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In Nicotiana tabacum, female gametophytes are not fully developed at anthesis,
but flower buds pollinated 12 h before anthesis produce mature embryo sacs. We
investigated several pollination-associated parameters in N. tabacum flower buds to
determine the developmental timing of important events in preparation for successful
fertilization. First, we performed hand pollinations in flowers from stages 4 to 11 to study
at which developmental stage pollination would produce fruits. A Peroxtesmo test was
performed to correlate peroxidase activity on the stigma surface, indicative of stigma
receptivity, with fruit set. Pollen tube growth and female gametophyte development
were microscopically analyzed in pistils of different developmental stages. Fruits were
obtained only after pollinations of flower buds at late stage 7 and older; fruit weight and
seed germination capacity increased as the developmental stage of the pollinated flower
approached anthesis. Despite positive peroxidase activity and pollen tube growth, pistils
at stages 5 and 6 were unable to produce fruits. At late stage 7, female gametophytes
were undergoing first mitotic division. After 24 h, female gametophytes of unpollinated
pistils were still in the end of the first division, whereas those of pollinated pistils
showed egg cells. RT-gPCR assay showed that the expression of the NtECT gene, a
marker of egg cell development, is considerably higher in pollinated late stage 7 ovaries
compared with unpollinated ovaries. To test whether ethylene is the signal eliciting
female gametophyte maturation, the expression of ACC synthase was examined in
unpollinated and pollinated stage 6 and late stage 7 stigmas/styles. Pollination induced
NtACS expression in stage 6 pistils, which are unable to produce fruits. Our results show
that pollination is a stimulus capable of triggering female gametophyte development in
immature tobacco flowers and suggests the existence of a yet undefined signal sensed
by the pistil.

Keywords: stigma receptivity, pollen tube growth, pollination signal, female gametophyte development, fruit
weight, seed germination capacity
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Introduction

Angiosperms correspond to a group of plants with distinct
characteristics, including the presence of ovules enclosed in
a maternal organ, know as the pistil. The pistil is generally
composed of a stigma, a style, and an ovary that develops into
a fruit after fertilization. The fertilization process begins with the
deposition of pollen grains onto a receptive stigma surface. When
pollen grain recognition and acceptance occurs, it will hydrate
and germinate, producing a pollen tube that grows through the
style in the direction of the ovary until reaching an embryo
sac, known as the angiosperm female gametophyte. Next, the
pollen tube bursts, releasing two sperm cells in the interior of
the embryo sac. One of the sperm cells fuses to the egg cell to
produce a diploid embryo, whereas the second sperm cell fuses
to the central cell, generating a triploid endosperm (Lersten,
2004).

Successful reproduction in angiosperms depends on a series
of cell-cell interactions between male gametophytes and the
specialized tissues of the pistil and female gametophytes (Beale
and Johnson, 2013). Over the last few years, new information
and discoveries have increased our knowledge about the signals
produced by the female gametophytes to attract and direct
the pollen tubes (Beale and Johnson, 2013). However, less is
known about signals produced by the pollen tube or pistil in
response to pollen tube growth, establishing communication
with female gametophytes. Some evidence of this male-female
directional signaling comes from studies of orchid species, in
which ovule differentiation and development are pollination-
dependent (Zhang and O’Neill, 1993; O’Neill, 1997). Once
inside the ovule, the orchid pollen tube waits for the female
gametophyte to complete development before releasing sperm
cells to promote fertilization (O’Neill et al., 1993). In other plants,
such as almond, the ovule is partially developed at anthesis
and reaches full maturation only after pollination (Pimienta and
Polito, 1983). This pattern of female gametophyte development
triggered by pollination stimulus has also been observed for
sweet pepper (Ofosu-Anim et al., 2006) and maize (Mol et al.,
2000).

In breeding programs, researchers may perform bud
pollination to overcome incongruity in interspecific crosses
or self-incompatibility. Hand pollination using mature pollen
can be performed on immature flowers (Haring et al., 1990)
in an attempt to bypass the effects of self-incompatibility on
species of Brassicaceae (Hiscock and Dickinson, 1993), as well
as Solanaceae species (Chalivendra et al., 2013). In Nicotiana
tabacum, a species with a Polygonum-type embryo sac (Huang
and Russell, 1992), the ovule is not fully developed at anthesis,
and the egg cell is not usually observed at the embryo sacs
(Tian and Russell, 1997; Lobanova and Enaleeva, 1998; De
Martinis and Mariani, 1999; Chen et al., 2012). In this species,
the effects of pollination on ovule development have mainly
been examined at stages close to anthesis. Hand-pollinated
tobacco flower buds 12 h before anthesis reach the mature
embryo sac stage earlier than flower buds emasculated and not
pollinated (Tian and Russell, 1997), suggesting the existence of
a male-female directional signaling. De Martinis and Mariani

(1999) noted that pollinations in young flower buds (stage 6)
do not induce embryo sac formation and seed production,
but they did not investigate this aspect in detail. Thus, little
is known regarding the developmental timing of important
events in preparation for successful fertilization in N. tabacum
flowers.

