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Comparative studies of plant resource use and ecophysiological traits of invasive
and native resident plant species can elucidate mechanisms of invasion success and
ecosystem impacts. In the seasonal tropics of north Australia, the alien C4 perennial
grass Andropogon gayanus (gamba grass) has transformed diverse, mixed tree-grass
savanna ecosystems into dense monocultures. To better understand the mechanisms
of invasion, we compared resource acquisition and usage efficiency using leaf-scale
ecophysiological and stand-scale growth traits of A. gayanus with a co-habiting native
C4 perennial grass Alloteropsis semialata. Under wet season conditions, A. gayanus had
higher rates of stomatal conductance, assimilation, and water use, plus a longer daily
assimilation period than the native species A. semialata. Growing season length was
also ∼2 months longer for the invader. Wet season measures of leaf scale water use
efficiency (WUE) and light use efficiency (LUE) did not differ between the two species,
although photosynthetic nitrogen use efficiency (PNUE) was significantly higher in A.
gayanus. By May (dry season) the drought avoiding native species A. semialata had
senesced. In contrast, rates of A. gayanus gas exchange was maintained into the
dry season, albeit at lower rates that the wet season, but at higher WUE and PNUE,
evidence of significant physiological plasticity. High PNUE and leaf 15N isotope values
suggested that A. gayanus was also capable of preferential uptake of soil ammonium,
with utilization occurring into the dry season. High PNUE and fire tolerance in an
N-limited and highly flammable ecosystem confers a significant competitive advantage
over native grass species and a broader niche width. As a result A. gayanus is rapidly
spreading across north Australia with significant consequences for biodiversity and
carbon and retention.

Keywords: alien invasive species, ecophysiology, water use, carbon uptake, weed invasion, trait-based
comparisons, stable isotopes, carbon

Introduction

Alien plant invasions are considered a major threat globally to biodiversity and ecosystem function
(Simberloff, 2011; Vilà et al., 2011; Strayer, 2012). Considerable research effort has gone into
understanding the mechanisms that drive invasion success in order to direct effective weed
management activities (Blumenthal, 2006; Barney and Whitlow, 2008; Catford et al., 2009).
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Invasion drivers vary and are mediated or filtered by
characteristics of the ecosystem being invaded, which can
also differ in space and time (D’Antonio, 1993; Levine et al.,
2003; Theoharides and Dukes, 2007). One of the major drivers
of successful invasion is resource competition (Levine et al.,
2003; Vilà and Weiner, 2004). Successful invaders are typically
considered to possess a superior ability to acquire limiting
resources (e.g., light, nutrients), and/or allocate resources to
different plant parts for improved performance (Goldberg
et al., 1999). Generally, high resource environments tend to be
more invasible than low-resource environments (Gross et al.,
2005; Funk, 2013); native species are considered more likely to
have a competitive advantage over alien plants in low-resource
environments (Funk, 2013). However, in a major review on
this topic, Gioria and Osborne (2014) found few studies that
compared resource competition directly and most studies were
undertaken in high resource environments. Many studies were
also confounded by factors such as comparisons of different
life forms or dominant alien versus subordinate native species.
The effects on carbon sequestration and water use when species
replacement is by another of the same life form will depend
largely on individual species attributes and climate and may be
difficult to predict (Cavaleri and Sack, 2010).

This study focuses on the mechanisms facilitating the
invasion of C4 Andropogon gayanus Kunth. (gamba grass) in
Australia’s mesic (>900 mm annual rainfall) savannas. Large
areas (>200,000 ha) of invasion are occurring across the
‘Koolpinyah surface’ (Nott, 1995), a regional geomorphological
formation that consists of ancient (Late Tertiary), leached,
undulating sandy plains of low soil N and low organic
carbon (Scott et al., 2009; Smith and Hill, 2011). Savanna
ecosystems being invaded can be considered a resource-limited
ecosystem due to these low fertility soils coupled with annual
drought (6 months per year) and frequent fire (2 in 3 years)
(Hutley and Setterfield, 2008). Despite the limiting resources,
A. gayanus is one of a number of introduced pasture species
that have become successful invaders in this region (Cook
and Dias, 2006; Setterfield et al., 2013). Some drivers of
A. gayanus invasion success have been previously demonstrated.
For example,A. gayanus produces large amounts of seed annually
compared to native grasses (Flores et al., 2005; Setterfield
et al., 2005), resulting in high propagule pressure typical of
successful invaders (Eppstein and Molofsky, 2007; Catford et al.,
2009). Seedling establishment occurs in intact savanna but is
greatly facilitated by both canopy cover and/or ground layer
disturbance (Setterfield et al., 2005). Like many successful
invaders, A. gayanus alters the abiotic characteristics of invaded
sites to enhance its ability to colonize and survive (Catford et al.,
2009). In this situation, the dominant fire regime changes as
a consequence of the increased A. gayanus derived fuel loads
and fire intensity (Rossiter et al., 2003; Setterfield et al., 2010)
resulting in reduced canopy cover and ground layer vegetation
and increased site suitability for establishment of the invader
(Rossiter et al., 2003; Setterfield et al., 2005). These drivers
contribute to the initial invasion of A. gayanus but the rapid
establishment and expansion of this species is likely to be
due to other mechanisms that allow the alien species to have

competitive advantages over the native species in this low-
resource environment.

