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Common bean (Phaseolus vulgaris L.) is a leguminous in high demand for human nutrition

and a very important agricultural product. Production of common bean is constrained

by environmental stresses such as drought. Although conventional plant selection has

been used to increase production yield and stress tolerance, drought tolerance selection

based on phenotype is complicated by associated physiological, anatomical, cellular,

biochemical, and molecular changes. These changes are modulated by differential

gene expression. A common method to identify genes associated with phenotypes of

interest is the characterization of Single Nucleotide Polymorphims (SNPs) to link them

to specific functions. In this work, we selected two drought-tolerant parental lines from

Mesoamerica, Pinto Villa, and Pinto Saltillo. The parental lines were used to generate

a population of 282 families (F3:5) and characterized by 169 SNPs. We associated

the segregation of the molecular markers in our population with phenotypes including

flowering time, physiological maturity, reproductive period, plant, seed and total biomass,

reuse index, seed yield, weight of 100 seeds, and harvest index in three cultivation

cycles. We observed 83 SNPs with significant association (p < 0.0003 after Bonferroni

correction) with our quantified phenotypes. Phenotypes most associated were days to

flowering and seed biomass with 58 and 44 associated SNPs, respectively. Thirty-seven

out of the 83 SNPs were annotated to a gene with a potential function related to drought

tolerance or relevant molecular/biochemical functions. Some SNPs such as SNP28 and

SNP128 are related to starch biosynthesis, a common osmotic protector; and SNP18 is

related to proline biosynthesis, another well-known osmotic protector.

Keywords: bean, stress, drought, SNP, biomarker, genotyping

Introduction

Common bean (Phaseolus vulgaris L.) is the most important leguminous crop species for
human nutrition because it is a natural source of essential nutrients and proteins in the diet
of ∼500 million people in Latin America and Africa (Broughton et al., 2003). Common bean
originated in the Americas and diverged into the Mesoamerican and Andean genetic pools before
domestication (Gepts, 1998; Mamidi et al., 2011; Bitocchi et al., 2013; Schmutz et al., 2014).
The Mesoamerican gene pool includes the Mesoamerican, Durango, Jalisco, and Guatemala races
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(Singh et al., 1991; Díaz and Blair, 2006; Blair et al., 2009;
Kwak and Gepts, 2009). The Mesoamerican and Durango races
are considered to be a rich genetic source for drought stress
resistance (Terán and Singh, 2002b; Singh, 2007).

Drought is the most important abiotic stress limiting cultivar
productivity. Drought negatively impacts dry-bean cultivars
depending on intensity, type and duration of the stress (Terán
and Singh, 2002a,b; Muñoz-Perea et al., 2006). Sixty percent of
the worldwide dry-bean production is affected by terminal or
intermittent drought (Beebe et al., 2008) and it is the second
most important factor in yield reduction after plant diseases
(Thung and Rao, 1999; Rao, 2001). We can expect than drought
will be increasing in number of events and duration in the
principal agriculture regions because of global warming. This will
affect negatively the production and therefore food availability
(McClean et al., 2011). In particular, tropical regions, where
poverty and starvation are important problems, will be more
affected (Cavalieri et al., 2011). In Latin America is estimated that
drought conditions can reduce seed production to 73%, or lost of
production. Even worse, drought effects are increased by other
biotic or abiotic factors (Polanía et al., 2012).

Drought resistance and adaptation includes several
mechanisms to allow plants survive during dry periods. In
general, drought resistance mechanisms can include drought
escape; drought avoidance; and drought tolerance (Beebe et al.,
2013). Drought escape allows plants to accelerate their cell cycle
with an early flowering and maturity, and rapidly relocates
metabolites to seed production (Beebe et al., 2013) and away
from leaves and shoot tissues (Blum, 2005; Nakayama et al.,
2007). Drought avoidance is the capability to keep a high tissue
water potential through increased rooting depth, hydraulic
conductance reduction, radiation absorption reduction in leaves,
water-loss area reduction reduced absorption of radiation by leaf
movement, and reduced evaporation surface (leaf area) (Beebe
et al., 2013). Drought tolerance is the capability in plants to resist
the stress by adjusting cell osmosis, cell plasticity, and cell size
(Beebe et al., 2013).