Our hypothesis is that pollinations performed on young
flower buds will be effective and produce fruits, despite the fact
that N. fabacum female gametophytes are not fully developed
at anthesis. At which flower developmental stage pollination
will be productive? We have examined several parameters
related to reproductive success (Calixto et al., 2009), such as
fruit formation, seed production and germination capacity, and
correlated them with stigma receptivity based on peroxidase
activity, microscopy analysis of pollen tube growth, embryo
sac development, and NtECI (Egg Cell 1) gene expression.
Our results represent a detailed analysis of the effects of
pollination on N. tabacum flower buds at stages prior to
anthesis and shows that preparation for successful fertilization
is a gradual process in which the necessary requirements
are achieved in phases. This work provides evidence for the
existence of male-female signaling produced by pollination
and considers whether ethylene could be this signal through
an investigation of ACC synthase expression. We have shown
that a yet undefined pollination signal is sensed by the
N. tabacum pistil throughout half of its development and is
sufficient to trigger cellular and molecular female gametophyte
maturation.

Materials and Methods

Plant Material

Seeds from N. tabacum cv. Petit Havana SR1 were sown in
expanded polystyrene trays containing PlantMax commercial
substrate (Eucatex, Brazil). After germination and growth to a
height of approximately 3 cm, plantlets were transferred to plastic
bags and later to 20 L vases. During germination and growth,
plants were cultivated in standard greenhouse conditions and
irrigated by aspersion. The stages of tobacco flower development
were determined using parameters previously described by
Koltunow et al. (1990).

Controlled Pollinations and Fruit Analyses

Tobacco pistils from stages 4 to 11 of flower development
were emasculated and hand pollinated with mature pollen
grains from flowers at anthesis (stage 12). Stage 12 flowers
were not included in this work because they are naturally
pollinated at this stage. For each analyzed stage, a minimum
of eight pistils (from at least six independent plants) were
hand pollinated and labeled with sewing threads of different
colors. Approximately 20 days after pollination, the pollinated
pistils were analyzed for the presence or absence of fruits.
The obtained fruits were collected individually and dried at
room temperature for approximately 2 days. On the third
day, fruits were separately weighed on a precision balance
(Acculab - L series). The data obtained were analyzed statistically
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using an analysis of variance (ANOVA) of PROC GLM
(software SAS version 9). When variation between two stages
was detected, differences with p < 0.05 were considered
significant.

Analysis of Seed Germination

To establish the germination capacity of the seeds produced, 300
seeds (from fruits obtained at each developmental stage) were
placed in sterile wet filter paper (100 seeds per plate). Two weeks
later, the number of germinated seeds was counted, and the
results were analyzed using Student’s ¢-test (p < 0.05).

Determination of Stigma Receptivity

To study the stigma receptivity, we used special peroxidase test
papers (Peroxtesmo KO, Macherey-Nagel - Diiren, Germany)
as proposed by Dafni and Maués (1998). For this purpose, four
stigmas from tobacco flowers at stages 4 to 11 were pressed
against peroxidase test-paper and were regarded as positive when
blue coloration developed.

Analyses of Pollen Tube Growth

Controlled hand pollinations were performed with stages 4-
11 tobacco pistils, as described above. According to De Graaf
et al. (2003), pollen tubes reach the tobacco ovary 24 h after
pollination. Thus, pollinated pistils were excised 24 h after
hand pollination. Stigmas/styles and ovaries were separated and
immediately fixed in FPA 50 [2.5 mL of 37% formaldehyde
(Sigma), 2.5 mL of propionic acid (Vetec - Brazil), and
45 mL of 50% ethanol (Merck)]. The samples were subjected
to 15 mmHg vacuum for 15 min in the presence of the
fixative. This procedure was repeated four times, and the
material was left on the fixative overnight. The fixative was
substituted by 50% ethanol, and the material was incubated
at 8°C overnight. The next day, 50% ethanol was substituted
by 70% ethanol. Longitudinally hand-opened stigmas/styles and
ovaries were placed on a glass slide and stained in a 0.1%
solution of aniline blue in 0.1 N K3PO4 (Kho and Bera, 1968).
The samples were carefully squashed between a glass slide and
coverslip in the aniline blue solution, revealing the pollen tube
callose plugs. Visualization and documentation were performed
with a Zeiss Axiolab epifluorescence microscope (HBO 103W/2
lamp) using an excitation wavelength of 450/90 nm and
an emission wavelength of 520 nm. Images were taken
using a Zeiss AxioCam Color 412-312 and AxioVision LE4.8
software.

