cell wall of the
charophyte green alga Penium margaritaceum. Plant Physiol. 165, 105–118. doi:
10.1104/pp.114.236257

Drakakaki, G. (2015). Polysaccharide deposition during cytokinesis: challenges and
future perspectives. Plant Sci. 236, 177–184. doi: 10.1016/j.plantsci.2015.03.018

Dyachok, J., Shao, M.-R., Vaughn, K., Bowling, A., Facette, M., Djakovic, S., et al.
(2008). Plasma membrane-associated SCAR complex subunits promote cortical

F-actin accumulation and normal growth characteristics in Arabidopsis roots.
Mol. Plant 1, 990–1006. doi: 10.1093/mp/ssn059

El-Assal, S. E.-D., Le, J., Basu, D., Mallery, E. L., and Szymanski, D. B. (2004).
DISTORTED2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3
complex. Plant J. 38, 526–538. doi: 10.1111/j.1365-313X.2004.02065.x

Francis, K. E., Lam, S. Y., and Copenhaver, G. P. (2006). Separation of Arabidopsis
pollen tetrads is regulated by QUARTET1, a Pectin Methylesterase Gene. Plant
Physiol. 142, 1004–1013. doi: 10.1104/pp.106.085274

Frank, M., Guivarc’h, A., Krupková, E., Lorenz-Meyer, I., Chriqui, D., and
Schmülling, T. (2002). Tumorous Shoot Development (TSD) genes are
required for co-ordinated plant shoot development. Plant J. 29, 73–85. doi:
10.1046/j.1365-313x.2002.01197.x

Gendre, D., McFarlane, H. E., Johnson, E., Mouille, G., Sjödin, A., Oh, J., et
al. (2013). Trans-golgi network localized ECHIDNA/Ypt interacting protein
complex is required for the secretion of cell wall polysaccharides in Arabidopsis.
Plant Cell Online 25, 2633–2646. doi: 10.1105/tpc.113.112482

Gendre, D., Oh, J., Boutté, Y., Best, J. G., Samuels, L., Nilsson, R., et al. (2011).
Conserved Arabidopsis ECHIDNA protein mediates trans–Golgi-network
trafficking and cell elongation. Proc. Natl. Acad. Sci. U.S.A. 108, 8048–8053. doi:
10.1073/pnas.1018371108

Giovannoni, J. J., DellaPenna, D., Bennett, A. B., and Fischer, R. L. (1989).
Expression of a chimeric polygalacturonase gene in transgenic rin (ripening
inhibitor) tomato fruit results in polyuronide degradation but not fruit
softening. Plant Cell Online 1, 53–63. doi: 10.1105/tpc.1.1.53

González-Carranza, Z. H., Elliott, K. A., and Roberts, J. A. (2007). Expression
of polygalacturonases and evidence to support their role during cell
separation processes in Arabidopsis thaliana. J. Exp. Bot. 58, 3719–3730.
doi: 10.1093/jxb/erm222

Guillemin, F., Guillon, F., Bonnin, E., Devaux, M.-F., Chevalier, T., Knox, P., et al.
(2005). Distribution of pectic epitopes in cell walls of the sugar beet root. Planta
222, 355–371. doi: 10.1007/s00425-005-1535-3

Harholt, J., Suttangkakul, A., and Vibe Scheller, H. (2010). Biosynthesis of pectin.
Plant Physiol. 153, 384–395. doi: 10.1104/pp.110.156588

Higgs, H. N., and Pollard, T. D. (2001). Regulation of actin filament network
formation through ARP2/3 complex: activation by a diverse array of
proteins. Annu. Rev. Biochem. 70, 649–676. doi: 10.1146/annurev.biochem.70.
1.649

Huxham, I. M., Jarvis, M. C., Shakespeare, L., Dover, C. J., Johnson, D., Knox, J. P., et
al. (1999). Electron-energy-loss spectroscopic imaging of calcium and nitrogen
in the cell walls of apple fruits. Planta 208, 438–443. doi: 10.1007/s004250050580

Insall, R., Müller-Taubenberger, A., Machesky, L., Köhler, J., Simmeth, E., Atkinson,
S. J., et al. (2001). Dynamics of the Dictyostelium Arp2/3 complex in
endocytosis, cytokinesis, and chemotaxis. Cell Motil. Cytoskeleton 50, 115–128.
doi: 10.1002/cm.10005

Iwai, H., Masaoka, N., Ishii, T., and Satoh, S. (2002). A pectin glucuronyltransferase
gene is essential for intercellular attachment in the plant meristem. Proc. Natl.
Acad. Sci. U.S.A. 99, 16319–16324. doi: 10.1073/pnas.252530499