Given common bean importance, the search for genetic
markers to increase the efficiency of plant selection is essential.
New large-scale modern genotyping technologies such as Single
Nucleotide Polymorphism (SNP) arrays or Next Generation
Sequencing (NGS) can be correlated with phenotypic data in
germplasm collections or other useful populations (Beebe et al.,
2013). Those technologies allow us the identification of key loci
associated with a stress response or a particular phenotype (i.e.,
higher product biomass, fast development, etc.) (McClean et al.,
2011).

SNPs are abundant and well distributed across the genome
and can be used for genotyping with high specificity,
reproducibility, and performance (Rafalski, 2002; Hyten
et al., 2010; Yan et al., 2010). SNPs can be used in breeding
for linkage maps construction, genetic diversity analysis, or
marker-phenotype association studies for marker-assisted
selection (MAS) (Cortés et al., 2011). More than 30 methods
for SNP detection has been developed and applied in different
species (Gupta et al., 2008). SNP detection in common bean has
been applied using Single Base Extension (SBE) (Gaitán-Solís

et al., 2008), Expressed Sequence Tags (EST) (Galeano et al.,
2012), NGS (Hyten et al., 2010) and Kompetitive allele-specific
PCR (KASP) (Cortés et al., 2011; Goretti et al., 2014). SNP
information from common bean has been used to build linkage
maps and synteny analysis previously (Galeano et al., 2009a,b,
2012; Shi et al., 2011; Yuste-Lisbona et al., 2012). SNPs have
been used for the identification of Quantitative Trait Loci (QTL)
associated with drought stress in a F5:7 population derived from
a cross between a Mesoamerican and an Andean bean genotype
(Mukeshimana et al., 2014). Cortés et al. (2011) used SNP
validation from the EST reported in Galeano et al. (2009a,b) and
candidate gene validation to drought adaptation in a set group of
bean genotypes analyzed previously by Simple Sequence Repeat
(SSR) methods in Blair et al. (2006).

Loci for complex traits have been detected in genome wide
association studies (GWAS), and from those, only a small
fraction of genetic variants are clearly responsible for the
phenotype. Modern statistical methods allow us to identify which
variants have a real effects on the phenotype providing associated
probabilities (Hormozdiari et al., 2014).

We employed an simplified method derived from GWAS,
the Single-Marker Analysis (SMA). This method reports the
genotype-phenotype associations in a small population. Our
populaton is derived from two drought-resistant lines: Pinto
Villa (PV) and Pinto Saltillo (PS). PV and PS are members of the
Durango race, and both have been extensively studied because
they are drought-resistant in semi-desert areas in Mexico.
Both lines were derived independently: PV is derivate from
II-25D-M-34 = II-925-M-29-1 x (′Canario 101′ × Mex-4-2)
and PS is derivate from MX 8738 =

′Hidalgo 77′/4/′MAM
30′/3/′Michoacán 91-A′/′BAT 76′//′BAT 93′/′Ecuador 299′

(Acosta-Gallegos et al., 1995; Sánchez-Valdez et al., 2004). Both
lines are believed to resist drought in different ways (Blair
et al., 2009; Beebe et al., 2013; Jimenez-Galindo and Acosta-
Gallegos, 2013), and therefore were selected to observe if some
SNPs could explain the differences in stress tolerance possibly
associated with production-related phenotypes. We used KASP
technology to genotype 282 individuals from this population,
which were also quantified for phenotypes to perform a SNP-
association study. This was followed by functional annotation
of significantly associated SNPs showing some possible
evidence of which genes could be involved in the drought
tolerance.

Materials and Methods

Plant Materials and Experimental Site
We generated a population of 282 F3:5 families derived from the
cross between two common bean (Phaseolus vulgaris L.) cultivars:
Pinto Villa and Pinto Saltillo was used. Both parental genotypes
belong to Mesoamerican race Durango (Acosta-Gallegos et al.,
1995; Sánchez-Valdez et al., 2004). Population generation was
developed from the parental lines to individual F2 plants that
were bulk advanced to produce F3 seed. In the F3 generation, 289
individual plants were randomly selfed to develop F3:4 families
under normal conditions. Then, the 289 families were advanced
to F3:5, each family was randomly divided into two replicates
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(two stressed and two watered) and grown in 17 × 17 lattices.
For each replicate, the genotypes were sown in 4m lines with
60 seeds. Two replicates were watered four times (pre-planting,
vegetative stage, during the flowering, and pod filling stages) and
two replicates omitted the fourth watering, starting the drought
stress. All plants were grown in soil with a well-drained sandy
loam (Calceric-Cambisol) with slightly alkaline pH (between 7.8
and 8.1) and 0.046% organic matter content.