Microscopic Analyses of Pollinated and
Unpollinated Ovaries

Late stage 7 flowers (35 mm) were emasculated and kept
unpollinated or were pollinated with pollen grains from
stage 12 flowers (anthesis). Ovaries from both pollinated and
unpollinated flowers were harvested after 24 h and fixed
in FAA 50 [5 mL of glacial acetic acid (Merck), 5 mL
of 37% formaldehyde (Sigma), and 90 mL of 50% ethanol
(Merck)] for 24 h (Johansen, 1940). Then, the samples were
transferred to 50% ethanol and subsequently to 70% ethanol,
in which they were stored. The ovaries were dehydrated

in a graded ethanol/xylol series and embedded in paraffin.
The embedded material was sliced into 6-pum sections,
mounted on microscope slides and stained with 0.05% of
toluidine blue pH 6.8. The pictures were taken using a Leica
DM50 microscope equipped with a Leica DFC 320 digital
camera.

RNA Extraction, cDNA Synthesis, and

RT-gPCR Analysis

As described above, stage 6 and late stage 7 flowers were
emasculated and kept unpollinated or were pollinated with
mature pollen. After 24 h, stigmas/styles and ovaries were
collected in liquid nitrogen and stored at —80°C (three biological
replicates for each condition, each replicate containing three
pistil samples). The RNA of each sample was extracted using
Trizol (Invitrogen®) according to the manufacturer’s protocol.
RNA integrity was checked by electrophoresis in 1.2% agarose
and 20 mM guanidine isothiocyanate gel. RNA samples were
treated with RNase-free DNase (Promega®) following the
manufacturer’s instructions and an aliquot was used to check
for genomic DNA contamination in a standard qPCR with
GAPDH (glyceraldehyde 3-phosphate dehydrogenase) primers
(see below). DNA-free RNA was cleaned using Clean up — Rneasy
Mini Kit (Qiagen) and quantified in a NanoDrop 2000 (Thermo
Scientific). SuperScript III reverse transcriptase (Invitrogen®)
was used to generate cDNA from 1 pg of the RNA samples.
qPCR experiments were carried out in three technical replicates
on an Applied Biosystems 7500 Fast Real-Time PCR System.
Each reaction was composed of 5 wL of GoTaq gPCR Master Mix
(Promega), 1 pL of sterile Milli-Q purified water, 1 pL (2.5 pM)
of each adequate primer (GAPDH forward GCATCTTTGAT
GCCAAGGCTGGAA and GAPDH reverse TCGAGTGCTGTA
GCCCATTTCGTT;RPL2 forward CGGGTGTGTCACTTTCCG
TTACCCG and reverse ATACCCTCAGCAGCCACGAACG;
NtEC1 forward CTGTTGGCCTTCTATGCTTACT and reverse
GGTTGAGGTGATGGAGTTC; and NtACS forward TTCAG
AGCCTGGTTGGTTTAG and reverse GACTCCTCCTTCAAT
CCCTTTAC), and 2 pL of ¢cDNA. The cycling conditions
consisted of a initial step of 50°C for 2 min and 95°C for 10 min,
followed by 40 cycles of 95°C for 15 s and 60°C for 1 min.
RPL2 (Ribosomal Protein L2) and GAPDH were previously
validated by our group as the best reference genes for different
experimental conditions and pistil samples (unpublished results).
The efficiency of primer pairs was determined from the slope
of the standard curve using the formula Efficiency (E) = 10
(—1/slope) and then converted to percentage efficiency, where
% of efficiency = (E—1) x 100%. Confirmation of amplicon
specificity was based on the dissociation curve at the end of
each run (ramp time 55-95°C). qPCR reactions in the absence
of template were also performed as negative controls for each
pair of primers. The expression levels of NtECI and NtACS were
determined using the formula: 2-ACt, where ACt = (Cttag -
Ctref), Ct = threshold cycle, tag = tag gene, and ref = reference
gene, derived from the 2-A ACt method originally published
by Livak and Schmittgen (2001). Relative expression was
determined by comparing the NtECI transcript expression level
between unpollinated, considered as 1, and pollinated ovaries.
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For NtACS, the expression ratios were determined comparing
pollinated with unpollinated pistils for each stage (6 or late
7). Statistical analysis using expression data were performed
using the REST tool (Pfaffl et al., 2002) and data are available in
Supplementary Table S1. The accession numbers are: GAPDH -
KR007670; RPL2 - X62500; NtEC1 - KP987452; NtACS -
X98492.