Jenkins, E. S., Paul, W., Craze, M., Whitelaw, C. A., Weigand, A., and Roberts, J. A.
(1999). Dehiscence-related expression of an Arabidopsis thaliana gene encoding
a polygalacturonase in transgenic plants of Brassica napus. Plant Cell Environ.
22, 159–167. doi: 10.1046/j.1365-3040.1999.00372.x

Jolie, R. P., Duvetter, T., Van Loey, A. M., and Hendrickx, M. E. (2010). Pectin
methylesterase and its proteinaceous inhibitor: a review. Carbohydr. Res. 345,
2583–2595. doi: 10.1016/j.carres.2010.10.002

Kaksonen, M., Toret, C. P., and Drubin, D. G. (2006). Harnessing actin dynamics
for clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 7, 404–414. doi:
10.1038/nrm1940

Kang, B.-H., Nielsen, E., Preuss, M. L., Mastronarde, D., and Staehelin, L. A.
(2011). Electron tomography of RabA4b- and PI-4Kβ1-labeled trans golgi

Frontiers in Plant Science | www.frontiersin.org July 2015 | Volume 6 | Article 5236

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Bou Daher and Braybrook Pectin and plant cell adhesion

network compartments in Arabidopsis. Traffic 12, 313–329. doi: 10.1111/j.1600-
0854.2010.01146.x

Kim, J., Shiu, S.-H., Thoma, S., Li, W.-H., and Patterson, S. (2006). Patterns of
expansion and expression divergence in the plant polygalacturonase gene family.
Genome Biol. 7:R87. doi: 10.1186/gb-2006-7-9-r87

Kim, S.-J., and Brandizzi, F. (2014). The plant secretory pathway: an essential
factory for building the plant cell wall. Plant Cell Physiol. 55, 687–693. doi:
10.1093/pcp/pct197

Kramer, M., Sanders, R., Bolkan, H., Waters, C., Sheeny, R. E., and Hiatt, W. R.
(1992). Postharvest evaluation of transgenic tomatoes with reduced levels of
polygalacturonase: processing, firmness and disease resistance. Postharvest Biol.
Technol. 1, 241–255. doi: 10.1016/0925-5214(92)90007-C

Krupková, E., Immerzeel, P., Pauly, M., and Schmülling, T. (2007). The
TUMOROUS SHOOT DEVELOPMENT2 gene of Arabidopsis encoding a
putative methyltransferase is required for cell adhesion and co-ordinated plant
development. Plant J. 50, 735–750. doi: 10.1111/j.1365-313X.2007.03123.x

Langley, K. R., Martin, A., Stenning, R., Murray, A. J., Hobson, G. E., Schuch, W.
W., et al. (1994). Mechanical and optical assessment of the ripening of tomato
fruit with reduced polygalacturonase activity. J. Sci. Food Agric. 66, 547–554. doi:
10.1002/jsfa.2740660420

Le, J., El-Assal, S. E.-D., Basu, D., Saad, M. E., and Szymanski, D. B.
(2003). Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal
development. Curr. Biol. 13, 1341–1347. doi: 10.1016/S0960-9822(03)00493-7

Leboeuf, E., Guillon, F., Thoiron, S., and Lahaye, M. (2005). Biochemical and
immunohistochemical analysis of pectic polysaccharides in the cell walls of
Arabidopsismutant QUASIMODO 1 suspension-cultured cells: implications for
cell adhesion. J. Exp. Bot. 56, 3171–3182. doi: 10.1093/jxb/eri314

Lerouxel, O., Cavalier, D. M., Liepman, A. H., and Keegstra, K. (2006). Biosynthesis
of plant cell wall polysaccharides—a complex process. Curr. Opin. Plant Biol. 9,
621–630. doi: 10.1016/j.pbi.2006.09.009

Letham, D. S. (1960). The separation of plant cells with ethylenediaminetetraacetic
acid. Exp. Cell Res. 21, 353–360. doi: 10.1016/0014-4827(60)90267-6

Li, S., Blanchoin, L., Yang, Z., and Lord, E. M. (2003). The putative Arabidopsis
Arp2/3 complex controls leaf cell morphogenesis. Plant Physiol. 132, 2034–2044.
doi: 10.1104/pp.103.028563

Lionetti, V., Cervone, F., and De Lorenzo, G. (2015). A lower content of de-
methylesterified homogalacturonan improves enzymatic cell separation and
isolation of mesophyll protoplasts in Arabidopsis. Phytochemistry 112, 188–194.
doi: 10.1016/j.phytochem.2014.07.025