The experiment was conducted between spring-summer 2010
and 2011 (FR-2010, FR-2011) and autumm-winter 2010 (FT-
2010) at the Bajio Experimental Station of National Institute
for Forestry, Agriculture, and Livestock (INIFAP), in Celaya,
Guanajuato, Mexico (20◦ 34′ 53′′ N, 100◦ 49′ 16′′ W and 1775m
elevation over sea level). The average annual temperatures
were 17.7 and 20.8◦C and the precipitation were 12, 223,
and 30mm in FR-2010, FT-2010, and FR-2011, respectively
(INIFAP Agroclimatic Station Network, http://www.inifap.gob.
mx). The stress induced is considered as “terminal” and affected
the late stage in development just after flowering time, which
directly impacts seed production. At the tropical lowlands on
the Pacific, Gulf of Mexico, Central America and the Caribbean,
Mesoamerican beans are grown under residual moisture with
planting toward the end of the rainy season with soil moisture
decreasing toward the end of the crop cycle. Whereas, at the
Mexican Plateau the drought is of the intermittent type that often
occurs during the reproductive stage, a critical one, and thus a
terminal drought treatment mimics up to certain extent drought
during the reproductive stage.

We determined relative soil water content (RSWC) using
gravimetric methods in two depths: 0–30 and 30–60 cm (Earl,
2003). RSWC average values were 63 and 68% in controls and
25 and 28% in stress. Normal conditions for each replicate were
used in both treatments, including mechanical sowing, manual
grass removal, and insecticide by aspersion twice (to control the
white fly Trialuroides vaporariorumWestwood).

Tissue samples were collected after FR-2011. For each
genotype, 10 young leaves from different healthy and undamaged
plants were collected and frozen in liquid nitrogen for bulked
DNA extraction.

SNP Genotyping
After samples were freeze-dried and ground, 100mg were sent
for analysis to LGC Genomics (http://www.lgcgenomics.com,
Trident Industrial Estate Pindar Road, Hoddesdon Herts, EN11
0WZ, UK). LGC Genomics previously genotyped the parental
lines Pinto Villa and Pinto Saltillo with an initial 1497 SNPs
derived from the common variations observed in P. vulgaris
as part of the international collaboration between INIFAP
and the GCP (Generation Challenge Programme, http://www.
generationcp.org). They found that 180 SNPs were polymorphic
in our parental lines and designed 169 DNA probes of 31
nucleotides long for validation with competitive allele-specific
PCR (currently called KASP™) incorporating a FRET quencher
cassette (with fluorescence of either VIC or FAM fluorophores)
from KBioscience (later renamed LGC Genomics). The 169
probes were mapped to the reference genome and coordinates
are reported in Supplementary Table 1. All genotypes found

in our population and both parental lines are reported in
Supplementary Table 2.

Phenotypic Traits
Days to flowering (DF) and days to physiological maturity
(DPM) were recorded as previously described (Acosta-Díaz et al.,
2004). DF is the days from seeding to 50% of the plants shows
open flowers. DPM is the days from seeding to 90% of the
pods changed its green color in alt least 50% of the plants.
The reproductive period (RP) was determined by the difference
between the days to physiological maturity and the days to
flowering (RP= DPM – DF).

Adult plants were collected from a meter row section in each
plot and dried at 70◦C for 48 h. The weight was recorded to
determine vegetative (seedless) plant biomass (PB) (Acosta-Díaz
et al., 2004). Similarly, seeds were dried and weighted to obtain
seed biomass (SB). The total biomass (TB) is expressed as TB =

PB + SB (Acosta-Díaz et al., 2004). All biomass measurements
are in g m−2. Seed yield (SY) was determined from the total
seed weight per area, and recorded in g m−2. The weight of
100 seeds (100SW) was obtained from a random sample per
experimental unit and recorded in grams. The harvest index (HI)
was calculated with the formula HI = SY / TB (Rosales-Serna
et al., 2004). The reuse index was calculated as RI = SB / TB. All
data recorded is reported in Supplementary Table 3.