Studies examining invasion by C4 grass into low-resource
environments suggests the importance of understanding
ecophysiological differences between the invaders and native
species (Chapin et al., 1996; Williams and Baruch, 2000;
Daehler, 2003). In South America’s neotropical savannas, the
higher maximum stomatal conductance, photosynthesis, and
transpiration rates of two invasive C4 grasses compared to the
dominant native C4 grasses were suggested as partially explaining
their invasion success (Baruch and Fernandez, 1993; Baruch
and Gomez, 1996). Similarly, in Hawaii, the invasion of alien
C4 Pennisetum setaceum (Forsk.) Chiov. was partially attributed
to high maximum photosynthetic rates compared to the native
C4 Heteropogon contortus (Williams and Black, 1994). Despite
this competitive advantage, in both of these studies, the native
grass was found to have a greater tolerance to soil water deficit
and the growth of the alien grass was constrained by water
availability (Baruch and Fernandez, 1993; Williams and Black,
1994). This would limit the spatial distribution and growing
season of the alien C4 grasses, providing insights into how to
control these species and restore the ecosystem (Funk, 2013).
At present it is uncertain what constraints may limit the spread
of A. gayanus and this study provides further assessment of the
likely ecophysiological mechanisms and their importance driving
the replacement of a resident native C4 grass flora by an alien and
invasive C4 grass. We compared 13 ecophysiological and growth
traits of the alien A. gayanus and native Alloteropsis semialata
(R. Br.) Hitchc. In particular, we investigated the (1) diurnal and
seasonal patterns of leaf gas exchange and stomatal conductance,
(2) maximum photosynthesis and transpiration rates under
saturating radiation, (3) photosynthetic responses to leaf to air
vapour pressure difference (LAVPD), (4) leaf scale efficiencies
of light, water and nitrogen use, (5) canopy scale carbon
and water fluxes, (6) foliar nitrogen, and (7) foliar C and N
isotopes.

Materials and Methods

Study Location
The study was undertaken at Mary River National Park (formerly
Wildman Reserve; 12◦43′S, 131◦49′E), Northern Territory,
Australia. The savanna vegetation at the site is dominated by
canopy Eucalyptus miniata (Cunn. Ex Schauer) and E. tetrodonta
(F. Muell) with a cover of 40–50% and a canopy height of 15–
20 m. This vegetation assemblage occupies approximately 246,
600 km2 across Australia’s savanna region (Fox et al., 2001). The
climate is characterized by distinct wet season (October–March)
and dry seasons (May–September), the latter of which has high
vapor pressure deficits (VPD, 2–5 kPa; Egan andWilliams, 1996).
Mean annual rainfall at Mary River National Park is 1433 mm
and mean annual temperature is 27◦C (Commonwealth Bureau
of Meteorology). Soil types at Mary River National Park are
sandy loam red and gray Kandosols (after Isbell, 1996) that are
characterized by low nutrient levels with a soil organic carbon
content (<2%) and low nitrogen content in the surface horizons
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of from 0.01 to 0.11% (Day et al., 1979; Rossiter-Rachor, 2008).
These soils are coarse textured and well drained, but with low
water holding capacity.

The native grass understorey consists of perennial C4 grasses
such asAlloteropsis semialata, Heteropogon triticeus, Chrysopogon
fallax, Eriachne trisetaNees ex Steud., and C4 annual grasses such
as Pseudopogonatherum irritans (Br.) and Sorghum sp. Following
the release of a commercial seed supply in 1983, the alien grass
A. gayanus (cultivar ‘Kent’) was planted at a range of locations
across northern Australia (Oram, 1987) including near Mary
River National Park and has since invaded vast areas of the high
rainfall savanna (>1000 mm annual rainfall; Petty et al., 2012;
Adams and Setterfield, 2013). It is now a dominant feature of
the understorey in the northern section of the national park.
A. gayanus can form dense monospecific sward up to 4 m high
with a biomass of 20–30 t ha−1 in heavily invaded patches
(Rossiter et al., 2003), with a sharp invasion front adjacent to non-
invaded savanna (Figures 1A,B). Comparisons were undertaken
at paired non-invaded, and invaded sites. Invaded sites had a
minimum of 70% cover ofA. gayanus in the understorey, whereas
non-invaded sites had no A. gayanus and were dominated by
A. semialata.

Leaf Gas Exchange
Leaf scale physiological traits of A. gayanus and A. semialata
were compared using two approaches. Firstly, observations of
diurnal patterns of leaf gas exchange were tracked for the two
species using plants from three plots-pairs (A. gayanus vs native
grasses) within the Mary River National Park. Measurements
were made in situ during the wet (March) and dry seasons (May)
using a portable photosynthesis system (Li-Cor 6400, Li-Cor Inc.,
Lincoln, NE, USA) on plants within adjacent sward of A. gayanus
and A. semialata across an invasion front (Figures 1A,B).
Ambient conditions were maintained within the leaf chamber
with the instrument in standard measurements mode. Care was
taken to ensure the exposure to incident radiation to a leaf was
maintained during measurements. Afternoon air temperatures
reached 35◦C and heating of the instrument occurred requiring
regulation of the chamber temperature which was set to 35◦C to
prevent artificial warming of leaves during measurement.

Native grasses were not measured in the dry season as
leaves had senesced by this phase of the seasonal cycle, whereas
A. gayanus plants still supported green foliage enabling wet
and dry season comparisons. Dry season measurements for
A. gayanus were at the same site using the same population
of plants and leaves. These diurnal gas exchange measurements
provided in situ measurements of leaf performance over a range
of leaf and air temperature and light conditions. Secondly, a
further set of observations were made during the wet season
(March) at an additional three sites within the Mary River
National Park. This was undertaken to examine spatial variation
of maximum net photosynthesis (Amax) and transpiration (Tmax)
of both species under conditions of saturating light. Again,
A. gayanus and A. semialata were sampled across an invasion
front at these additional sites.

Gas exchange measurements were made on fully expanded,
mature leaves approximately two thirds along the leaf lamina

FIGURE 1 | (A) Tropical savanna invaded with A. gayanus at Mary River
National Park, Northern Territory, Australia. The alien grass forms extensive
blocks with a sharp invasion front adjacent to (B) uninvaded savanna blocks
with an understorey of the native C4 grass A. semialata, as used in this study.
(Photo credits N. Rossiter-Rachor).

of five randomly selected individual plants. Measurements were
made on three leaves per A. gayanus plant and two leaves
per A. semialata plant, given the small plant and leaf size of
the latter. This provided a total of 25 leaves sampled across
both species per sampling run, which took approximately 1 h
to complete. This sampling cycle was repeated continuously
from 1000 to 1700 h local time. Variables collected per leaf
included leaf temperature (Tleaf), leaf to air vapour pressure
deficit (LAVPD), photosynthetically-active flux density incident
at the leaf surface (PAR), assimilation (A), transpiration (T), and
stomatal conductance (gs).