Liu, H., Ma, Y. A. N., Chen, N. A., Guo, S., Liu, H., Guo, X., et al.
(2014). Overexpression of stress-inducible OsBURP16, the β subunit of
polygalacturonase 1, decreases pectin content and cell adhesion and increases
abiotic stress sensitivity in rice. Plant Cell Environ. 37, 1144–1158. doi:
10.1111/pce.12223

Louvet, R., Rayon, C., Domon, J.-M., Rusterucci, C., Fournet, F., Leaustic, A.,
et al. (2011). Major changes in the cell wall during silique development in
Arabidopsis thaliana. Phytochemistry 72, 59–67. doi: 10.1016/j.phytochem.2010.
10.008

Mathur, J., Mathur, N., Kernebeck, B., and Hülskamp, M. (2003a). Mutations in
Actin-related proteins 2 and 3 affect cell shape development inArabidopsis. Plant
Cell Online 15, 1632–1645. doi: 10.1105/tpc.011676

Mathur, J., Mathur, N., Kirik, V., Kernebeck, B., Srinivas, B. P., and Hülskamp, M.
(2003b).ArabidopsisCROOKED encodes for the smallest subunit of the ARP2/3
complex and controls cell shape by region specific fine F-actin formation.
Development 130, 3137–3146. doi: 10.1242/dev.00549

McCartney, L., and Knox, P. (2002). Regulation of pectic polysaccharide domains
in relation to cell development and cell properties in the pea testa. J. Exp. Bot.
53, 707–713. doi: 10.1093/jexbot/53.369.707

Merrifield, C. J., Qualmann, B., Kessels, M. M., and Almers, W. (2004). Neural
Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are
recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur.
J. Cell Biol. 83, 13–18. doi: 10.1078/0171-9335-00356

Miao, Y., Li, H.-Y., Shen, J., Wang, J., and Jiang, L. (2011). QUASIMODO 3
(QUA3) is a putative homogalacturonan methyltransferase regulating cell wall
biosynthesis inArabidopsis suspension-cultured cells. J. Exp. Bot. 62, 5063–5078.
doi: 10.1093/jxb/err211

Miart, F., Desprez, T., Biot, E., Morin, H., Belcram, K., Höfte, H., et al. (2014).
Spatio-temporal analysis of cellulose synthesis during cell plate formation in
Arabidopsis. Plant J. 77, 71–84. doi: 10.1111/tpj.12362

Micheli, F. (2001). Pectin methylesterases: cell wall enzymes with important
roles in plant physiology. Trends Plant Sci. 6, 414–419. doi: 10.1016/S1360-
1385(01)02045-3

Moore, P., and Staehelin, L. A. (1988). Immunogold localization of the cell-
wall-matrix polysaccharides rhamnogalacturonan I and xyloglucan during cell
expansion and cytokinesis in Trifolium pratense L., implication for secretory
pathways. Planta 174, 433–445. doi: 10.1007/BF00634471

Moreau, V., Galan, J. M., Devilliers, G., Haguenauer-Tsapis, R., and Winsor, B.
(1997). The yeast actin-related protein Arp2p is required for the internalization
step of endocytosis.Mol. Biol. Cell 8, 1361–1375. doi: 10.1091/mbc.8.7.1361

Mouille, G., Ralet, M.-C., Cavelier, C., Eland, C., Effroy, D., Hématy, K., et al. (2007).
Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized
protein with a putative methyltransferase domain. Plant J. 50, 605–614. doi:
10.1111/j.1365-313X.2007.03086.x

Ng, A., Parker, M. L., Parr, A. J., Saunders, P. K., Smith, A. C., and Waldron, K.
W. (2000). Physicochemical characteristics of onion (Allium cepa L.) tissues. J.
Agric. Food Chem. 48, 5612–5617. doi: 10.1021/jf991206q

Northcote, D. H., Davey, R., and Lay, J. (1989). Use of antisera to localize callose,
xylan and arabinogalactan in the cell-plate, primary and secondary walls of plant
cells. Planta 178, 353–366. doi: 10.1007/BF00391863

Ogawa, M., Kay, P., Wilson, S., and Swain, S. M. (2009). ARABIDOPSIS
DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and
QUARTET2 are polygalacturonases required for cell separation during
reproductive development in Arabidopsis. Plant Cell 21, 216–233. doi:
10.1105/tpc.108.063768