Genome Sequences
Genome reference and gene annotation for P. vulgaris L. v1.0 was
obtained from the Phytozome website (http://www.phytozome.
net/). Genome size is 521.1 Mb represented in 708 scaffolds with
27,197 total loci with 31,638 coding-gene transcripts and 4441
alternative splicing transcripts (Schmutz et al., 2014).

Statistical Analyses
Using the probe sequence, each SNP was mapped on to
the reference genome with the FASTA aligner (Pearson and
Lipman, 1988) obtaining the genomic coordinates for 163 SNPs.
This information was analyzed with the R package SNPassoc
(González et al., 2007). SNPassoc includes descriptive statistics
and exploratory analysis, it also considers in the computation the
presence of missing values removing a SNP from the analyses
if the observed genotype is below 80%. We used SNPassoc
in the calculation of Hardy-Weinberg equilibrium, analysis
of association based on generalized linear models (either for
quantitative or binary traits), and analysis of multiple SNPs
(haplotype and epistasis analysis). In particular, we used the
function WGassociation to evaluate each variable for association
using a lineal regression model expressed as variable ∼ year +
treatment + replicate. This model allowed us to block the
variation effects between cycles and replicates, in particular, the
differences in stress induced because we can expect variation
given variation in precipitation per year.

We selected all significant SNPs associated with P <

0.0003 after Bonferrioni correction testing for variables with
codominant, dominant, recessive, overdominant, or log-additive
effects.
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Functional Analyses
We evaluated how a SNP is associated with a phenotype by
functional annotation. We correlated the genomic coordinates
with the gene annotation for the Phaseolus vulgaris L. v1.0. If
the SNP was localized inside a coding exon, we evaluated if this
change could generated a negative effect such as a premature
stop-codon or a non-synonymous mutation. All genes were
functionally annotated by comparison with NCBI-NR database
and InterproScan with Blast2GO program (Conesa et al., 2005).

SNP impact on protein product was evaluated using
PredictSNP (Bendl et al., 2014), a webservice that integrates
several commonly used SNP impact programs and databases
such as MAPP, PolyPhen, SIFT, SNAP, PhD-SNP, nsSNPanalyzer,
and PANTHER.

Results

Experimental Data Generated
Our experimental design produced two contrasted groups, the
watered control-plants, and the terminal-drought plants. Even
when rain precipitation was variable per cycle, water was not
enough (the minimal water requirement is 400mm) and the
terminal-stress produced a reduction in production as expected
(Supplementary Table 3, Supplementary Figure 1). We noted
differences in the response in both parental lines, this confirms
that the parental lines have differences in the way the stress
is tolerated as we are validating at the molecular level (in
preparation). The genetic recombination in our population
allows less differences between stressed and control plants.

SNP Association Analyses
The segregation pattern of the 169 polymorphic SNPs was
analyzed in the 282 offspring. One hundred sixty three of
169 of these SNPs could be mapped to the reference genome
(Supplementary Table 1). A specific position was not found for
SNPs: 20, 131, 143, 161, 162, and 169 (Supplementary Table 1),
therefore were excluded from the analyzes. The association of
each SNP to each one of the quantified variables (SY, 100SW,
DF, DPM, RP, PB, SB, TB, RI, and HI) was evaluated with
the R package SNPassoc. Supplementary Table 4 shows the P-
values computed for each possible association between a SNP
and the variable in different genetic models tested. With a
P-value threshold of 0.0003 after Bonferroni correction, 257
statistically significant associations, involving 83 SNPs were
identified (Table 1). Briefly, 58 SNPs were associated with
flowering time, 44 with seed biomass, 19 with 100-seed weight,
42 with reproductive period, 37 with reuse index, 40 with total
biomass, 8 with physiological maturity time, and 1 with harvest
index (Table 2).

