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Plant reproductive transcriptomes have been analyzed in different species due to the
agronomical and biotechnological importance of plant reproduction. Here we presented
an olive tree reproductive transcriptome database with samples from pollen and pistil at
different developmental stages, and leaf and root as control vegetative tissues (http://
reprolive.eez.csic.es). It was developed from 2,077,309 raw reads to 1,549 Sanger
sequences. Using a pre-defined workflow based on open-source tools, sequences were
pre-processed, assembled, mapped, and annotated with expression data, descriptions,
GO terms, InterPro signatures, EC numbers, KEGG pathways, ORFs, and SSRs.
Tentative transcripts (TTs) were also annotated with the corresponding orthologs in
Arabidopsis thaliana from TAIR and RefSeq databases to enable Linked Data integration.
It results in a reproductive transcriptome comprising 72,846 contigs with average length
of 686 bp, of which 63,965 (87.8%) included at least one functional annotation, and
55,356 (75.9%) had an ortholog. A minimum of 23,568 different TTs was identified and
5,835 of them contain a complete ORF. The representative reproductive transcriptome
can be reduced to 28,972 TTs for further gene expression studies. Partial transcriptomes
from pollen, pistil, and vegetative tissues as control were also constructed. ReprOlive
provides free access and download capability to these results. Retrieval mechanisms for
sequences and transcript annotations are provided. Graphical localization of annotated
enzymes into KEGG pathways is also possible. Finally, ReprOlive has included a
semantic conceptualisation by means of a Resource Description Framework (RDF)
allowing a Linked Data search for extracting the most updated information related to
enzymes, interactions, allergens, structures, and reactive oxygen species.

Keywords: olive, transcriptome, reproduction, database, pollen, pistil, annotation

Introduction

Research in plant reproduction is accelerating rapidly as a direct consequence of the technological
progresses (Dickinson and Franklin-Tong, 2011). Differential screening was initially used to
identify abundant or specific transcripts of very specialized cells (Engel et al., 2003) and have been
progressively replaced by the use of commercial microarrays and RNA-sequencing platforms. The
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use of transcriptomic approaches is unraveling the particular
functionality of the key subsets of cells in charge of male
and female gamete formation, and the complex interactions
and signaling networks involved in the pollen–pistil interaction
[reviewed in (Dukowic-Schulze and Chen, 2014)]. In good
agreement with the degree of difficulty in isolating reproductive
cells and extracting their RNAs, most studies up to date have
reported gene expression in whole anther tissues, followed by
male meiocytes, and female structures and meiocytes, being
Arabidopsis thaliana the most widely studied, followed by
lily, tobacco, brassica, petunia, maize, cotton, rice, and others
(Dukowic-Schulze and Chen, 2014; Rutley and Twell, 2015).
Those studies had shown that reproductive transcriptomes are
substantially different from their vegetative counterparts, in
concordance with the high proportion of specific transcripts
present in these tissues, sometimes 4–11% of the total number of
the genes expressed, depending on the normalization algorithms
used and the number and diversity of sporophytic data sets
used for comparison (Rutley and Twell, 2015). Moreover,
huge differences in terms of temporal expression are present
among developmental stages (e.g., meiosis initiation, mature
pollen, pollen germination) and spatial/tissue localization (e.g.,
sporogenous tissue, tapetum, isolated pollen grains, pollen
tube. . .), the most striking changes occurring in the mature
pollen upon hydration and germination (Wang et al., 2008; Wei
et al., 2010). The peculiarity of reproductive tissues in terms of
gene expression also deserves a dedicated study not only for
agronomical, biological, and biotechnological reasons but also in
search of putative new allergens in pollen (El Kelish et al., 2014;
Villalba et al., 2014).

Olive tree (Olea europaea L.) is one of the most important
oil-producing plant species all over the world. While waiting
for the genome sequence (Muleo et al., 2012), transcriptomic
approaches have been exploited. For example, subtractive
libraries from olive fruits sampled at three different stages
shed light on metabolic pathways and transcriptional aspects
related to carbohydrates, fatty acids, secondary metabolites,
transcription factors, and hormones as well as response to
biotic and abiotic stresses throughout olive drupe development
(Galla et al., 2009). Comparative 454 pyrosequencing from two
olive genotypes during fruit development provided information
about the structure and putative function of gene transcripts
accumulated during fruit development, reporting differentially
expressed genes with potential relevance in regulating the fruit
metabolism and phenolic content during ripening (Alagna et al.,
2009). ESTs were generated from two cDNA libraries from young
olive leaves and immature olive fruits (Ozgenturk et al., 2010),
which serve as a valuable source for further functional studies.
Sanger sequencing and further microarray analysis identified
differentially expressed transcripts in salt–tolerant and salt–
sensitive olive cultivars (Bazakos et al., 2012). The olive abscission
zone during cell separation in order to understand mature
fruit abscission control was also studied by high-throughput
sequencing (Gil-Amado and Gomez-Jimenez, 2013) to help
in current olive breeding programs. More recently, 12 cDNA
libraries from olive fruit, seeds, young stems, leaves, buds, and
roots were sequenced, assembled and annotated (Muñoz-Merida

et al., 2013). It is quite promising that information about olive
genome is appearing in recent years. For example, The Olive
Genome Project (OLEA) is expected to offer transcriptomic
studies, molecular markers and genomic information about
the Leccino cultivar1. There is also the International Olive
(O. europaea) Genome Consortium (IOGC) whose goal is to
sequence the whole genome of olive and identify the biological
nature of this plant2. The current status of a wild olive sequencing
an annotation can be downloaded from IOGC, and several
basic, genome analyses have been implemented on the web
page.