Orfila, C., Sørensen, S., Harholt, J., Geshi, N., Crombie, H., Truong, H.-N., et al.
(2005). QUASIMODO1 is expressed in vascular tissue of Arabidopsis thaliana
inflorescence stems, and affects homogalacturonan and xylan biosynthesis.
Planta 222, 613–622. doi: 10.1007/s00425-005-0008-z

Pagnussat, L., Burbach, C., Baluška, F., and de la Canal, L. (2012). Rapid endocytosis
is triggered upon imbibition in Arabidopsis seeds. Plant Signal. Behav. 7,
416–421. doi: 10.4161/psb.19669

Parker, C. C., Parker, M. L., Smith, A. C., and Waldron, K. W. (2001). Pectin
distribution at the surface of potato parenchyma cells in relation to cell-cell
adhesion. J. Agric. Food Chem. 49, 4364–4371. doi: 10.1021/jf0104228

Peaucelle, A., Braybrook, S. A., Le Guillou, L., Bron, E., Kuhlemeier, C.,
and Höfte, H. (2011). Pectin-induced changes in cell wall mechanics
underlie organ initiation in Arabidopsis. Curr. Biol. 21, 1720–1726. doi:
10.1016/j.cub.2011.08.057

Qiu, J.-L., Jilk, R., Marks, M. D., and Szymanski, D. B. (2002). The Arabidopsis
SPIKE1 gene is required for normal cell shape control and tissue development.
Plant Cell Online 14, 101–118. doi: 10.1105/tpc.010346

Quesada, M. A., Blanco-Portales, R., Posé, S., García-Gago, J. A., Jiménez-
Bermúdez, S., Muñoz-Serrano, A., et al. (2009). Antisense down-regulation
of the FaPG1 gene reveals an unexpected central role for polygalacturonase
in strawberry fruit softening. Plant Physiol. 150, 1022–1032. doi: 10.1104/
pp.109.138297

Reichardt, I., Stierhof, Y.-D., Mayer, U., Richter, S., Schwarz, H., Schumacher,
K., et al. (2007). Plant cytokinesis requires de novo secretory trafficking
but not endocytosis. Curr. Biol. 17, 2047–2053. doi: 10.1016/j.cub.2007.
10.040

Rhee, S. Y., Osborne, E., Poindexter, P. D., and Somerville, C. R. (2003). Microspore
separation in the quartet 3 mutants of Arabidopsis is impaired by a defect
in a developmentally regulated polygalacturonase required for pollen mother
cell wall degradation. Plant Physiol. 133, 1170–1180. doi: 10.1104/pp.103.
028266

Rihouey, C., Morvan, C., Borissova, I., Jauneau, A., Demarty, M., and Jarvis,
M. (1995). Structural features of CDTA-soluble pectins from flax hypocotyls.
Carbohydr. Polymers 28, 159–166. doi: 10.1016/0144-8617(95)00094-1

Roberts, K., and McCann, M. C. (2000). Xylogenesis: the birth of a corpse. Curr.
Opin. Plant Biol. 3, 517–522. doi: 10.1016/S1369-5266(00)00122-9

Röckel, N., Wolf, S., Kost, B., Rausch, T., and Greiner, S. (2008). Elaborate spatial
patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI
endocytosis, and reflects the distribution of esterified and de-esterified pectins.
Plant J. 53, 133–143. doi: 10.1111/j.1365-313X.2007.03325.x

Rose, J. K. C., and Bennett, A. B. (1999). Cooperative disassembly of the
cellulose–xyloglucan network of plant cell walls: parallels between cell
expansion and fruit ripening. Trends Plant Sci. 4, 176–183. doi: 10.1016/S1360-
1385(99)01405-3

Frontiers in Plant Science | www.frontiersin.org July 2015 | Volume 6 | Article 5237

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Bou Daher and Braybrook Pectin and plant cell adhesion

Roszak, R., and Rambour, S. (1997). Uptake of Lucifer Yellow by plant cells
in the presence of endocytotic inhibitors. Protoplasma 199, 198–207. doi:
10.1007/BF01294506

Saedler, R., Zimmermann, I., Mutondo, M., and Hülskamp, M. (2004). The
Arabidopsis KLUNKER gene controls cell shape changes and encodes the
AtSRA1 homolog. PlantMol. Biol. 56, 775–782. doi: 10.1007/s11103-004-4951-z