Gas exchange measurements were made at three additional
sites under saturating light conditions with measurements
occurring between 11 am and 1500 h local time. These measures
were used for the analysis of instantaneous transpiration
efficiency (ITE) and intrinsic water use efficiency (IWUE). ITE
was calculated as μmol of CO2 assimilated per mol of water
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transpired (A/T). IWUEwas defined as the ratio of light saturated
net assimilation rate to stomatal conductance (A/gs) which is
thought to have low dependence on environmental parameters
and reflects intrinsic plant physiological functioning (Jones,
1992). To determine the light compensation points, the light
saturation point and apparent quantum yields light use efficiency,
(LUE; Kuppers and Schulze, 1985), non-linear regressions (A =
a × ln(PAR) − b) were fitted to the PAR and A data for each
species. Instantaneous LUE of each species was quantified as
μmol of CO2 assimilated per μmol−1 PAR in the light limited
region of the light response curves.

Above-Ground Biomass and Leaf Area Index
In March and May 2003, the above-ground live plant material
(leaves and stems) of each species was harvested in three random
2 m × 2 m quadrats at each of the three paired invaded
and non-invaded sites used in the gas exchange measurements.
Plant material was dried and weighed to give above-ground
biomass (AGB) and scaled to leaf area using allometric equations
developed for A. gayanus (Rossiter, 2001). A generic allometric
equation for native grass biomass and leaf area was used as a
surrogate for A. semialata as this relationship has been shown
to hold across a range of northern Australian tropical savanna
C4 grasses (Hutley and Williams, unpublished data). Native
grass species used to derive the allometric equations were all C4
grasses common in these tropical savanna woodlands (Scott et al.,
2012) and included Aristida hygrometrica, Chrysopogon latifolius,
Sorghum intrans, Heteropogon triticeus, Themeda triandra,
Sehima nervosum, Sorghum plumosum, Chrysopogon fallax,
Setaria apiculata, Pseudopogonatherum contortum variously from
four sites (Howard Springs, Claravale, Larrimah, and Katherine).
Estimates of leaf area sampled from the 2 m × 2 m area enabled
the mean leaf area index (LAI) for each site (invaded or non-
invaded) to be estimated.

Leaf Nitrogen, Carbon, and Isotopes
All leaves used in the gas exchange measurements of both
species were collected, dried, pooled, and ground in a Culatti
Type grinder (Model MFC CZ13) with a 1 mm screen. Percent
elemental carbon (%C) and nitrogen (%N) and stable carbon
(δ13C) and nitrogen (δ15N) isotope ratios were determined via
Dumas combustion in an IsoChrom which was connected to an
EA-1110 Elemental CHN-O Analyser. Analysis was conducted
by the Australian National University stable isotope facility.
Foliar nitrogen values (g N/g leaf) were divided by Amax
values for each leaf to calculate photosynthetic nitrogen use
efficiency (PNUE). Foliar δ13C values indicate long term water
use efficiency (LTWUE, Dawson et al., 2002). Foliar leaf δ15N
values are somewhat indicative of nitrogen source and soil
availability, with lower values suggesting preferential uptake
of ammonium or higher soil ammonium to nitrate ratios
(Handley et al., 1998).

Statistical Analysis
All statistical analyses were performed using SPSS Version 6.0
(2007, SPSS Inc., Chicago, IL, USA). Clear outliers (>2 SD
from the mean) were removed prior to analysis. Outliers were

clearly identified from raw data plots and data points that
were approximately 2 SD from a measurement run mean were
examined. In the wet season, the percentage of outliers was larger
than 5% and was 11% for A. gayanus and 10% for A. semialata.
None were identified for the A. gayanus dry season data set.
Variable PAR conditions and shifts in temperature and VPDwith
cloud cover of the wet season resulted in a population of leaves
that were not at a stable equilibrium when measured and were
not included in calculations.

Diurnal leaf temperature, PAR, LAVPD, A, T, and gs, at each
time period (10:00, 11:00, 13:00, 14:00, and 16:00 or 17:00)
were analyzed using a one-way ANOVA to compare differences
between the species/season factor (fixed). Data was normal
(skewness, kurtosis values <2) and variances homogeneous
(Levene’s significance test <0.05). Data for diurnal analyses were
based on plants at one paired site only. Differences between
species and seasons were assessed using the Student-Neumann–
Keuls post hoc test. The species/season factor included three
variables: A. gayanus in the wet season, A. semialata in the wet
season, and A. gayanus in the dry season.

Estimates of daily carbon uptake rates and water use per
ground area (canopy scale fluxes) were determined by scaling
up integrated diurnal measures of A and T, respectively, to rates
per square meter ground area using site based LAI estimates.
Extrapolation of leaf gas exchange parameters to the canopy
scale using LAI is based on the assumption that for these
grasses, canopy self-shading is limited and simple scaling using
LAI to obtain canopy level estimates is feasible (Larcher, 2003).
Leaf scale estimates and foliar δ13C, δ15N, foliar %N, foliar
%C, foliar C:N, and PNUE (Amax/N per g leaf, PNUE) for
each species/season were analyzed using one-way ANOVA and
Student-Neumann–Keuls post hoc tests to assess differences
between species and season (for A. gayanus data). Differences
in ITE (A/T) and IWUE (A/gs) for each species/season (all
sites data) were analyzed using a one-way ANOVA, Student-
Neumann–Keuls post hoc tests and pair-wise comparisons with
a Bonferroni adjustment.

The LUE of each species was determined as the slope of
the linear relationship between PAR and A when light was
limiting. Light limitation was assumed to have occurred at
PAR <480 μmol m−2 s−1. Differences were analyzed using an
ANCOVA with PAR as the covariate and species/season as the
fixed factor. Differences in Amax, Tmax, and gs for each species
were determined from the light saturated leaves when PAR
>750 μmol m−2 s−1 for A. gayanus and A. semialata in the wet
season and PAR >500 μmol m−2 s−1 for A. gayanus in the dry
season. Differences were compared using ANCOVA, with PAR as
the covariate and species/season as the fixed factor.