Results

Nicotiana tabacum Fruit Weight and Size are
Dependent on the Flower Developmental

Stage in Which Pollination Occurs

Controlled pollinations with mature pollen (see Materials and
Methods) were performed on stigmas at stages 4-11 of flower
development. Pollinations performed on stigmas at stages 4-6 did
not produce fruits (Table 1). Fruit formation was only observed as
aresult of pollinations performed at later stages (7-12). However,
although fruits were produced in 100% of pollinations performed
at stages 8-12, at stage 7, fruit formation was dependent on the
specific size of the flower bud (Table 1). Fruits were produced
only when the pollinated flower buds were 34 mm or longer.
Therefore, we divided the stage 7 initially described by Koltunow
etal. (1990) into early stage 7, with flower buds with sizes between
28 and 33 mm, and late stage 7, with flower buds with sizes
between 34 and 38 mm. Fruits obtained by this analysis were
weighted and photographed. The mean fruit weight increased
in accordance with the flower developmental stage in which
pollination was performed, i.e., the fruit was heavier at later stages
(Table 1). ANOVA and contrast comparison statistical analyses
were performed and demonstrated no significant difference in
relation to the mean fruit weight produced among pollinations
performed at late stage 7 and stages 8 and 9 (Table 1). No
statistically significant differences were observed in the mean
fruit weight obtained by pollinations at stages 8, 9, 10, and
11 (Table 1). However, the mean fruit weight corresponding
to late stage 7 was significantly different from the mean fruit
weight of pollinations conducted at stages 10 and 11 (Table 1).

Figure 1 shows that in addition to fruit weight, fruit size was also
influenced by pollinations performed in flower buds at different
developmental stages, with size increasing from late stage 7 to
stage 11 (Figure 1) in parallel with their increasing fruit weight.
The most likely explanation for the differences observed in fruit
size and weight is the number of seeds successfully produced as
a result of pollinations conducted at the different developmental
stages.

Pollination at Earlier Flower Developmental
Stages Affects Seed Germination Capacity

To study the germination capacity of seeds produced by
pollinations at different developmental stages, we used triplicates
of 100 seeds from fruits produced at late stage 7 and
onward and placed them in wet filter paper. Two weeks
later, the germinated seeds were counted, and the numbers
were statistically analyzed (Student’s t-test with p < 0.05).
Seeds from late stage 7 pollinations showed the lowest
germination capacity (65% =+ 5.7%). As shown in Figure 2,
the germination capacity increased among seeds produced by
pollinations at stage 8 and later toward anthesis. The highest
germination capacity (94% =+ 1.5%) was verified with seeds
of stage 11 pollinations, the latest stage analyzed in this
study. Significant differences were observed in the germination
capacity of seeds from fruits produced at all developmental
stages, except in seeds from stages 9/10, and 10/11 fruits
(Figure 2). There were seeds capable of germination in all fruits
obtained by controlled hand pollinations. However, under our
experimental conditions, not all seeds produced were able to
germinate, suggesting they were malformed, or physiologically
immature.

Peroxidase Activity Correlates with Stigma
Ability to Sustain Pollen Tube Growth

According to Dafni and Maués (1998), the Peroxtesmo KO
peroxidase test is the most reliable method for establishing stigma
receptivity. Therefore, we have used this test on four stigmas of
each flower developmental stage (from 4 to 11) of N. tabacum.
The peroxidase activity test was negative in all stage 4 stigmas

TABLE 1 | Analysis of fruit formation as a result of hand pollinations performed at different stages of N. tabacum flower development.

Flower developmental Length of floral bud Number of flower

Presence of fruit Amount of fruits Average fruit weight

stages (mm)* buds pollinated formed (%) (mg)**

4 16-19 15 No 0 (0%) -

5 20-21 15 No 0 (0%) -

6 22-27 16 No 0 (0%) -

Early 7 28-33 09 No 0 (O%) -

Late 7 34-38 11 Yes 1(100%) 5.88 +2.92

8 39-42 17 Yes 7 (100%) 9.20 + 4.9%
9 43-44 12 Yes 2 (100%) 12,13 + 4.73b
10 45-46 13 Yes 3 (100%) 14,13 + 7.6°
11 47 12 Yes 2 (100%) 1475 + 7.8°

*Data originally published by Koltunow et al. (1990) and used in the present work to establish the stages of tobacco flower development.
**Different letters indicate significant differences of fruit weight. Statistical analyses were performed using analysis of variance (ANOVA) and Contrast comparison with

p <0.05.
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Late Stage 7

There is a gradual increase in fruit size from late stage 7 to stage 11.