A number of questions involving olive reproductive biology
are still open. They include the search of explanations and the
definition of criteria for potential improvements of the plant as
regard to the selection of genotypes, the culture conditions to
prevent alternate bearing [the tendency for not to bear a regular
and similar crop yield year after year (Turktas et al., 2013)], the
extended juvenility of the plant (particularly in some cultivars),
and the presence of self-incompatible genotypes. Knowledge
about the pollen-pistil interactions in this plant is still scarce,
and molecular evidence of the presence of self-incompatibility
mechanisms (although largely suspected of the gametophytic
type), is also limited in spite of the most recent transcriptomic
analyses reported as conference proceedings (Barcaccia et al.,
2012; Collani et al., 2012). Hence, this study extracted RNAs
from pollen and pistil in different maturing and developing
stages to provide a reproductive transcriptome of olive tree and
a user-friendly database containing the resulting information.
Database queries may help scientists to develop further research
and to design strategies to improve both yield and quality in
these agronomic fields. Moreover, new clinical approaches are
also expected to derive from the increased knowledge about the
putative allergens present in the olive pollen.

Materials and Methods

Sequence Processing
RNA Sources and Sequencing
With the aim of providing sequences from the development of
olive reproductive tissues, eight gene libraries were constructed
(Table 1). RNAs and mRNAs from mature pollen grains, in
vitro germinated pollen at two different times after hydration
(1 and 5 h), and pistils at developmental stages 2, 3, and 4
[as defined by (Zafra et al., 2010)] were isolated using RNeasy
Plant and Oligotex PolyA+ kits (Qiagen), respectively. cDNA
libraries to be sequenced with a Roche GS-FLX Titanium+ were
generated using the cDNA Synthesis System Kit (Roche) and the
raw read were uploaded to the SRA database with BioProject
ID PRJNA2871073. As a representation of olive vegetative
transcriptome for control purposes, four additional gene libraries
from olive leaves, roots, and radicles were constructed and
sequenced. Finally, the three subtractive libraries (named with

1http://www.oleagenome.org
2http://olivegenome.karatekin.edu.tr
3http://www.ncbi.nlm.nih.gov/bioproject/287107

Frontiers in Plant Science | www.frontiersin.org 2 August 2015 | Volume 6 | Article 625

http://www.oleagenome.org
http://olivegenome.karatekin.edu.tr
http://www.ncbi.nlm.nih.gov/bioproject/287107
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Carmona et al. ReprOlive: an olive tree reproductive transcriptome database

TABLE 1 | Gene libraries used in ReprOlive.

Gene library Tissue Developmental stage Sequencing method Raw reads Useful reads

PM-Subs Pollen Mature Sanger 666 518

PM Pollen Mature Pyrosequencing 216,497 111,242

PG1 Pollen 1 h germination Pyrosequencing 258,167 141,232

PG5 Pollen 5 h germination Pyrosequencing 233,921 120,276

S2 Pistil Stage2 Pyrosequencing 257,813 138,077

S3 Pistil Stage3 Pyrosequencing 247,401 141,903

S4 Pistil Stage4 Pyrosequencing 262,269 149,929

S4-Subs Pistil Stage4 Sanger 480 256

L Leaf Mature Pyrosequencing 223,399 41,178

L-Subs Leaf Mature Sanger 403 251

R1 Root Mature Pyrosequencing 231,237 25,899

R2 Root Radicle Pyrosequencing 145,204 22,075

“Subs” in Table 1) resulting from the comparison of mature
pollen, pistils at developmental stage 4 and leaves, sequenced by
the classical Sanger method (Zafra et al., in preparation), were
also included.

Sequence Pre-Processing and Assembling
Raw reads were pre-processed and assembled following the same
pipeline as previously described by our laboratory (Benzekri et al.,
2014; Canales et al., 2014) and illustrated as a flow diagram in
Supplementary Figure S1. Briefly, pre-processing was based on
SeqTrimNext4 (Falgueras et al., 2010) to remove low quality,
ambiguous and low complexity stretches, linkers, adaptors, vector
fragments, organelle DNA, polyA/polyT tails, and contaminated
sequences while keeping the longest informative part of the
read. Pyrosequences below 40 bp and Sanger sequences below
100 bp were also discarded. Useful reads (Tables 1 and 2) were
assembled with an overlap-layout-consensus algorithm such as
MIRA3 (Chevreux et al., 2004), and a strict de Bruijn graph
analyzed by a Eulerian path such as Euler-SR (Pevzner et al.,
2001). The contigs obtained (Table 2) were reconciled with CAP3
(Huang and Madan, 1999) at 85% similarity to provide a final set
or tentative transcripts (TTs) having consensus sequences closer
to real transcripts (Liang et al., 2000; Fernandez-Pozo et al., 2011).
The overestimated number of TTs in these tissues was reduced on
the basis of TT annotations.