Results

Leaf Microclimate
During the wet season, A. gayanus and A. semialata leaves
experienced a broadly similar microclimate in terms of Tleaf, leaf
incident PAR and LAVPD, enabling direct species comparisons
of physiological variables (Figure 2A, T, gs.). Leaf temperatures
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FIGURE 2 | Diurnal patterns of leaf scale (A) temperature (Tleaf ), (B)
photosynthetically active flux density incident at the leaf surface (PAR),
(C) leaf to air vapor pressure difference (LAVPD), (D) assimilation (A),
(E) transpiration (T) and (F) stomatal conductance (gs) of A. gayanus in

the wet (closed squares, n = 120), A. semialata in the wet (triangles,
n = 120), and A. gayanus in the dry (open squares, n = 120) seasons.
Error bars represent one standard error of the mean. Different letters at each
time indicate significant differences at P = 0.05.

of both species were similar throughout the day, although at
approximately 1400 h Tleaf of A. gayanus was higher than that
of A. semialata (Figure 2A). Levels of PAR were also similar
for both species except at 1000 h, when PAR was significantly
higher for A. gayanus (Figure 2B). The diurnal range of LAVPD
of A. semialata leaves was similar to that of A. gayanus from
1100 to 1600 h, although leaves of A. gayanus had significantly
higher LAVPD in the morning and afternoon (Figure 2C). By
the dry season, early morning, and late afternoon Tleaf and PAR
were significantly lower for the persistent A. gayanus compared
to measurements in the wet season (Figures 2A,B). The LAVPD
of A gayanus in the dry season was significantly higher than wet
season measurements from 1100 to 1600 h (Figure 2C).

Leaf and Canopy Scale Physiology
Both species showed similar decreasing linear trends in A
throughout the day; however, in the wet season A. gayanus
assimilated carbon at significantly higher rates than A. semialata
(Figure 2D). Mean wet season rates of A. gayanus Amax and
Tmax were 30% higher than A. semialata (Table 1), with
A. gayanus maintaining a longer daily period of assimilation
compared to A. semialata. A. semialata exhibited net respiration
by 1600 h while A remained positive for A. gayanus leaves
until 1700 h (Figure 2D). Although lower than wet season
rates, leaves of A. gayanus, were still assimilating carbon
and transpiring in the dry season (Figures 2D,E) whereas
A. semialata was physiologically dormant. In the wet season,

Frontiers in Plant Science | www.frontiersin.org 5 August 2015 | Volume 6 | Article 560

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Ens et al. Resource-use explains grass invasion

TABLE 1 | Mean eco-physiological traits of A. gayanus and A. semialata in the wet season, and A. gayanus in the dry season.

Species/season AGB
(g m−2)

LAI
(m2 m−2)

Amax

(µmol
m−2 s−1)

Tmax

(mmol
m−2 s−1)

gs

(mol m−2

s−1)

C uptake
(g m2 d−1)

E
(L m2 d−1)

ITE
(A/T)

LUE
(A/PAR)

PNUE
(N/A)

(a)

A. gayanus/Wet 183.9a

(11.78)
0.82
(0.04)

18.31
(0.51)

6.35
(0.17)

0.27a

(0.01)
2.68a

(0.08)
2.51a

(0.06)
1.73a

(0.29)
0.017a

(0.002)
0.06a

(0.003)

A. semialata/Wet 44.0b

(1.77)
0.22
(0.01)

11.81b

(0.55)
4.86b

(0.25)
0.16b

(0.05)
0.54b

(0.08)
0.40b

(0.06)
2.37ab

(0.09)
0.022a

(0.002)
0.10b

(0.01)

A. gayanus/Dry 405.5c

(58.86)
1.11
(0.06)

3.31c

(0.29)
1.42c

(0.07)
0.03c

(0.002)
0.97b

(0.12)
0.70c

(0.08)
2.53b

(0.22)
0.008b

(0.003)
0.31c

(0.05)

(b)

A. gayanus/Wet 15 15 94 94 94 3 3 210 18 210

A. semialata/Wet 15 15 59 59 59 3 3 108 8 108

A. gayanus/Dry 15 15 71 71 71 3 3 120 15 120

aMean (SE) are given for above-ground biomass (AGB), leaf area index (LAI), maximum net photosynthesis (Amax), maximum transpiration (Tmax ), stomatal conductance
(gs ), carbon uptake (C uptake), evaporation (E), instantaneous transpiration efficiency (ITE), instantaneous light use efficiency (LUE), photosynthetic nitrogen use efficiency
(PNUE). Different superscripts in each column indicate significant differences at P = 0.05. bNumber of samples used to derive all variables.

morning levels of T and gs for A. gayanus and A. semialata
leaves were similar, however, by 1300 h, A. gayanus had
significantly higher rates than A. semialata. A. gayanus was
still transpiring water at 1700 h by which time A. semialata
rates of T and gs was close to zero (Figures 2E,F. Wet
season gas exchange (A, T) was largely driven by PAR
(Figures 2B,D,E).

Leaf gas exchange rates were extrapolated to a canopy level
using LAI estimates to provide mean daily A and T per unit
ground area. In the wet season, A. gayanus stands assimilated ∼5
times more C per day and transpired six times more water than
A. semialata (Table 1). Stand scale A. gayanus assimilation and
water use in the dry season was still double that of the wet season
rates of A. semialata, although this difference was not significant
(Table 1).

Foliar N, C, and Isotopic Signatures
There was no significant difference between foliar %N, %C, or
δ13C for leaves of both species and nor between seasons for
A. gayanus (Table 2). A. semialata and A. gayanus foliar δ15N
values were similar in the wet season but were significantly lower
than dry season values for A. gayanus (Table 2).