From those, 21 SNPs were observed to be uniquely associated
to one variable:

• 100SW: SNP3 (p = 3.42E-05); SNP4 (p = 7.69E-05);
SNP55 (p = 5.01E-06); SNP87 (p = 7.23E-05); SNP99 (p =

2.80E-06); SNP100 (p = 5.86E-05); SNP109 (p = 1.04E-
04); SNP113 (p = 2.26E-04); SNP165 (p = 7.23E-04);
SNP167 (p = 9.10E-04).

TABLE 1 | Total SNPs associated to phenotypes by genetic model testing.

Trait Codominant Dominant Recessive Overdominant log- Total

additive

SY

100SW 2 9 8 19

DF 41 4 12 1 58

DPM 2 3 2 1 8

RP 32 1 9 42

PB 6 2 8

SB 37 1 4 2 44

TB 35 4 1 40

RI 35 1 1 37

HI 1 1

Total 190 18 34 15 0 257

Row labels are: SY, seed yield; 100SW, weight of 100 seeds; DF, days to flowering; DPM,

days to physiological maturity; RP, reproductive period; PB, plant biomass; SB, seed

biomass; TB, total biomass; RI, reuse index; HI, harvest index. Only statistical significant

(P < 0.0003) SNPs are counted.

• DF: SNP16 (p = 8.52E-05); SNP33 (p = 9.49E-05); SNP35
(p = 2.26E-06); SNP38 (p = 9.02E-05); SNP39 (p = 1.17E-
04); SNP40 (p = 3.37E-06); SNP41 (p = 2.43E-06); SNP43
(p = 5.72E-04); SNP54 (p = 6.53E-04).

• DPM: SNP118 (p = 6.09E-04).
• SB: SNP21 (p = 1.20E-04).

Eighteen SNPs were associated to two variables:

• SNP9, SNP155 with DF and DPM.
• SNP94, SNP133, SNP142 with 100SW and DPM.
• SNP112, SNP114 with 100SW and DF.
• SNP160 with PB and TB.
• SNP17, SNP107, SNP110, SNP122, SNP123, SNP128,

SNP150 with RP and DF.
• SNP69 with RI and SB.
• SNP19 with DF and SB.
• SNP106 with DF and RP.

Particularly, high correlations were observed between five
variables (DF, PR, SB, TB, and RI); SB, TB, and RI with 30 SNPs
(SNP5, 7, 24, 26, 27, 28, 29, 30, 31, 32, 36, 56, 57, 59, 60, 61, 62,
63, 74, 75, 77, 79, 80, 81, 90, 91, 98, 115, 120, and 145).

SNP Functional Annotation
SNP probes were aligned in the reference genome and annotated
using Blast, InterproScan and Gene Ontology with Blast2GO
(Conesa et al., 2005) to identify the gene being impacted by
the SNP. Thirty-seven out of 83 SNPs could be identified and
associated with a phenotype in a Gene Ontology class (biological
process, cellular component or molecular function; BP, CC, and
MF, respectively); a detailed table is shown in Supplementary
Table 5.

The functional annotation could reveal a putative role of some
genes. For example, SNP18, which was strongly associated with
biomass, is localized in the gene Phvul.009G226700.1. This gene
encodes a putative aldehyde dehydrogenase (NAD), which has

Frontiers in Plant Science | www.frontiersin.org 4 July 2015 | Volume 6 | Article 546

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Villordo-Pineda et al. Novel drought-tolerance SNPs in bean

TABLE 2 | SNPs associated to phenotypes.