Annotation
Functional classification of a list of interesting genes is
absolutely required for future comparative studies. Reliable
annotations were generated by combining separate information
sources. Therefore, gene descriptions (taken from the closest
plant ortholog), GO terms, Enzyme Commission codes (ECs),
and InterPro signatures were provided by Sma3s (Muñoz-
Mérida et al., 2014) using the non-redundant plant division of
UniProtKB in order to remove spurious annotations. KEGG
maps were retrieved directly from the KEGG site using the
obtained ECs. Another gene description (based on the closest
plant ortholog >45% identical), putative start and stop codons,
predicted amino-acid sequence, ORF status (full-length or

4http://www.scbi.uma.es/seqtrimnext

incomplete coded proteins), putative ncRNAs (based on fRNAdb
sequences5) excluding mature miRNA and other short reads],
A. thaliana ortholog from TAIR10 (Lamesch et al., 2012)
and RefSeq (Pruitt et al., 2012; as is in Nov 2012), protein
coding status based on TransDecoder6 (Haas et al., 2013), and
the reference set of TTs were provided by Full-LengtherNext7
(Seoane et al., submitted). Microsatellites, as a source of genetic
markers, were obtained by screening for the presence of SSR
motifs using MREPS8 (Kolpakov et al., 2003) with default
parameters counting repeats whose period was at least 2 and
size at least 12 and a coverage of up to 1000 reads. A total
of 5,835 reproductive TT (1,976 in pollen and 4,822 in pistil
transcriptomes, Table 2) are having microsatellites on their
sequences. In our previous experience (Fernandez-Pozo et al.,
2011; Benzekri et al., 2014; Canales et al., 2014), detection of SNPs
in natural populations requires a huge amount of data and is very
difficult to interpret (Benzekri et al., 2014); therefore, SNPs have
not been predicted.

The flow template based on AutoFlow (Seoane et al., in
preparation) that automates the complete process from pre-
processing to annotation is detailed in Supplementary Figure S2.

Expression Data
Since the Roche FLX platform produces a limited number of
reads in contrast to Illumina ultrasequences, libraries described
in Table 1 were combined to obtain a pool of reads from pollen
(libraries PM-Subs, PM, PG1 and PG2, 373,268 reads), pistil
(libraries S2, S3, S4, S4-Subs, 430,165 reads) and vegetative tissues
(libraries L, L-Subs, R1 and R2, 89,403 reads). These reads were
mapped to all reference TT included in ReproOlive (Table 2)
using Bowtie2 (Langmead and Salzberg, 2012) and allowing each
read to map in every complementary TT. Mapped reads were
counted with Bio-samtools from BioRuby (Goto et al., 2010) and
included in the database as row counts (available for download
to be analyzed with other software) or as RPKM values (for

5www.ncrna.org
6http://transdecoder.github.io
7http://www.scbi.uma.es/fulllengthernext
8http://bioinfo.lifl.fr/mreps/
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TABLE 2 | Main features of transcriptomes in ReprOlive based on
Full-LengtherNext analyses.

Feature Pollen Pistil Vegetative Reproductive

Assembling statistics

Number of useful reads 373,268 430,165 89,403 803,433

Mean length (nt) 383 385 545 384

Number of MIRA3 contigs 54,754 73,823 42,310 116,298

Number of Euler-SR contigs 4,807 15,216 490 16,211

Number of Contigs after
CAP3 reconciliation

28,094 60,964 39,425 73,589

Number of TTs without
chimeras and artifacts∗

27,823 60,400 38,919 72,846

Mean length (nt) 608 678 664 686

N50 (nt) 661 780 683 798

Annotation statistics

Longest TT (nt) 7,016 7,757 2,865 7,950

Number of ncRNAs 31 17 265 45

Number of TTs with
annotation

24,861 54,129 36,700 63,965

Number of TTs with
ortholog

21,607 46,910 32,076 55,356

With unique ortholog IDs 11,672 21,326 15,003 23,568

With ortholog from
Arabidopsis thaliana
RefSeq

21,233 46,924 31,945 54,890

Unique RefSeq IDs 9,769 16,565 12,489 17,612

With ortholog from
A. thaliana TAIR10

21,312 47,038 31,980 55,067

Unique TAIR10 IDs 8,922 14,656 11,247 15,503

Number of TTs coding a
complete protein

2,809 7,137 3,559 9,157

Unique, complete proteins 1,976 4,822 2,220 5,835

Number of TTs without
ortholog

6,185 13,473 6,578 17,445

Likely coding for a
complete protein

170 446 242 628

Likely coding for an
incomplete protein

2610 5,312 2,523 6,486

Reference transcriptome

Number of representative
TTs

13,589 25,720 17,340 28,972

Arabidopsis thaliana
RefSeq orthologs

10,878 20,612 14,576 22,565

Unique RefSeq IDs 8,281 13,901 10,349 14,706

Arabidopsis thaliana
TAIR10 orthologs

10,900 20,658 14,581 22,638

Unique TAIR10 IDs 7,842 12,883 9,756 13,584

∗Artifacts are internal, direct or inverse, repetitions.

comparing purposes in order to clearly identify TTs specific or
not from pollen and/or pistil).