Resource Use Efficiency Traits
Andropogon gayanus and A. semialata had similar water use
efficiency (WUE) according to three different measurements:
IWUE (Figure 3), LTWUE (δ13C, Table 2) and ITE (Figure 4;
Table 1). The PNUE and Amax, Tmax, gs of A. gayanus in the
wet season were significantly higher than A. semialata (Table 1),
while there were no differences in LUE (Figure 5; Table 1). From
the wet to dry seasons, A. gayanus leaves showed significant
increases in IWUE and ITE (Figure 4; Table 1); however, there
was no change in LTWUE (δ13C, Table 2). By the dry season,
Amax of A. gayanus leaves had decreased by 82% (Figure 5;
Table 1) relative to wet season rates, while PNUEwas significantly
higher (Table 1). The LUE of A. gayanus was significantly
lower in the dry season compared to the wet season (Table 1;
Figure 5).

Discussion

Along with land use change and climate change, alien
plant invasion is one of the most threatening processes
for the maintenance of biodiversity and ecosystem function.
Interdisciplinary research is clearly needed combining ecology,
eco-physiology, hydrology, and invasion biology to better
understand differences between native and invasive alien
species that will assist management and restoration of invaded
ecosystems (Gioria and Osborne, 2014). Both instantaneous
and time-integrated resource use efficiency (RUE) measures
are required to assess performance on short-term (seasonal) as
well growth cycles and phases of invasion. In this study, we
used comparative measures of both instantaneous (A, Amax, T,
Tmax, gs, ITE, LUE) and integrated measures of RUE (PNUE,
LTWUE, LAI, biomass) to assess both resource acquisition
and resource conservation performance in a highly seasonal
environment.

Tropical savanna may represent a strong ‘habitat filter’ (after
Weiher et al., 1998) as species grow and persist in a low
N, annual drought affected, high water deficit, high VPD,
and fire prone ecosystem. In such an environment, successful
invasive species may exhibit similar resource conservation or
RUE traits to native species that enable survival, however, this
was not the case in this study. Under wet season conditions
of high light, moisture, and N availability, rates of stomatal
conductance, A and T of the alien species were 30–40%
higher than the native species, with assimilation occurring
for an additional 2 months of the year supported by a
deep (up to 80 cm) and profusely branched, fibrous root
mass (Rossiter-Rachor et al., 2009). Growth was maintained
into the dry season with A. gayanus stand biomass and LAI
exceeding that of the wet season (Table 1). This finding
is consistent with the meta-analysis of Cavaleri and Sack
(2010) who found that invaders typically have significantly
higher rates of gs, water use and assimilation, although their
analysis included few studies comparing invasive and native
grasses.
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TABLE 2 | Mean (SE) and ANOVA results for foliar percentage and isotopic nitrogen and carbon (%) of A. gayanus (n = 210) and A. semialata (n = 108) in
the wet season and A. gayanus in dry season (n = 120).

Variable A. gayanus wet season A. semialata wet season A. gayanus dry season ANOVA

% foliar N 1.1. (0.08)a 1.14 (0.18)a 0.99 (0.15)a F(2,10) = 3.78; P = 0.695

% foliar C 46.44 (0.10)a 45.46 (0.39)a 45.93 (0.27)a F(2,10) = 3.64; P = 0.065

% foliar C: N 42.92 (2.92)a 42.24 (7.53)a 51.00 (7.50)b F(2,10) = 11.67; P = 0.002

δ15N −3.28 (0.38)ab −2.37 (0.32)a −4.52 (0.44)b F(2,10) = 6.24; P = 0.017

δ13C (LTWUE) −11.18 (0.56)a −11.50 (0.29)a −12.00 (0.09)a F(2,10) = 0.65; P = 0.541

Different superscripts in each column indicate significant differences at P = 0.05.

FIGURE 3 | Intrinsic water use efficiency (IWUE) of A. gayanus leaves
in the wet (solid squares) and dry (open squares) seasons and
A. semialata in the wet (triangles) seasons.

While rates of A, T, and gs were higher for the invader,
there were no species differences in instantaneous water and
light use efficiencies measures (IWUE, ITE, LTWUE, LUE),
also consistent with meta-analysis of WUE of Cavaleri and
Sack’s (2010), even when this analysis was restricted to arid
and semi-arid ecosystems (Funk, 2013). While both species
are perennial grasses, in this environment leaf function (and
age) is essentially annual, with leaf initiation, development,
and gas exchange occurring only after the onset of wet season
rainfall. This is followed by senescence after seed set in
March–April (native species) or May–June (A. gayanus). As
a consequence, leaves of both species develop in high water
availability and low LAVPD conditions with little difference in
leaf-scale WUE. A. gayanus showed stomatal down-regulation
and increases in IWUE and ITE (Figures 3 and 4) during
the dry season, suggesting physiological plasticity in response
to the higher LAVPD and reduced soil moisture availability.
Physiological plasticity has been demonstrated for a number
of invasive species compared to native species in low-resource
environments where resource availability fluctuates (Funk, 2008;
Davidson et al., 2011). This is a favorable attribute for
persistence in the seasonal tropics, which are characterized by
large seasonal changes in resource availability, in particular
available N, P, and moisture (Hutley et al., 2000; Soper et al.,
2015).

Differences in leaf scale traits alone were unable to explain
the 5–10 times greater stand scale biomass accumulation

and fourfold increase in LAI of the invader at these sites
(Table 1). The exception was PNUE, reflecting one of the
most significant limiting resource in these mesic savannas,
soil available N (Rossiter-Rachor et al., 2009; Soper et al.,
2015). Most studies comparing nutrient-use efficiency in native
and alien plants have found higher PNUE in the invasive
species (Funk, 2013). For example, the alien African lovegrass
(Eragrostis curvula) had a higher PNUE compared to native
grasses in the low-nutrient soils of eastern Australia (Firn
et al., 2012). Plant invasion is thought to mostly occur in
resource rich environments, with invasion driven by altered
growing conditions and release of resources via disturbance
that differentially increases an invader’s competitive attributes
(Daehler, 2003). Recent evidence suggests that invasion and
persistence does occur in low resource environments; however,
drivers of this are poorly understood (Gioria and Osborne,
2014).