FIGURE 1 | Representative fruits produced as a result of hand pollinations performed at different stages of Nicotiana tabacum flower development.

100%

Germination rate
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FIGURE 2 | Tobacco seed germination capacity evaluated as the
percentage of germinated seeds. For each developmental stage, three
replicates of 100 seeds each were used. Bars indicate the SD, and different
letters represent statistically significant differences by Student’s t-test

(o <0.05).

analyzed. In contrast, all stigmas from stages 5 and later showed
positive results on the peroxidase activity test, suggesting that
stigmas were receptive to pollen grains at developmental stages
earlier than anthesis.

Effective stigma receptivity was assessed by the ability to
sustain pollen germination and pollen tube growth. For this
purpose, pistils from different development stages (4 to 11) were
hand pollinated with mature pollen grains obtained from open
flowers (stage 12). Pistils were collected 24 h after pollination, a
period of time sufficient for pollen tubes to reach the ovary (De
Graaf et al,, 2003). After aniline blue staining, the pollen tubes
were observed under fluorescence microscopy. In pollinations
performed on stage 4 pistils, the pollen grains tended not to
remain on the stigma surface, and no pollen hydration was
observed. Consequently, no growing pollen tubes were detected
on the stigma or style or at the ovary (Figures 3A-C). For
pollinations performed on pistils of stage 5 flower buds, the
pollen grains on the stigma surface hydrated and emitted pollen
tubes (Figures 3D,E). It was also possible to visualize pollen
tubes growing through the entire style length, reaching the ovary
(Figure 3F) and ovules (Supplementary Figure S1). Pollinations
performed at stage 6 and later resulted in an increasing number
of hydrated pollen grains and pollen tubes growing through the
style. This is clearly shown for the pollination of stages 7 and
11 pistils, shown in Figures 3G-L. Therefore, the inability to
produce fruits in pollinations performed in stages 5 and 6 pistils

is not due to incompetence of the stigmas/styles to sustain pollen
tube growth.

Pollination Stimulates N. tabacum Ovule
Maturation Prior to Anthesis

In N. tabacum, the ovules are not fully developed at anthesis (Tian
and Russell, 1997; De Martinis and Mariani, 1999). Therefore,
how do late stage 7 pollinated pistils produce fruits? To answer
this question, we analyzed the effect of pollination on female
gametophyte development. Late stage 7 flower buds (35 mm
long) were emasculated and either hand pollinated with mature
pollen or left unpollinated. This developmental stage was chosen
because it is the earliest stage in which fruit formation was
observed. After 24 h, the ovaries were collected and prepared
for histological analysis. Unpollinated late stage 7 ovaries, 0 h
after emasculation, showed young female gametophytes at the
beginning of the first mitotic division, in which the formation of
the metaphasic plate was observed (Figure 4A). In unpollinated
late stage 7 ovaries, 24 h after emasculation, we expected to find
structures similar to those described in flower buds at stage 8
(De Martinis and Mariani, 1999). As anticipated, it was possible
to observe the end of the first mitotic division (Figure 4B).
In contrast, late stage 7 ovaries 24 h after hand pollination
clearly displayed formed egg cells (Figure 4C). Under natural
conditions, N. tabacum egg cells are only found at anthesis or
later (Tian and Russell, 1997; De Martinis and Mariani, 1999).
Ovule differentiation is not synchronized in N. tabacum ovaries,
and ovules at the top of the ovary (next to the style) are typically
more advanced than ovules at the base of the ovary.