Database Construction
Implementation and Architecture
ReprOlive runs with the Apache HTTP Server 2 and MySQL
5 database management system in Linux OS. Ruby On Rails9

9http://rubyonrails.org/

2.3.11 scripts were used to create the user interface on HTML 5
coupled with MySQL to use of a model-view-controller pattern
to maintain strict separation between the web interface (views)
code, database contents (models), and all methods that handle
interactions between views and database (controllers). This
allowed to divide the database in four different virtual machines
(Figure 1): one for the web interface, one for the database
content, one for calculus methods (e.g., blast queries) and the
fourth for Linked Data (semantic) search. BioRuby (Goto et al.,
2010) is required for some importation and managing tasks.
The functionality of the Linked Data search was implemented
using a SPARQL EndPoint [a service to send queries to the
Resource Description Framework (RDF) database] provided by
an instance of Virtuoso Open-Source Edition. RDF information
has been produced using D2RQ (dump-rdf script), mapping
the database schema with one application ontology10. The
use of independent virtual machines distributes tasks between
machines, allowing for multiple, concomitant browsing and
searching capabilities.

Availability and Updates
ReprOlive is freely available at http://reprolive.eez.csic.es.
Bulk imports, updates, and database managements were
automated: when source data are saved in import_new_projects
folder, the database automatically launches the necessary Ruby
gems that import sequences, annotations, and expression
data into a new assembly version of the database. Therefore,
updates of ReprOlive transcriptomes with re-assembled
and re-annotated TTs, and new expression data, will be
automatically incorporated, making the database easily
scalable, maintainable, and expandable. Implementation
based on independent virtual machines makes ReprOlive easily
clonable and adaptable to any computer environment without
complicated installations.

Results and Discussion

Web Interface and Navigation
Since molecular sequence databases are fundamental resources
for modern bioscientists, ReprOlive currently houses annotated
sequences of olive tree pollen, pistil, a small set of vegetative
tissues, and a tentative transcriptome combining reproductive
tissues (Table 2 and Figure 2A). It has been designed with
a user-friendly interface that can be browsed anonymously to
facilitate researchers to access to this information. There is a
navigation bar containing buttons for database mining from
different entry points and based on different criteria, including
three different possibilities of search (by sequence, by text strings
on annotations, and by Linked Data).

Home Page
ReprOlive is accessed by a home page where general information
is offered in three panels. The left panel contains links to the
version history of the database, the scheme of the pipeline

10http://150.214.214.6/olivedb.owl
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FIGURE 1 | Database organization in virtual machines. Using Web
browsers, users will retrieve data from ReprOlive by querying or browsing
through the Web interface. Web pages are generated on demand by the virtual
machine that manages the Web interface. When queries require intensive

calculations (for example, Blast comparisons), they are performed by the virtual
machine for calculus. Queries to the RDF of ReprOlive are handled by the virtual
machine for semantics. The use of different virtual machines is transparent for
the user that can only see inputs and outputs in user’s Web browser.

that produced the last version as automatically provided with
AutoFlow, and the history of visits. On the right panel,
information about tool versions used in the assembly pipeline,
the current database release and the funding credits. This
page can be recalled by means of the “Home” button in the
navigation bar.

Assemblies
The button “Assemblies” in the navigation bar (Figure 2A)
opens the page to start browsing the database by means of tab
panels (Figure 2A, from “All assemblies” to “Expressions”, all
explained in next subsections); note that the word ‘assemblies’ is
used here as synonym of ‘transcriptomes.’ The “All assemblies”
tab is shown by default when “Assemblies” is selected in the
navigation bar. This tab displays the four transcriptomes that can
be browsed in ReprOlive: pollen, pistil, reproductive (includes the
sum of pistil and pollen data but not both tracks separately) and
vegetative (includes the sum of root and leaf data but not both
tracks separately; Figure 2A). The reproductive transcriptome is
selected by default (Figure 2A) but any of the other three can
be selected by the scientist. Multiple selections of transcriptomes
are not allowed since only one transcriptome can be browsed at a
time.

The tab “Assembly info” will provide general and statistical
information about the transcriptome selected in the “All
assemblies” tab. The name of the selected transcriptome is always
shown in the first row of any as Assembly Name (Figure 2B). The
page is vertically divided, where the left side contains detailed
information about the chosen assembly. The right side gives
the possibility of (i) downloading the whole set of TTs in Fasta
format, (ii) downloading only the reference TT with annotations,
(iii) downloading sequence and annotations for a custom set of
TT identifiers, and (iv) downloading raw expression data. These
capabilities have been designed to provide data for further use in
external tools instead of embedding cumbersome, bioinformatic
tools in the own database.

Tentative Transcripts’ Tab
To navigate through all TTs in the assembly (transcriptome) in
a paginated way, the tab of “Transcripts” in the navigation bar
must be selected (Figure 2B). Each TT code is illustrated with
relevant information, such as its length, descriptions, ORF status,
and if it is a reference TT (column ‘Where’). Since consistency
of descriptions is a sign of reliable annotation, common words
in the description for one TT are marked in green. There are
three independent ways of filtering TTs (identifiable in different
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FIGURE 2 | Screen captures providing a general overview of ReprOlive. (A) “All assemblies” panel showing the four transcriptomes included in the database.
(B) First page of “Tentative transcript (TTs)” panel, where filtering criteria are accessible and information about each TT is displayed (see text for details). TTs are
shown in pages of 20 sequences.

rows in Figure 2B) that are always applicable on the complete list
of TTs:

(1) The first filtering of TTs can be done with the first row
of three gray buttons (Figure 2B). By default, the view
of “Annotated transcripts” (second button in the row)
is displayed, but all TTs can be shown using the “All
transcripts” (first button in the row).