The invasive traits of A. gayanus identified in this study
exhibit all three attributes suggested by Funk and Vitousek
(2007) that are critical for invasion and perseverance in
low-resource environments; (1) high resource acquisition and
high RUE, (2) an active increase in resource availability
following invasion, and (3) continued disturbance following
invasion. Firstly, resource acquisition and RUE were exhibited
by A. gayanus via higher rates of gs, A, and T, a longer
growing season, high biomass and LAI and significantly higher
PNUE. Secondly, an invasive species must actively increase
resource availability. Comparative values of leaf δ15N (Table 2)
suggested A. gayanus is likely to use more soil ammonium or
have increase soil ammonium levels when compared to native
grass dominated patches. This is consistent with findings of
Rossiter-Rachor et al. (2009) who used labeled 15N experiments
that showed A. gayanus’ preference for ammonium as an N
source over nitrate. The presence of A. gayanus stimulated soil
ammonification and potentially inhibited nitrification (Rossiter-
Rachor et al., 2009). This mechanism drives a positive plant–
soil feedback that promotes a broader niche width and
improved habitat suitability for A. gayanus, in this N-limited
ecosystem. Thirdly, Funk and Vitousek (2007) suggest an invader
must promote continued disturbance that increases resource
availability enabling persistence. A feature of A. gayanus invasion
is high biomass (fuel) production and a shift to a high severity
fire regime as described by Rossiter et al. (2003) and Setterfield
et al. (2010). Severe invasion reduces woody cover by up
to 80% within a decade post invasion (Brooks et al., 2010)
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FIGURE 4 | Instantaneous transpiration efficiency (ITE) of A. gayanus leaves in the wet (solid squares and solid lines, n = 210), A. semialata in the
wet (triangles and broken lines, n = 120), and A. gayanus in the dry (open squares, n = 120) seasons.

FIGURE 5 | Light response curves for leaves of A. gayanus (closed squares, solid line) and A. semialata (closed triangles, dashed line) in the wet
season and A. gayanus in the dry season (open squares, dotted line).

and initiates a grass-fire feedback. The loss in woody cover
releases water, nutrient resources and increases radiation to
the understory that further accelerates A. gayanus growth and
invasion.

Conclusion

This study has shown that collectively, instantaneous, and time-
integrated RUE traits, invasion-derived feedback loops combined
with high propagule pressure confers substantial a competitive
advantage to A. gayanus over both native grassy and woody

lifeforms. These attributes largely explain its current invasiveness
and persistence in Australia’s low-resource savanna ecosystems.
This is an ecosystem transformation that is resulting in a
rapid loss of biodiversity and significantly increasing fire risk
(Setterfield et al., 2013). This study provides evidence from a
seasonal tropical savanna ecosystem to support Funk’s (2013)
assertion that invasive species in low-resource environments
possess traits that allow both increased resource acquisition and
resource conservation. This superior capacity of A. gayanus
to compete for resources also supports modeling predictions
of continued rapid invasion across the vast savanna region of
northern Australia (Adams et al., 2015).

Frontiers in Plant Science | www.frontiersin.org 8 August 2015 | Volume 6 | Article 560

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Ens et al. Resource-use explains grass invasion

Acknowledgments

We would like to thank Kath Ryan and Jane Barratt for field data
collection. We also thank the Rangers and NT Parks for access to

Mary River National Park (formerly Wildman Reserve). Funding
was provided by Charles Darwin University research grant, the
Land and Water Australia and the National Environmental
Research Programme (NERP).

References

Adams, V. M., Petty, A., Douglas, M. M., Buckley, Y. M., Ferdinands, K. A.,
Okozaki, T., et al. (2015). Distribution, demography and dispersal model of
spatial spread of invasive plant populations with limited data. Methods Ecol.
Evol. 6, 782–794. doi: 10.1111/2041-210X.12392

Adams, V. M., and Setterfield, S. A. (2013). Estimating the financial risks of
Andropogon gayanus to greenhouse gas abatement project in northern
Australia. Environ. Res. Lett. 8, 025018. doi: 10.1088/1748-9326/8/2/
025018

Barney, J., and Whitlow, T. (2008). A unifying framework for biological invasions:
the state factor model. Biol. Inv. 10, 259–272. doi: 10.1007/s10530-007-
9127-8

Baruch, Z., and Fernandez, D. S. (1993). Water relations of native and
introduced C4 grasses in a neotropical savanna. Oecologia 96, 179–185. doi:
10.1007/BF00317730

Baruch, Z., and Gomez, J. A. (1996). Dynamics of energy and nutrient
concentration and construction cost in a native and two alien C4 grasses from
two neotropical savannas. Plant Soil 181, 175–184. doi: 10.1007/BF00012051

Blumenthal, D. M. (2006). Interactions between resource availability and
enemy release in plant invasion. Ecol. Lett. 9, 887–895. doi: 10.1111/j.1461-
0248.2006.00934.x

Brooks, K. J., Setterfield, S. A., and Douglas, M. M. (2010). Exotic grass
invasions: applying a conceptual framework to the dynamics of degradation
and restoration in Australia’s tropical savannas. Rest. Ecol. 18, 188–197. doi:
10.1111/j.1526-100X.2008.00470.x

Catford, J. A., Jansson, R., and Nilsson, C. (2009). Reducing redundancy in invasion
ecology by integrating hypotheses into a single theoretical framework. Divers.
Distrib. 15, 22–40. doi: 10.1111/j.1472-4642.2008.00521.x

Cavaleri, M. A., and Sack, L. (2010). Comparative water use of native and invasive
plants at multiple scales: a global meta-analysis. Ecology 91, 2705–2715. doi:
10.1890/09-0582.1

Chapin, F. S. III, Torn, M. S., and Tateno, M. (1996). Principles of ecosystem
sustainability. Am. Nat. 148, 1016–1037. doi: 10.1086/285969