To confirm the effects of pollination on female gametophyte
development at the molecular level, we analyzed the expression
of the NtECI gene in late stage 7 ovaries 24 h after emasculation
(unpollinated) and 24 h after emasculation and pollination
(pollinated). ECI is a gene specifically expressed in the egg cell
(Sprunck etal., 2012; Rademacher and Sprunck, 2013). Therefore,
we searched the available databases using the Arabidopsis EC1.2
sequence (AT2G21740) as a query to find the N. tabacum ECI
homolog (NtEC! - Supplementary Figure S2) and designed
specific primers for RT-qPCR. The expression of NtECI was
more than 30-fold higher in pollinated compared to unpollinated
late stage 7 ovaries (Figure 5A). Taken together, these results
demonstrate that pollination stimulus is able to accelerate female
ovule maturation even in early developmental stages prior to
anthesis.
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Stage 4

@
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FIGURE 3 | Germination of pollen grains and pollen tube growth after
pollinations performed at different stages of N. tabacum flower
development. Pistils of the indicated stages were hand pollinated, and 24 h
later, stained with aniline blue and observed by fluorescence microscopy. On the
left side of the figure, there is a scheme of the N. tabacum pistil, which shows
the pistil part observed in each line of the microscopy images (stigma, style, and
ovary). (A) Pollen grains not germinated on the stigma surface of flowers at
stage 4. (B) Style of stage 4 flowers in the absence of pollen tubes. (C) Ovary of
stage 4 flowers where no pollen tube has reached. (D) Pollen grains germinated
at the stigma surface of stage 5 flowers. (E) Pollen tubes growing in the style of

Stage 7 Stage 11

stage 5 flowers. (F) Pollen tube reaching the ovule (arrow) of stage 5 flowers.
(G) Pollen grains germinated at the stigma surface of stage 7 flowers. (H) Pollen
tubes growing in the style of stage 7 flowers. Observe the higher number of
pollen tubes compared to the stage 5 style. (I) Detail of ovules of stage 7
flowers, where pollen tubes have reached. (J) Pollen grains germinated at the
stigma surface of stage 11 flowers. (K) Growth of pollen tubes in the style of
stage 11 flowers. There are more pollen tubes when compared to stages 7 and
5. (L) Detail of the ovules present inside the ovary of stage 11 flowers. Arrows
indicate pollen tubes. Scale bars represent 60 wm in (A,B,D,E,G,H,J,K,L);

150 pmin (C,F).

FIGURE 4 | Histological analysis of the pollination effect on

N. tabacum late stage 7 ovules. (A) Ovule from non-pollinated flower
bud at late stage 7 (35 mm in size). The picture shows an ovule at the
beginning of the first mitotic division, where it is possible to visualize the
metaphasic plate (arrow). (B) Ovule from non-pollinated flower bud
harvested 24 h after being emasculated at late stage 7 (35 mm in size).

The picture shows the end of the first mitotic division (arrows). (C) Ovule
from pollinated flower bud harvested 24 h after pollination at late stage 7
(85 mm in size). This picture shows the egg cell (arrow). This structure is
typically observed only in ovules of stage 12 flowers 24 h after anthesis
(Tian and Russell, 1997; De Martinis and Mariani, 1999). Bars represent

20 wm in the first two pictures (A,B) and 10 um in the last picture (C).

To further clarify the nature of the pollination signal necessary
for ovule maturation, we investigated whether pollination would
induce ACC synthase expression in young pistils. Flowers at
stage 6 and late stage 7 were emasculated and either hand

pollinated with mature pollen or left unpollinated. After 24 h, the
stigmas/styles were collected and used for RNA extraction. RT-
qPCR experiments have shown that unpollinated young pistils
do no express NtACS, whereas pollination is capable of inducing
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FIGURE 5 | Expression of NtEC1 and NtACS genes in unpollinated and
pollinated pistils of stage 6 and late stage 7 flower buds. (A) Expression
of NtEC1 gene in unpollinated and pollinated ovaries of late stage 7 flower
buds. Expression was normalized using as reference genes GAPDH and
RPL2. Relative expression was determined by comparing the NtEC1
transcript level between unpollinated, considered as 1, and pollinated ovaries.
(B) Expression of NtACS gene in unpollinated and pollinated stigmas/styles of
stage 6 and late stage 7 flower buds. The relative expression levels are
represented in arbitrary units (A.U.) normalized to the expression level of the
GAPDH gene, used as a reference, in each RNA sample. REST statistical
analysis indicated a difference in NtEC1 gene expression among unpollinated
and pollinated ovaries (A) and differences between unpollinated and pollinated
stigma/styles in each stage (6 and late 7; B). (Bars represent the SE and

* indicates statistically significant difference).

its expression in stigmas/styles at both developmental stages
(Figure 5B). There is a difference between NtACS expression
in pollinated stage 6 and late stage 7 samples; however, this
difference is not statistically significant. These results suggest that
if ethylene and/or ACC contribute to the pollination signal, they
are not sufficient to guarantee successful fertilization and fruit set.