(2) The second filtering corresponds to the second row of gray
buttons (Figure 2B, from “Complete” to “Unknown”) that

correspond to ORF statuses. For example, “Complete” gray
button filters out TTs that do not code for a complete protein;
“Coding” button retains TTs without predicted ORF that
should code for a protein based on the TransDecoder test.
Also, TTs corresponding to putative ncRNA precursors can
be selected with the corresponding “Putative ncRNA” gray
button of this row.

(3) The third way of filtering is based on the text content of
TTs by means of pop-up menu and text field below the
previous rows (Figure 2B). This filtering allows finding
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FIGURE 3 | Information shown for one single TT, i.e., ‘rp11_olive_022501’ corresponding to an adenylate kinase where the “Annotation” and “ORF
prediction” pop-up texts are deployed. See text for details.
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a particular TT (e.g., the cysteine proteinase coded by
‘rp11_olive_018645’), or a family of sequences (e.g., for the
reproductive transcriptome, the 115 cysteine proteinases in
ReprOlive, or the 16 complete ORFs coding for cysteine
proteinases).

Clicking on one TT identifier (column “Name”, Figure 2B)
in any displayed list, the complete information about this TT
is shown as a pop-up text (Figure 3). The first block, named
“Transcript Fasta,” shows the sequence and a button on the
right to download it in Fasta format. The “Annotations” block
contains the following tables: (1) the assigned descriptions by
Sma3s and Full-LengtherNext as a user-friendly way to offer
information about tentative functions; (2) tables for gene names,
GOs, ECs, KEGG pathways, each one accompanied by the
associated E-value to enable another empirical assessment of
annotation quality. (3) the InterPro signatures, which add high-
valued annotations, such as functional sites, protein families, or
conserved domains, with a single search (Hunter et al., 2012);
and (4) the TAIR and RefSeq orthologs of A. thaliana (Table 2),
permitting gene-enrichment and functional analyses with a
non-model species such as olive tree. The “ORF prediction”
block (Figure 3) comes from the Full-LengtherNext predictions,
providing the putative ORF, if this ORF is complete, the position
of start and/or stop codons, and the alignment that allows
such predictions. The ORF prediction is an extremely useful
information that will find direct use in laboratories, for example
in designing primers to clone ORFs, or designing 3′-probes that
discern between closely related TTs. Finally, if the TT shown is
part of the reference transcriptome, the “Expression” block at the
bottom will show the raw counts and RPKM of this TT in the
three types of tissues included in ReprOlive (pollen, pistil, and
vegetative). These data display whether the expression of this TT
is specific, up-regulated or down-regulated in any of the samples.
For example, the TT shown in Figure 3 is more expressed in
pistil than in pollen, and is not expressed in vegetative (leaf
and root) tissues, making it a good candidate for a specific
reproductive TT.

SSR Tab
Plant cDNAs from natural orchards should be heterozygous and
contain a high frequency of polymorphisms. Since microsatellites
(SSRs) occur frequently in most eukaryote genomes and can
be very informative, multi-allelic and reproducible, the “SSR”
tab (Figure 2) shows the list of TTs having at least one SSR
available and the TT where it is found. Each SSR motif is
shown as a tetrad containing its sequence, the TT that contains
it, and the start and end positions. SSRs can be filtered by
the number of nucleotides in the motif and by their length,
revealing that reproductive transcriptome has hexanucleotide
motifs in 501 TTs, tetranucleotide motifs in 575 TTs, and that
493 SSRs have more than 20 nt in length. SSRs have direct
applications as molecular markers since they are easily converted
in primers (Guerrero et al., 2010) that provide co-dominant and
stable results (Abdellatif and Khidr, 2010) that overcome the
limitations of other types of molecular markers (Garcia et al.,
2004). Moreover, ORF-based SSRs are more advantageous since

they will reduce themapping efforts required for the development
of high-density maps and association studies, and will facilitate
comparative genomics.

Descriptions, GO, EC, and InterPro Tabs
The TT annotations (Figure 3) can also be browsed by means
of their respective tab panels (Figure 2). Unfortunately, since
descriptions were written by humans, it is frequent to find
different descriptions for the same sequence (Figure 4A), as
can be deduced by the fact that there are 82,334 descriptions
for 63,965 TTs with functional annotations. Clicking on one
description, the collection of TTs sharing it is displayed. Tab
panels (Figure 2) for browsing through the 45,781 GOs,
the 10,003 ECs, and the 187,899 InterPros behave as in the
“Description” tab panel (Figure 4).