Cook, G. D., and Dias, L. (2006). It was no accident: deliberate plant introductions
by Australian government agencies during the 20th century. Aus. J. Bot. 54,
601–625. doi: 10.1071/BT05157

D’Antonio, C. M. (1993). Mechanisms controlling invasion of coastal plant
communities by the alien succulent carpobrotus edulis. Ecology 74, 83–95. doi:
10.2307/1939503

Daehler, C. C. (2003). Performance comparisons of co-occurring native
and alien plants: implications for conservation and restoration. Annu.
Rev. Ecol. Evol. Syst. 34, 183–211. doi: 10.1146/annurev.ecolsys.34.011802.
132403

Davidson, A. M., Jennions, M., and Nicotra, A. B. (2011). Do invasive species show
higher phenotypic plasticity than native species and, if so, is it adaptive? A
meta-analysis. Ecol. Lett. 14, 419–431. doi: 10.1111/j.1461-0248.2011.01596.x

Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., and Tu, K. P. (2002).
Stable isotopes in plant ecology. Annu. Rev. Ecol. Evol. Syst. 33, 507–559. doi:
10.1146/annurev.ecolsys.33.020602.095451

Day, K. J., Harrison, C. J., and van Cuylenburg, H. R. M. (1979). Land Resources of
Wildman River Station, Land Conservation Unit. N. T. Technical Report No. 6.
Darwin: Territory Parks and Wildlife Commission.

Egan, J. L., and Williams, R. J. (1996). Lifeform distributions of woodland plant
species along a moisture availability gradient in Australia’s monsoonal tropics.
Aus. Syst. Bot. 9, 205–217. doi: 10.1071/SB9960205

Eppstein, M. J., and Molofsky, J. (2007). Invasiveness in plant communities with
feedbacks. Ecol. Lett. 10, 253–263. doi: 10.1111/j.1461-0248.2007.01017.x

Firn, J., Prober, S. M., and Buckley, Y. M. (2012). Plastic traits of an exotic grass
contribute to its abundance but are not always favorable. PLoS ONE 7:4 e35870.
doi: 35810.31371/journal.pone.0035870

Flores, T. A., Setterfield, S. A., and Douglas, M. M. (2005). Seedling recruitment
of the exotic grass Andropogon gayanus (Poaceae) in northern Australia. Aus. J.
Bot. 53, 243-9. doi: 10.1071/BT03154

Fox, I. D., Nelder, V. J., Wilson, G. W., and Bannink, P. J. (2001). The Vegetation
of the Australian Tropical Savannas. Brisbane, QLD: Environmental Protection
Agency.

Funk, J. L. (2008). Differences in plasticity between invasive and native plants
from a low resource environment. J. Ecol. 96, 1162–1174. doi: 10.1111/j.1365-
2745.2008.01435.x

Funk, J. L. (2013). The physiology of invasive plants in low-resource environments.
Conserv. Physiol. 1, 1. doi: 10.1093/conphys/cot026

Funk, J., and Vitousek, P. (2007). Resource-use and efficiency and plant
invasion in low-resource systems. Nature 446, 1079–1081. doi: 10.1038/nature
05719

Gioria, M., and Osborne, B. A. (2014). Resource competition in plant
invasions: emerging patterns and research needs. Front. Plant Sci. 5:501. doi:
10.3389/fpls.2014.00501

Goldberg, D. E., Rajaniemi, T., Gurevitch, J., and Stewart-Oaten, A. (1999).
Empirical approaches to quantifying interaction intensity: competition
and facilitation along productivity gradients. Ecology 80, 1118–1131. doi:
10.1890/0012-9658(1999)080[1118:EATQII]2.0.CO;2

Gross, K. L., Mittelbach, G. G., and Reynolds, H. L. (2005). Grassland invasibility
and diversity: responses to nutrients, seed input, and disturbance. Ecology 86,
476–486. doi: 10.1890/04-0122

Handley, L. L., Scrimgeour, C. M., and Raven, J. A. (1998). “15N at natural
abundance levels in terrestrial vascular plants,” in Stable Isotopes, ed. H Griffiths
(Oxford: BIOS Scientific Publishers Ltd.).

Hutley, L. B., O’Grady, A. P., and Eamus, D. (2000). Evapotranspiration from
Eucalypt open-forest savanna of Northern Australia. Func. Ecol.14, 183–194.
doi: 10.1046/j.1365-2435.2000.00416.x

Hutley, L. B. and Setterfield, S. A. (2008). “Savanna,” in Encyclopedia of Ecology, eds
B. Fath and S. E. Jorgensen (Oxford: Academic Press), 3143–3154.

Isbell, R. F. (1996). The Australian Soil Classification. Collingwood, VIC: CSIRO
Publishing.

Jones, H. G. (1992). Plants and Microclimate: A Quantitative Approach to
Environmental Plant Physiology. Cambridge: Cambridge University Press.

Kuppers, M., and Schulze, E. D. (1985). An empirical model of net photosynthesis
and leaf conductance for the simulation of diurnal courses of CO2
and H2O exchange. Aus. J. Plant Physiol. 12, 512–526. doi: 10.1071/PP9
850513

Larcher, W. (2003). Physiological Plant Ecology: Ecophysiology and Stress Physiology
of Functional Groups. Berlin: Springer-Verlag. doi: 10.1007/978-3-662-05214-3

Levine, J. M., Vilà, M., D’Antonio, C. M., Dukes, J. S., Grigulis, K., and Lavorel, S.
(2003).Mechanisms underlying the impacts of exotic plant invasions. Proc. Biol.
Sci. 270, 775–781. doi: 10.1098/rspb.2003.2327

Oram, R. N. (1987). Register of Australian herbage plant cultivars. J. Aus. Ag. Sci.
53, 123–126.