Discussion

The present study was designed to investigate the developmental
timing of important events in preparation for successful

fertilization. As a major achievement, we determined the effects of
pollination in N. tabacum ovule development in flower buds prior
to anthesis. At stage 5, the stigma is already receptive, displaying
positive peroxidase activity and consistently supporting pollen
tube growth through the style. Controlled hand pollinations at
different developmental stages demonstrated that fruit formation
occurred only at late stage 7 (34-38 mm) onward. Pollinations
at stages 5, 6 and early stage 7 did not result in fruits despite
stigma receptivity. Based on the developmental and physiological
differences concerning fruit formation between 28-33 mm and
34-38 mm stage 7 flower buds, we propose to divide stage 7,
previously described by Koltunow et al. (1990), into early stage
7 and late stage 7, respectively.

Effective pollination, which results in fruit set, is mainly
determined by stigma receptivity, pollen tube kinetics, and
ovule development (Sanzol and Herrero, 2001). Our results
on positive peroxidase activity correlated with the stigma’s
ability to sustain pollen tube growth or, in other words, stigma
receptivity. However, the developmental stages of stigmas/styles
influenced the number of growing pollen tubes (Figure 3); later
developmental stages exhibited higher capacities to sustain a
larger number of growing pollen tubes. In some species, the
low number of pollen tubes is directly related to fruit abortion
(Sutherland, 1987; Bjérkman, 1995; Niesenbaum, 1999). Our
results show that in N. tabacum, there is a direct correlation
between the developmental stage of the pollinated pistil, the
amount of growing pollen tubes, and fruit set (Figures 3 and 6;
Table 1). Therefore, an additional important parameter to be
considered for effective pollination is the number of pollen tubes
growing through the style.

Which developmental changes in the pistil can affect the
number of growing pollen tubes? Pollen tube growth is
heterotrophic, and stages 5, 6 and early stage 7 tobacco pistils
may not have sufficient carbohydrates to sustain a large number
of pollen tubes. An alternative explanation is that styles younger
than late stage 7 may not have the necessary intercellular spaces
between cells of the transmitting tissue. Tobacco pollen tubes
grow in the intercellular spaces of the specialized tissues of the
stigma/style, and, at anthesis, these cells are loosely arranged
and easily separated (Cresti et al., 1986). The developmentally
regulated expression of a pistil-specific pectin acetylesterase gene,
which is important for decreasing cell adhesion among these
cells (Quiapim et al, 2009) and some other morphological
and/or physiological factors, may limit the number of pollen
tubes growing in pistils younger than late stage 7. A sharp
developmental threshold exists: tobacco flower buds with 33 mm
or less in length do not have the necessary characteristics to
sustain enough pollen tubes and thus to produce a sufficient
number of fertilized ovules. Tobacco flower buds of 34 mm and
longer are capable of expressing or have already accumulated all
the factors required for growth of a minimum number of pollen
tubes and thus for fruit production.

Concerning ovule development, our results clearly show
that at late stage 7, ovules are still immature and the female
gametophytes are at the beginning of the first mitotic division.
Therefore, it is surprising that pollinations at this developmental
stage produce fruits and seeds. Our detailed analyses of

Frontiers in Plant Science | www.frontiersin.org

July 2015 | Volume 6 | Article 561


http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

Brito et al.

Pollination triggers female gametophyte development

120
Phase 0 Phase 1 Phase 2 Phase 3
100 —
" /
".:-‘ = -
s
80 -~ P
-~ '/
P = '/ ---ees Peroxidase activity
o 60 ’/ ——Fruits formed
‘ ¢ ====Fruit weight
’,
: s — -Seed germination rate
40 7
20
0
Floral stage 4 5 6 early7 late7 8 9 10 11
Bud size (mm) 16-19 20-21 22-27 28-33 34-38  39-42 43-44 45-46 47
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developmental stages in which no preparation for pollination exists. Phase 1 restricted to late stage 7. Phase 3 is comprised of the developmental stages
was defined as the onset of stigma receptivity (positive peroxidase activity at the 8-11, in which gradual improvements in fruit weight and seed germination
stigma surface and sustainable pollen tube growth through the style) until the capacity occur.