KEGG Pathways’ Tab
The “KEGG Pathways” tab panel (Figures 2 and 5) shows in
a paginated way the 146 reproductive tissue pathways (143 in
pollen and 146 in pistil) and 145 vegetative pathways sorted
by the number of ECs (Figure 4B, “Present ECs” column)
identified in ReprOlive. The pathway codes, the total number
of pathway enzymes (Figure 4B, “Total ECs” column) as well
pathway coverages [Figure 4B, “Coverage (%)” column], are also
displayed. Among the most covered pathways in reproductive
transcriptome are 91% coverage of glucosinolate biosynthesis
(map 00966), 80% coverage of betalain biosynthesis (map
00965), 75% coverage of brassinosteroid biosynthesis (map
00905), and DDT degradation (map 00351), 71% coverage
of carbon fixation (map00710), 68% coverage of α-linolenic
acid metabolism (map 00592), and 56% coverage of flavonoid
biosynthesis (map 00941) and phenylpropanoid biosynthesis
(map 00940).

When clicking on a pathway name, the panel contents change
to show the EC list present in ReprOlive for that pathway,
and its image displaying in green the enzymes found in the
database (Figure 4C). The EC names on the left can be deployed
to show which ReprOlive TTs have this function assigned.
This allows the selection for specific TTs coding the complete
protein, such as ‘rp11_olive_007935’ for 4.2.1.92 (hydroperoxide
dehydratase). The colored pathway image is interactive and
allows the navigation to the KEGG database to obtain more
information.

Expression Tab
The list of reference TTs with the raw number of reads
mapped in this TT or the RPKM as a comparable value can
be seen in the “Expression” tab panel (Figures 2 and 4D).
The first line makes reference to the total number of reads
used to map and the total length of the transcriptome to
obtain a mean RPKM (total number of reads by the total
length of the reference transcriptome) to color RPKM values
in green to indicate that it is over the transcriptome mean,
and in red when it is below this mean. These values must
only be considered illustrative, since RPKM is not the best
normalization measure (Wagner et al., 2012), and since RNA-
seq values correspond to pyrosequence mapping (and not short
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FIGURE 4 | Reproductive transcriptome illustrating the views of
Description, KEGG Pathways, and Expression tab panels. (A) List
of TT description that illustrates the lack of consistence between
descriptions provided by humans. (B) First page of KEGG Pathways
showing the most populated ones in ReprOlive. (C) Example of

α-linolenic acid metabolism pathway where enzymes in ReprOlive are
highlighted in green; the TTs corresponding to 4.2.1.92 are deployed
to show that there is at least one coding for the complete protein.
(D) The seventh page illustrating different types of TT expression
based on RPKMs.

read mapping). However, this value can help in determining
the tissue where the TT is preferentially expressed. For
example, the rp11_olive_005693 (a POZ/BTB domain containing
protein) is expressed in the three tissues, mainly in pistil; the
pollen seems to specifically express a significant proportion
of uncharacterised proteins, such as rp11_olive_028897, and a
probable hydrolase (rp11_olive_026947) seems to be expressed
only in reproductive tissues, mainly in pollen. Raw expression
data are downloadable from the “Assembly Info” tab panel
(Figure 2).

The utility of ReprOlive annotations together with the
expression values expressed as RPKM values is shown in
Supplementary Figure S3, where the 1,655 TTs that are

expressed only in pollen (as per their RPKM) and have a valid
RefSeq ortholog have been analyzed using GOrilla (Eden et al.,
2009) using the default parameters. The enriched GO terms
of the pollen-specific TTs correspond to pollen tube growth,
actin filament organization, plant cell wall organization and
modification, polysaccharide catabolic process, and carbohydrate
transport, to cite the most representative biological processes.
Considering the cell component, they are mainly expressed in the
extracellular region, followed by the pollen tube and the plant
cell wall. These results support the experimental procedure of
the sequenced libraries, the assembly, the ortholog annotation
and even the RPKM values in spite of they are calculated from
Roche/454 reads.
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FIGURE 5 | Screen capture of the evidence view of interactions of
UNE12 Arabidopsis ortholog to rp11_olive_029403 TT. This information can
be shown in page http://string-db.org/newstring_cgi/show_network_section.

pl?identifier = 3702.AT4G02590.1-P at the STRING 9.1 database. The
magenta color of edges indicate that interactions were reported experimentally.
The meaning of each node is explained at the figure bottom.

Blast Search
Tentative transcripts can be retrieved by sequence similarity
using Blast+ (Camacho et al., 2009). A blast-based search engine
with customisable E-value for nucleotide (blastn) or amino
acids (blastx) has been implemented and can be accessed by
the button “BLAST” in the navigation bar (Figure 2). The

type of sequence (amino acid or nucleotides) is automatically
detected. Blast searches are conducted against the transcriptomes
selected by the corresponding checkbox. Blast executions
are queued and the URL where the final result will be
stored for a month is shown when the task is finished.
The user can download the results as an HTML file (the
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same information shown on screen) or as the direct blast
output.

Annotation Search
ReprOlive includes a text-based search that can be accessed by
the button “Annotation Search” in the navigation bar (Figure 2).
It complementary to the filtrations by words in descriptions,
by the size of SSR, by the ORF status, etc., since it searches
the database by combining GOs, ECs, InterPros, descriptions,
orthologs, and gene names. The text strings can be combined
using AND or OR. The text-based search can be restricted
to only one of the transcriptomes in ReprOlive by means of
checkboxes. As a result, a paginated list of TT fulfilling the
requirements is shown and TT sequences can be downloaded in
Fasta format.