Nott, J. (1995). The antiquity of landscapes on the north Australian craton and the
implications for theories of long-term landscape evolution. J. Geol. 103, 19–32.
doi: 10.1086/629719

Petty, A. M., Setterfield, S. A., Ferdinands, K. B., and Barrow, P. (2012). Inferring
habitat suitability and spread patterns from large-scale distributions of an
exotic invasive pasture grass in north Australia. J. App. Ecol. 49, 742–752. doi:
10.1111/j.1365-2664.2012.02128.x

Rossiter, N. A. (2001). Comparative Ecophysiology and Fire Ecology of Native
and Exotic Savanna Grasses. Honours thesis, Northern Territory University,
Darwin.

Rossiter, N. A., Setterfield, S. A., Douglas, M. M., and Hutley, L. B. (2003).
Testing the grass-fire cycle: alien grass invasion in the tropical savannas of
northern Australia. Divers. Distrib. 9, 169–176. doi: 10.1046/j.1472-4642.2003.
00020.x

Frontiers in Plant Science | www.frontiersin.org 9 August 2015 | Volume 6 | Article 560

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Ens et al. Resource-use explains grass invasion

Rossiter-Rachor, N. A. (2008). Effects of Andropogon gayanus (Gamba grass)
Invasion on Ecosystem Nitrogen Dynamics in a Northern Australia Tropical
Savanna. Ph.D. thesis, Charles Darwin University, Darwin.

Rossiter-Rachor, N. A., Setterfield, S. A., Douglas, M. M., Hutley, L. B., Cook,
G. D., and Schmidt, S. (2009). Invasive Andropogon gayanus (gamba grass) is
an ecosystem transformer of nitrogen relations inAustralian savanna. Ecol. App.
19, 1546–60. doi: 10.1890/08-0265.1

Scott, K. A., Setterfield, S. A., Andersen, A. N., and Douglas, M. D. (2009).
Correlates of grass-species composition in a savanna woodland in northern
Australia. Aust. J. Bot. 57, 10–17. doi: 10.1071/BT08120

Scott, K. A., Setterfield, S. A., Douglas, M. M., Parr, K. L., Schatz, J., and Andersen,
A. N. (2012). Does long-term fire exclusion in an Australian tropical savanna
result in a biome shift? A test using the reintroduction of fire. Aust. Ecol. 37,
693–711. doi: 10.1111/j.1442-9993.2012.02379.x

Setterfield, S. A., Douglas, M. M., Hutley, L. B., and Welch, M. A. (2005). Effects
of canopy cover and ground disturbance on establishment of an invasive
grass in an Australia savanna. Biotropica 37, 25–31. doi: 10.1111/j.1744-
7429.2005.03034.x

Setterfield, S. A., Rossiter-Rachor, N. A., Douglas, M. M., Wainger, L, Petty, A. M.,
Barrow, P., et al. (2013). Adding fuel to the fire: the impacts of non-native
grass invasion on fire management at a regional scale. PLoS ONE 8:e59144. doi:
10.1371/journal.pone.0059144

Setterfield, S. A., Rossiter-Rachor, N. A., Hutley, L. B., Douglas, M. M., and
Williams, R. J. (2010). Turning up the heat: the impacts of Andropogon
gayanus (gamba grass) invasion on fire behaviour in northern Australian
savannas. Divers. Distrib. 16, 5, 854–861. doi: 10.1111/j.1472-4642.2010.
00688.x

Simberloff, D. (2011). How common are invasion-induced ecosystem impacts?
Biol. Inv. 13, 1255–1268. doi: 10.1007/s10530-011-9956-3

Smith, S., and Hill, J. (2011). Supporting Sustainable Development – Risks and
Impacts of Plant Industries on Soil Condition. Northern Territory Government,
Australia. Technical Bulletin No. 340.

Soper, F.M., Richards, A. E., Siddique, I., Aidar, M. P. M., Cook, G. D., Hutley, L. B.,
et al. (2015). Natural abundance (δ15 N) indicates shifts in nitrogen relations of

woody taxa along a savanna–woodland continental rainfall gradient. Oecologia
178, 297–308. doi: 10.1007/s00442-014-3176-3

Strayer, D. L. (2012). Eight questions about invasions and ecosystem functioning.
Ecol. Lett. 15, 1199–1210. doi: 10.1111/j.1461-0248.2012.01817.x

Theoharides, K. A., and Dukes, J. S. (2007). Plant invasion across space and time:
factors affecting nonindigenous species success during four stages of invasion.
New Phytol. 176, 256–273. doi: 10.1111/j.1469-8137.2007.02207.x

Vilà, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jaršík, V., Maron, J. L., et al.
(2011). Ecological impacts of invasive alien plants: a meta-analysis of their
effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708. doi:
10.1111/j.1461-0248.2011.01628.x

Vilà, M., and Weiner, J. (2004). Are invasive plant species better competitors
than native plant species? – evidence from pair-wise experiments. Oikos 105,
229–238. doi: 10.1111/j.0030-1299.2004.12682.x

Weiher, E., Clarke, G. D. P., and Keddy, P. A. (1998). Assembly rules,
morphological dispersion, and the coexistence of plant species. Oikos 81,
309–322. doi: 10.2307/3547051

Williams, D. G., and Baruch, Z. (2000). African grass invasion in the Americas:
ecosystems consequences and the role of ecophysiology. Biol. Inv. 2, 123–140.
doi: 10.1023/A:1010040524588

Williams, D. G., and Black, R. A. (1994). Drought response of a native and
introduced Hawaiian grass. Oecologia 97, 512–519. doi: 10.1007/BF00325890

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Ens, Hutley, Rossiter-Rachor, Douglas and Setterfield. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Plant Science | www.frontiersin.org 10 August 2015 | Volume 6 | Article 560

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

	Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia
	Introduction
	Materials and Methods
	Study Location
	Leaf Gas Exchange
	Above-Ground Biomass and Leaf Area Index
	Leaf Nitrogen, Carbon, and Isotopes
	Statistical Analysis

	Results
	Leaf Microclimate
	Leaf and Canopy Scale Physiology
	Foliar N, C, and Isotopic Signatures
	Resource Use Efficiency Traits

	Discussion
	Conclusion
	Acknowledgments
	References