SNP Traits Total

3 100SW 1

4 100SW 1

5 DF RP SB TB RI 5

6 DF RP SB TB 4

7 DF RP SB TB RI 5

9 DF DPM 2

14 PB SB TB RI 4

16 DF 1

17 DF RP 2

18 PB SB TB RI 4

19 DF SB 2

21 SB 1

24 DF RP SB TB RI 5

25 PB SB TB RI 4

26 DF RP SB TB RI 5

27 DF RP SB TB RI 5

28 DF RP SB TB RI 5

29 DF RP SB TB RI 5

30 DF RP SB TB RI 5

31 DF RP SB TB RI 5

32 DF RP SB TB RI 5

33 DF 1

34 DF SB HI 3

35 DF 1

36 DF RP SB TB RI 5

38 DF 1

39 DF 1

40 DF 1

41 DF 1

43 DF 1

49 PB SB TB RI 4

54 DF 1

55 100SW 1

56 DF RP SB TB RI 5

57 DF RP SB TB RI 5

59 DF RP SB TB RI 5

60 DF RP SB TB RI 5

61 DF RP SB TB RI 5

62 DF RP SB TB RI 5

63 DF RP SB TB RI 5

69 SB RI 2

70 100SW DF DPM 3

74 DF RP SB TB RI 5

75 DF RP SB TB RI 5

76 PB SB TB RI 4

77 DF RP SB TB RI 5

79 DF RP SB TB RI 5

80 DF RP SB TB RI 5

81 DF RP SB TB RI 5

85 100SW DF RP 3

87 100SW 1

89 100SW DPM SB TB 4

(Continued)

TABLE 2 | Continued

SNP Traits Total

90 DF RP SB TB RI 5

91 DF RP SB TB RI 5

94 100SW DPM 2

97 PB SB TB RI 4

98 DF RP SB TB RI 5

99 100SW 1

100 100SW 1

104 DF RP SB 3

106 DF RP 2

107 DF RP 2

109 100SW 1

110 DF RP 2

112 100SW DF 2

113 100SW 1

114 100SW DF 2

115 DF RP SB TB RI 5

118 DPM 1

120 DF RP SB TB RI 5

122 DF RP 2

123 DF RP 2

128 DF RP 2

133 100SW DPM 2

136 PB SB TB 3

142 100SW DPM 2

145 DF RP SB TB RI 5

148 100SW DF RP 3

150 DF RP 2

155 DF DPM 2

160 PB TB 2

165 100SW 1

167 100SW 1

Total 0 19 58 8 42 8 44 40 37 1 257

SNPs with significant association per trail (P < 0.0003) are showed. Trait labels are:

100SW, weight of 100 seeds; DF, days to flowering; DPM, days to physiological maturity;

HI, harvest index; PB, plant biomass; RI, reuse index; RP, reproductive period; SB, seed

biomass; SY, seed yield; TB, total biomass.

been involved in oxidation-reduction process in the response
to abiotic stresses (salinity and desiccation) in an abscisic acid
(ABA)-mediated response.

Another group of SNPs were associated with kinase proteins,
such as SNP9, SNP61, SNP106, and SNP115.

Some SNPs were involved in starch biosynthesis, including
genes Phvul.001G230000.1 and Phvul.011G089900.1, containing
SNP28 and SNP128, respectively.

We also found several SNPs (14, 38, 40, 76, 90, 97, 99, 100,
104, 107, and 118) that are localized in genes with a putative
molecular function of protein binding. Many of them could be
associated with signal transduction and may be transcription
factors modulating gene expression.

The remaining SNPs had unclear stress-related biological
function. For example, SNP16 was localized in actin nucleation;
SNP35 was related to postreplication protein repair; SNP49
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was in a GTPase; SNP56 with gene regulation in peroxisomes;
SNP60 was a putative acyl-transferase; SNP62 and SNP113
were membrane proteins; SNP75, SNP91, SNP120, SNP122,
and SNP124 were intracellular transport proteins; SNP80 and
SNP98 were associated in transcription regulation; SNP112 was
identified as a methyl-transferase in rRNA.

We tested the SNPs functional impact in their respective
protein. Seven out of 37 SNPs caused a non-synonymous
mutation, but their impact in protein product was neutral
or inconclusive as predicted by PredictSNP. Five SNPs are
synonymous (silent mutations). The rest, 25 SNPs were
localized outside exons making their interpretation harder
(Supplementary Table 3).