Linked Data Search
A novelty of ReprOlive with respect to other plant databases
is that its information has also been published as structured in
RDF format. This allows its interlinking with other semantic
databases, such as UniProtKB. Since most TTs in ReprOlive
(mainly the reference transcriptome) have also been annotated
with an Arabidopsis ortholog on TAIR10 or RefSeq, the Linked
Data search can retrieve information about 3D-structures (PDB
database), allergens (Allergome database), interactions (STRING
and IntAct databases) and enzyme data (BRENDA, BioCyc,
KEGG, and Reactome databases). The advantages of this
semantic search are gaining access to updated information of
external databases, and complementing and extending the stored
information in ReprOlive.

Semantic capability of ReprOlive can be accessed by the button
“Linked Data Search” in the navigation bar (Figure 2). It starts
with the automatic selection of which TTs will be the semantic
seed. The first row enables to collect TTs sharing IDs, GOs, ECs,
or InterPro codes. Clicking on the button “Get local data,” related
information on ReprOlive is provided. But clicking on “Search,”
the Arabidopsis ortholog of every TT is extracted and used to
recover external information concerning structures, interactions,
allergens, or enzyme data. Retrieved information can be saved
using the “Download results” button.

An example of use can start from the rp11_olive_029403
TT that is only expressed in both reproductive tissues and not
in vegetative tissues. It is annotated as a transcription factor
similar to UNE12 in Arabidopsis and with the GO:0080147
corresponding to root hair cell development. Using this GO
as seed, seven Arabidopsis protein networks (only two in
pollen transcriptome) were recovered from STRING v 9.1
database, one of the interaction networks centered on the
UNE12 gene of Arabidopsis (Figure 5) UNE12 is known to
be a protein of unfertilized embryo sac involved in double
fertilization forming a zygote and endosperm. In addition, this
Arabidopsis ortholog interacts with other transcription factors of
known (AT1G03040) and unknown (AT5G03500, AT5G03495)
function, a protein involved in phosphate starvation (SPX4), a
protein of phytochrome response (PAR1), as well as proteins
of unknown functions (AT3G27420, AT5G11980, AT4G24840).
Based on the homology between UNE12 and rp11_olive_029403,

rp11_olive_029403 likely is a good candidate for a transcription
factor regulating reproductive tissues.

The Reproductive Transcriptome According to
ReprOlive
ReprOlive is a Complementary Source of Information
for Olive Tree Transcriptome
The ReprOlive reproductive transcriptome includes a
significantly higher number of final TTs than those provided by
most studies (Alagna et al., 2009; Galla et al., 2009; Ozgenturk
et al., 2010), although lower than the reported by Muñoz-Merida
et al. (2013) resulting from the screening of numerous vegetative
tissues and stages. The TT mean length is significantly higher
than previous studies likely due to the use of Titanium+
technology. As a result, ReprOlive TTs are highly complementary
to previous studies, maybe representing the only publicly
available annotated database fully dedicated to olive tree
transcriptome, including tools for different types of search and
functional and structural annotations. Some other publicly
available databases including olive transcriptome sequences
like NCBI (e.g., SRX193576 accession), Oleaestdb11 (Alagna
et al., 2009), and the European Nucleotide Archive12 (e.g.,
SRR592583 accession), either include raw sequences only, or a
lower degree of operative resources. In conclusion, ReprOlive
may help researches devoted to either plant-reproduction or
other disciplines to retrieve relevant information on the olive
transcriptome.

Reproductive Transcriptome Expresses
Approximately Half of Olive Tree Genes, Mainly in
Pistil
As expected, pollen and pistil have TTs in common since (1)
the number of TTs in reproductive transcriptome is below the
sum of pollen and pistil transcriptomes (Table 2); (2) pistil
and reproductive transcriptomes contain 146 pathways while
pollen contains only 143; and (3) there are TTs whose expression
data indicate that both are expressed in pollen and pistil. Row
“Number of TTs with annotation” of Table 2 shows that 87.8%
TTs were functionally annotated, although not all annotated TTs
contain an ortholog. The number of unique orthologs (Table 2,
“Unique IDs” rows) indicates that pistil transcriptome seems to
be more complex than the pollen transcriptome. Considering the
number of orthologs with A. thaliana in TAIR10 and RefSeq
(15,503 and 17,612, respectively), it can be suggested that the
reproductive transcriptome is a subset ranging from 55 to 62%
of the complete transcriptome if it is assumed that the olive tree
genome, like A. thaliana (Lamesch et al., 2012), contains ∼27,200
protein-coding genes.