pollinations performed on late stage 7 pistils demonstrated
the effect of accelerating female gametophyte maturation.
The pollination effect in triggering ovule maturation was
demonstrated both by histological analysis as well as expression
of the NtECI gene. In this context, a signal is clearly produced
in response to pollen tube growth through the stigma/style and
reaches the ovules. What is the nature of this signal? Several
types of signals have already been identified as mediators during
plant reproduction, such as ethylene (O’Neill et al., 1993; De
Martinis and Mariani, 1999; Jones and Woodson, 1999) and
its precursor ACC (Jones and Woodson, 1999), gamma-amino
butyric acid (Palanivelu et al., 2003), TAA (Chen and Zhao,
2008), jasmonic acid and its derivatives (Avanci et al., 2010;
Stitz et al., 2014), calcium (Tian and Russell, 1997; Ge et al,,
2009), and peptides (Higashiyama, 2010; Chae and Lord, 2011).
Pollination acts as a stimulus and increases the concentration of
calcium and ethylene in N. tabacum flowers (Tian and Russell,
1997; De Martinis and Mariani, 1999). ACC oxidase-silenced
transgenic plants and with impaired ethylene synthesis are unable
to complete female gametophyte development (De Martinis and
Mariani, 1999). In addition, application of ethylene restores
female gametophyte development in these transgenic flowers (De
Martinis and Mariani, 1999). Furthermore, the concentrations
of enzymes related to ethylene synthesis are altered in response
to pollination in Solanaceae species (Llop-Tous et al., 2000;
Weterings et al., 2002). These studies were mainly conducted
with flowers at developmental stages close to anthesis. However,
no detailed study was previously performed to investigate the
effect(s) of pollination in young tobacco flower buds, and little
is known about the signal(s) produced at these earlier stages.

We investigated the expression of the ACC synthase gene as
an attempt to identify the pollination signal that triggers female
gametophyte maturation at young pistils. The results show that
stage 6 pistils, which are unable to produce fruits, induce NtACS
expression in a pollination-dependent manner. This result is
consistent with the literature (Weterings et al., 2002) and suggests
that ACC and/or ethylene is not the primary signal necessary for
ovule maturation, at least at early stages of flower development.
An alternative explanation is that the ACC and/or ethylene
produced at stage 6 does not reach a threshold level and is thus
insufficient to trigger the maturation observed at late stage 7.
Additionally, ovule maturation is dependent on perception of the
pollination signal. Therefore, it is possible that although stage 6
stigmas/styles produce the pollination signal (e.g., ACC and/or
ethylene), ovules do not express the signal receptor yet and are
incompetent to respond. We remain unable to define the nature
of the pollination signal, but it can travel fast and/or act as a
long-range signal, reaching embryo sacs located a few centimeters
away. Additionally, this pollination signal is so strong that it
is capable of overwriting the natural developmental program
within the tobacco ovule and accelerates female gametophyte
maturation in anticipation of fertilization.

Tobacco pistil development occurs in multiple stage-specific
phases along the pistil path (stigma, style, and ovary) in
preparation for pollination and fertilization. We propose that
phase 0 comprises the initial developmental stages (stages 1-4),
from stigma differentiation until the onset of stigma receptivity.
Phase 1 represents the first pistil indicator of a preparation
for pollination: the onset of peroxidase activity at the stigma
surface, which parallels the capacity of sustaining pollen tube
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growth or stigma receptivity (stages 5 to early stage 7). At
this phase, a few pollen tubes reach the ovules but do not
penetrate them (Supplementary Figure S1). Phase 2 could be
defined as a turning point based on an array of physiological
acquisitions that allow a large number of pollen tubes to grow
a long distance, reaching, and penetrating the ovules. Thus,
late stage 7 corresponds to a critical developmental moment,
in which sufficient pollination signal(s) is(are) produced and
embryo sacs are capable of perceiving and responding. Hence,
female gametophyte maturation is triggered; fruits and seeds are
produced. However, the fruits are small, and not all seeds are
able to germinate (the germination rate was 65% =+ 5.7% for
late stage 7 pollination), suggesting that pollination is sufficient
but that a parallel mechanism (secondary signals or cellular
development) should take place for proper seed formation (stages
11 and 12). Phase 3 is comprised of intermediate developmental
stages (stages 8-11) in which gradual improvements take
place, resulting in increasingly larger and heavier fruits (which
is correlated with the number of seeds), containing seeds
with progressively higher germination capacity (Figure 6).
Phase 4, likely representing the best pollination and fertilization
conditions, should occur at anthesis (stage 12), a developmental
moment not analyzed in this work.

In recent years, knowledge has increased considerably
concerning the responses elicited at the pollen tube in response
to its growth along the pistil path and the signals produced
by the pistil which are perceived by the pollen (Qin et al,
2009; Palanivelu and Johnson, 2010; Palanivelu and Tsukamoto,
2012; Beale and Johnson, 2013). However, little is known
about the pollination signal and the responses triggered at the
stigma/style and ovary (the female responses during pollen—pistil
interactions). Our results indicate the existence of a powerful
program that guarantees the coordinated and synchronized
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