Discussion

All plants can be affected by drought at some time during
growth because of rainfall variability, water retention in soil,
salinity, and extreme temperatures (Chaves et al., 2003). Effects
of drought may increase as global climate increases arid
areas. Plants have developed response mechanisms to drought
stress at the morphological, anatomical, and cellular levels
(Chaves et al., 2003; Shinozaki and Yamaguchi-Shinozaki, 2007).
Those mechanisms involve increase in water absorption and
environment adaptation to reduce leave area and increase root
area (Potters et al., 2007; Shao et al., 2008). The responses
regulate the expression of several genes including enzymes for
antioxidants and osmolite metabolism, signaling proteins such
as kinases and transcription factors (Xiong et al., 2002; Chaves
et al., 2003). Another physiological resistance mechanism is
stoma closure (Taiz and Zeiger, 2006), which is mediate by
the phytohormone ABA (Zhang et al., 2006). The ABA is a
plant hormone that modulates several stress responses. ABA
production in drought is important to initialize early responses to
survive the hydric stress (Zhang et al., 2006). As a hormone, ABA
is used to communicate with other plants the general stress mode.
Besides ABA-related modulation, this gene could be associated
with general amino acids production for arginine, histidine,
tryptophan, alanine, and proline. Proline is a known amino acid
used for osmotic protection for cells in drought stress (Camacho
Barrón and González de Mejía, 1998; Ashraf and Foolad, 2007).

Our approach was limited by the size of the population and
amount of SNPs tested, making non-optimal for a structured
QTL nor as extensive in a tolerant-sensible lines in GWAS.
However, the SMA revealed some interesting genes for further
validation. In our analysis we found 83 SNPs to be statistically
associated to phenotypic traits. After the functional annotation
of the respective genes containing those SNPs, we can assign
a function to 37 of those genes. Some had a clear function
in stress response or tolerance. Plant responses to drought are
modulated by diverse physiological mechanisms, which are in
general controlled by multiple genes (Foolad, 2004).

The SNP18 is localized in the gene Phvul.009G226700.1, a
gene involved in ABA regulation based on its similarity (78%)
with ALDH7B4 (AT1G54100) gene in Arabidopsis (Kirch et al.,
2005). ABA regulates two basic processes in plant development:
(1) seed maturation and germination modulated by nutrient

accumulation and seed dormancy (Chen et al., 2015); (2)
plant responses to abiotic stresses, including drought (Zhang
et al., 2006). ABA is a key molecule to modulate and resist
drought stress, and its level is balanced with high precision with
photosynthesis. In Arabidopsis, AtBG1 protein modulates ABA
endogenous levels (Hirayama and Shinozaki, 2007); this gene
and several cyp707a genes are induced by drought and recovery
(Saito et al., 2004). Razem et al. (2006) reported putative ABA
receptors interacting with FCA protein to modulate flowering
time. Another studies in gene promoters and ABA-mutants in
Arabidopsis showed the role for ABA modulating the drought
stress responses (Shinozaki and Yamaguchi-Shinozaki, 2000;
Xiong et al., 2002). Besides ABA regulation, this gene is also
involved in amino acids biosynthesis. As mentioned before, some
amino acids such proline are considered osmolites, therefore
their biosynthesis is also increased as a drought response (Ashraf
and Foolad, 2007). Proline accumulation, besides osmotic
regulation, protects cell membrane and membrane proteins
from dehydration and free radicals (Yamaguchi-Shinozaki and
Shinozaki, 2006; Ashraf and Foolad, 2007).

We also found SNP28 and SNP128 localized in genes
Phvul.001G230000.1 and Phvul.011G089900.1 respectively; these
genes are involved in osmotic level regulation by starch
biosynthesis. The increase in starch production has been
correlated to positive resistance to drought in plants (Krasensky
and Jonak, 2012).

In osmotic regulation, water is introduced into the cell
by biosynthesis of low molecular weight osmolites (such as
carbohydrates, methylamines, free amino acids, and amino
acid derivate) and ion accumulation (such as K+ and Na+)
(Cushman, 2001). Osmolites accumulation protects cells from
reactive oxygen species (ROS) (Pinhero et al., 1997). Osmolite
biosynthesis gene overexpression has been used to protect plant
from osmotic stress in several species (Garg et al., 2002; Abebe
et al., 2003; Hmida-Sayari et al., 2005; Waditee et al., 2005; Ashraf
and Foolad, 2007).

We also identified SNP39, SNP136, and SNP142 that
localized in genes Phvul.002G322400.1, Phvul.009G215600.1,
and Phvul.010G038200.1, respectively. Those genes are related to
ROS, which are generated by an increase in O2 photoreduction
in chloroplasts (Laloi et al., 2004).