The High Proportion of Full-Length ORFs Reveals a
Reliable Transcriptome
Sequencing and assembling where highly successful since the
number of chimeras is very low and the number of complete
ORFs is 12,6% of the transcriptome, and 24,8% of the unique IDs,

11http://140.164.45.140/oleaestdb/index.php
12http://www.ebi.ac.uk/ena/home
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which is clearly above other transcriptomes built with the same
strategy (Benzekri et al., 2014; Canales et al., 2014). Having a large
collection of full-length protein sequences is crucial for accurate
annotation, comparative analysis between transcriptomes, and
also for obtaining accurate gene expression profiles related
to growth, development, and environmental changes. In fact,
an important collection of those full-length ORFs [such as
the numerous forms of the Ole e 1 and Ole e 2 (profilins)
allergens, Cu,Zn-superoxide dismutases, catalases, peroxidases,
NADPH oxidase, enzymes of the glutathion-ascorbate cycle and
thioredoxins] have been cloned by the authors based on the
sequence in the database (results not shown), which confirms
their reliability and utility.

Tentative Transcripts without Ortholog as a Source of
Putative New Olive Specific Transcripts
Even though the Full-LengtherNext analysis shown in Table 2
(column “Reproductive”) is quite strict in assigning an ortholog,
63,965 TTs were annotated and only 17,445 TTs remain
unknown. The TransDecoder analysis contained in Full-
LengtherNext, which can identify proteins in an orthology-
independent way, revealed that 7,114 TTs of the 17,445 TTs with
an unidentified ortholog could code for a protein, suggesting
that 10,331 TTs could be discarded from the reproductive
transcriptome. From the likely coding TTs, 628 of them code for
a complete protein and 6,486 for an incomplete one. After the
functional annotation using Sma3, 80 (12.7%) of likely complete
TTs and 1,750 (27%) of likely incomplete TTs remain with no
functional annotation at all, and other 134 (21.3%) and 1,612
(24.8%), respectively, are annotated as “uncharacterized” protein.
These subsets of coding TTs should include some kind of olive-
specific TTs, opening new research opportunities in olive tree for
deciphering their function.

Reference Transcriptomes Seem to Gather the Olive
Tree Heterozygosis
The size of transcriptomes is over-representing the putative
number of olive tree genes, representing the maximal number of
TTs expressed in reproductive tissues tested in this manuscript.
This overestimation may come from the presence of alleles,
paralogues, fragmented sequences, alternative splicing, and even
a combination of them. Therefore, a subset of the transcriptome
including the longest TTs with unique, different orthologous
ID, and the longest, >500 bp, non-redundant unknown TT
with coding or putative coding status is provided as a kind of
“Reference transcriptome” (Table 2. It is useful for expression
studies, such as expression analyses included in the “Expression”
panel of the database. Sequences belonging to a reference
transcriptome are easily identified by a “REF” tag (Figures 2
and 3) on their description. Since the numbers of unique
RefSeq and TAIR10 IDs in complete (17,612 and 15,503,
respectively) and reference (14,706 and 13,584, respectively)
reproductive transcriptomes are quite close, it is suggested that,
even if some genes could be lost, the Reference Transcriptome
is representative of genes expressed in reproductive tissues.
Moreover, two alleles for every locus seem to be included
in the Reference Transcriptomes since the number of unique

TAIR10/RefSeq IDs is ∼65% of the total TAIR10/RefSeq IDs
(Table 2, rows below “Reference transcriptome”).

Conclusion and Future Prospects

ReprOlive offers transcriptomic information related to olive tree
reproductive tissues (with leaf and root as vegetative control) with
unrestricted public access. It contains sufficient information on
TTs that can be used for genomics, molecular studies, genetic
maps, expression analyses, new allergen detection, and even
future breeding purposes. It offers a comprehensive on-line
system for information retrieval and management, and has help
in the mining of reproductive transcriptome. The availability
of a reference transcriptome with preliminary expression data
and putative olive-specific genes give chances to new research
areas. ReprOlive has also been published as a standard semantic
conceptualization in RDF, enabling its integration with other
RDF-based databases to provide distributed, updated annotation
as well as data integration. Thus, ReprOlive joins the most
novel approach to publish Open Data as previously done by
relevant databases as UniProtKB13. In a near future, more olive
sequences from public resources and our own research studies
will be collected and archived, including future RNA-seq data
sets, in order to provide the most complete information about
the overall olive tree transcriptome. This may include other
reproductive cells, tissues and organs of interest (such as isolated
meiocytes, tapetum, endosperm, mesocarp, ovary, and embryo
sac), as well as additional developmental stages and olive cultivars
of interest. Therefore, ReprOlive (both in its present form and
thorough future developments) may help researches devoted to
either plant-reproduction or other disciplines to retrieve relevant
information on olive transcriptome. Moreover, the TTs described
here may be very helpful for complementing or corroborating the
genome annotation in OLEA and IOGC genome projects. Full
integration of olive databases is a goal to be pursued by all the
consortia involved in these developments, and will be considered
in future versions of ReprOlive.
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Figure S1 | Flow diagram of the strategy for pre-processing, assembling
and annotation of the transcriptomes described in this manuscript, where

yellow, double-lined boxes are the inputs, and the black boxes provide the
output results.

Figure S2 | The flow template based on AutoFlow that automates the
complete process from pre processing to annotation. Execution AutoFlow
with the parameter –graphic with this flow template produces its semantic
representation as in Supplementary Figure S1.

Figure S3 | GO enrichment using GOrilla of the 1655 TTs that are
pollen-specific, sorted by their RPKM, that have an Arabidopsis
orthologue in RefSeq. The upper part contains the significant biological
processes and the lower part reveals the cellular component where the processes
occur.
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