Sander, L., Child, R., Ulvskov, P., Albrechtsen, M., and Borkhardt, B. (2001).
Analysis of a dehiscence zone endo-polygalacturonase in oilseed rape (Brassica
napus) and Arabidopsis thaliana: evidence for roles in cell separation in
dehiscence and abscission zones, and in stylar tissues during pollen tube growth.
Plant Mol. Biol. 46, 469–479. doi: 10.1023/A:1010619002833

Schaerer-Brodbeck, C., and Riezman, H. (2000). Functional Interactions between
the p35 Subunit of the Arp2/3 Complex and Calmodulin in Yeast.Mol. Biol. Cell
11, 1113–1127. doi: 10.1091/mbc.11.4.1113

Scherp, P., Grotha, R., and Kutschera, U. (2001). Occurrence and phylogenetic
significance of cytokinesis-related callose in green algae, bryophytes, ferns and
seed plants. Plant Cell Rep. 20, 143–149. doi: 10.1007/s002990000301

Singh, S. K., Eland, C., Harholt, J., Scheller, H. V., and Marchant, A. (2005). Cell
adhesion in Arabidopsis thaliana is mediated by ECTOPICALLY PARTING
CELLS 1—a glycosyltransferase (GT64) related to the animal exostosins. Plant
J. 43, 384–397. doi: 10.1111/j.1365-313X.2005.02455.x

Tian, G.-W., Chen, M.-H., Zaltsman, A., and Citovsky, V. (2006). Pollen-specific
pectin methylesterase involved in pollen tube growth.Dev. Biol. 294, 83–91. doi:
10.1016/j.ydbio.2006.02.026

Tieman,D.M., andHanda, A. K. (1994). Reduction in pectinmethylesterase activity
modifies tissue integrity and cation levels in ripening tomato (Lycopersicon
esculentumMill.) fruits. Plant Physiol. 106, 429–436.

Toyooka, K., Goto, Y., Asatsuma, S., Koizumi, M., Mitsui, T., and Matsuoka, K.
(2009). A mobile secretory vesicle cluster involved in mass transport from
the golgi to the plant cell exterior. Plant Cell Online 21, 1212–1229. doi:
10.1105/tpc.108.058933

Vicente, A. R., Saladié, M., Rose, J. K. C., and Labavitch, J. M. (2007). The linkage
between cell wall metabolism and fruit softening: looking to the future. J. Sci.
Food Agric. 87, 1435–1448. doi: 10.1002/jsfa.2837

Wen, F., Zhu, Y., and Hawes, M. C. (1999). Effect of pectin methylesterase gene
expression on pea root development. Plant Cell Online 11, 1129–1140. doi:
10.1105/tpc.11.6.1129

Willats, W. G. T., Orfila, C., Limberg, G., Buchholt, H. C., van Alebeek, G.-J. W. M.,
Voragen, A. G. J., et al. (2001). Modulation of the degree and pattern of methyl-
esterification of pectic homogalacturonan in plant cell walls: implications for
pectinmethyl esterase action,matrix properties, and cell adhesion. J. Biol. Chem.
276, 19404–19413. doi: 10.1074/jbc.M011242200

Worden, N., Park, E., and Drakakaki, G. (2012). Trans-golgi network—An
intersection of trafficking cell wall components. J. Integr. Plant Biol. 54, 875–886.
doi: 10.1111/j.1744-7909.2012.01179.x

Xiao, C., Somerville, C., and Anderson, C. T. (2014). POLYGALACTURONASE
INVOLVED IN EXPANSION1 functions in cell elongation and flower
development in Arabidopsis. Plant Cell Online 26, 1018–1035. doi: 10.1105/
tpc.114.123968

Zablackis, E., Huang, J., Muller, B., Darvill, A. G., and Albersheim, P.
(1995). Characterization of the cell-wall polysaccharides of Arabidopsis
thaliana leaves. Plant Physiol. 107, 1129–1138. doi: 10.1104/pp.107.4.
1129

Zhu, C., Ganguly, A., Baskin, T. I., McClosky, D. D., Anderson, C. T., Foster, C.,
et al. (2015). The Fragile Fiber1 Kinesin contributes to cortical microtubule-
mediated trafficking of cell wall components. Plant Physiol. 167, 780–792. doi:
10.1104/pp.114.251462

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 BouDaher and Braybrook. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org July 2015 | Volume 6 | Article 5238

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	How to let go: pectin and plant cell adhesion
	Introduction
	Holding on: The Establishment and Maintenance of Cell Adhesion
	Keeping it Together: Actin and Cell Adhesion
	Letting go: Cell Separation as a Necessary Developmental Process
	Contradictions that Highlight Complexity
	Additional Components in the Mix
	Summary
	Acknowledgments
	References