Other commonly induced genes in drought stress are kinases,
and we identified SNPs in kinase genes (including SNP9, SNP38,
SNP61, SNP99, SNP100, SNP106, SNP115, and SNP142). Kinases
are important proteins in signal transport as key proteins
for regulation and propagation of stress signals including
drought (Umezawa et al., 2006). SNP61 (in the sequence of
Phvul.006G097800.1) is associated with myosin heavy chain
phosphorylation, which is important in lateral root formation, a
common physiological response in this stress. Previous studies
in Arabidopsis shown a connection between PP2C and a kinase
related to SNF1 (sucrose non-fermenting1-related protein kinase
or SnRKs), in particular with kinases SnRK2 and SnRK3.
Genetic and biochemical studies have demonstrated that a
function for SnRK2 is stoma movement, gene expression as
response to ABA and ABA responses in drought stress and
germination (Fujii et al., 2007). Other kinase identified in
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wheat is TaSnRK2.8, an SnRK2 (sucrose non-fermenting1-
related protein kinase 2) member of wheat. TaSnRK2.8 confers
enhanced multi-stress tolerances in carbohydrate metabolism.
SNPs in the TaSnRK2.8-A-C region demonstrated that the
nucleotide diversity in SNPs was significantly associated with
seedling biomass under normal conditions, plant height, flag leaf
width, and water-soluble carbohydrate content under drought
conditions. Based on the SNP identified, a functional marker of
TaSnRK2.8-A-C was developed, that could be utilized in wheat
breeding programs aimed at improving seedling biomass and
water-soluble carbohydrates, and consequently to enhance stress
resistance in wheat (Zhang et al., 2013).

We also found SNP120 in a Late Embryogenesis Abundant
Proteins (LEA) gene (Phvul.004G005200.1). LEA genes protect
membrane proteins and cell membrane from dehydration; also
they are related to osmolite biosynthesis and have antioxidative
function (Xiong et al., 2002; Kotchoni and Bartles, 2003).

Another interesting gene is SNP80, localized in the gene
Phvul.006G087000.1, a putative transcription factor (TF). The
role of TFs is to modulate gene expression binding to specific
DNA sites in promoter regions. Previous reports have identified
several TFs involved in drought responses (Finkelstein and
Lynch, 2000; Nicolas et al., 2014) and their overexpression could
increase tolerance to the stress (Garg et al., 2002; Abebe et al.,
2003; Shinozaki et al., 2003; Hmida-Sayari et al., 2005; Waditee
et al., 2005; Yamaguchi-Shinozaki and Shinozaki, 2005; Ashraf
and Foolad, 2007).

Thirty-seven out of 83 SNPs were localized inside coding
genes, but functional impact of SNPs is a challenge in each
case. We didn’t observe a clear functional impact because
some SNPs are outside exon or produce synonymous or
neutral mutations. It cannot be fully explained without further
research.

In the case of common bean (Phaseolus vulgaris L.) there
are few studies related to genotyping and association to abiotic
stresses. Some of these SNPs reported here may be used
as markers in MAS to support breeders in the selection of
plants with drought resistance without reduction of production,
following validation of drought tolerance association in an
independent study.

MAS in plants can be implemented quickly and efficiently
(Rafalski, 2002). The use of GWAS to identify genes leading
to drought tolerance will not identify useful sequence changes

if they work via post-transcriptional modifications, which have
been shown to have an important role in stress adaptation as in
cold (Chinnusamy et al., 2007).

We are working in the development of techniques for easy,
quick, and reproducible allele specific marker detection (ASM)
to be used in MAS programs for common bean (Collard and
Mackill, 2008). Simple techniques such as PCR allele specific
amplification can be used in large-scale genotyping of drought-
resistant lines as in previous works (Wei et al., 2006; Liu
et al., 2012). The efficiency of MAS is reduced by marker-gene
recombination, low polymorphism level in parental lines, QTL
resolution and genotype by environment interactions. These
factors are important to researchers to identify all genetic variants
in a population and choose the best markers for MAS (Elshire
et al., 2011). Our results can be used as a starting point to
develop new marker identification in parental lines in targeted
introgression programs.

All genes identified are being studied in our group to
understand how their function may provide tolerance in drought
and test them in the populations and susceptible lines in future
studies.
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