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Plant phototropism, the ability to bend toward or away from light, is predominantly
controlled by blue-light photoreceptors, the phototropins. Although phototropins have
been well-characterized in Arabidopsis thaliana, their evolutionary history is largely
unknown. In this study, we complete an in-depth survey of phototropin homologs
across land plants and algae using newly available transcriptomic and genomic data.
We show that phototropins originated in an ancestor of Viridiplantae (land plants +
green algae). Phototropins repeatedly underwent independent duplications in most
major land-plant lineages (mosses, lycophytes, ferns, and seed plants), but remained
single-copy genes in liverworts and hornworts—an evolutionary pattern shared with
another family of photoreceptors, the phytochromes. Following each major duplication
event, the phototropins differentiated in parallel, resulting in two specialized, yet partially
overlapping, functional forms that primarily mediate either low- or high-light responses.
Our detailed phylogeny enables us to not only uncover new phototropin lineages, but
also link our understanding of phototropin function in Arabidopsis with what is known in
Adiantum and Physcomitrella (the major model organisms outside of flowering plants).
We propose that the convergent functional divergences of phototropin paralogs likely
contributed to the success of plants through time in adapting to habitats with diverse
and heterogeneous light conditions.

Keywords: blue-light, convergent evolution, land plants, photoreceptors, phototropism

Introduction

Light is the ultimate source of energy for almost all of life on earth, and a remarkable
diversity of organisms uses photosynthesis to convert light into metabolic energy. Many of
these organisms have also evolved phototropic/phototactic responses, and those in plants are
particularly sophisticated—involving movement of shoots, leaves, and/or chloroplasts—in order
to optimize their photosynthetic capacity. Charles Darwin pioneered modern research on
phototropism by demonstrating that the coleoptile tip is the point of light perception (Darwin,
1880). Darwin proposed that a transmissible substance produced at the tip is responsible
for inducing phototropic movements in plants. This insight led to the first discovery of a
plant hormone, auxin, and later to the identification of the blue-light photoreceptors for
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phototropism—phototropins (Briggs et al., 2001; Christie and
Murphy, 2013; Briggs, 2014).

Phototropins regulate key physiological responses that are
under light control, including positive phototropism of shoots,
negative phototropism of roots, chloroplast accumulation, and
avoidance, stomatal opening, leaf expansion, and seedling
elongation (Christie, 2007). Our current understanding of the
function and biochemistry of phototropins originates from basic
research on A. thaliana, and to a lesser extent on Adiantum
capillus-veneris (a fern) and Physcomitrella patens (a moss).
Only a few studies have attempted to address the origin and
evolution of phototropins (Briggs et al., 2001; Lariguet and
Dunand, 2005; Galván-Ampudia and Offringa, 2007) and all were
based on limited sequence samples. The orthology of phototropin
genes has therefore been ambiguous, confounding assignments
of functional homology, and impeding our understanding of
how phototropin evolution has allowed plants to adapt to light
environments.

An extraordinary phototropin derivative is neochrome,
which possesses supplementary red/far-red-sensing domains
from phytochromes (Nozue et al., 1998). In ferns, neochrome
can sense both blue and red/far-red light to modulate
chloroplast movement and phototropism (Kanegae et al., 2006;
Kanegae and Kimura, 2015). We previously reconstructed a
phototropin phylogeny with an aim to elucidate the origin of
neochromes (Li et al., 2014). However, that phylogeny had
insufficient taxon sampling to accurately infer broad patterns of
phototropin evolution, including the position of key phototropin
duplications.

For this study, we greatly expanded our search for
phototropins in genomes and transcriptomes from across
land plants, green algae, red algae, glaucophytes, cryptophytes,
haptophytes, and stramenopiles (Supplementary Tables S1 and
S2). Using these data, we reconstructed a detailed phylogeny
of phototropins and examined patterns of gene duplication.
Our results suggest that phototropins likely originated in
an ancestor of Viridiplantae (land plants + green algae).
By reviewing published phototropin functional studies
in light of our new gene phylogeny, we determined that
phototropin paralogs repeatedly underwent functional
divergences. These were likely to be important for adapting
to diverse and heterogeneous light environments through
time.

Materials and Methods

Mining Phototropin Homologs from
Transcriptomes and Genomes
We searched a total of 194 transcriptomes and 26 genomes
(Supplementary Table S1). To mine phototropin homologs,
we used the BlueDevil python pipeline following Li et al.
(2014) for transcriptomes, and for genomes we used BLASTp
implemented in Phytozome (Goodstein et al., 2012) or
individual genome portals (Supplementary Tables S1 and
S2). A phototropin sequence from Anthoceros bharadwajii
[voucher: Chantanaorrapint 229 (PSU)] was obtained by PCR

and cloning (primers: photF1970 and photR4102; Li et al.,
2014).

Sequence Alignment and Phylogenetic
Reconstruction
We used MUSCLE (Edgar, 2004) with the default settings
to align the amino acid sequences, and then back-translated
these to nucleotides. The resulting alignment was manually
improved based on known domain boundaries; unalignable
regions were excluded prior to phylogenetic analyses. The
final alignment length is 2,025 bp, within which most of
the sequences are complete or near complete (Supplementary
Figure S1).

We used PartitionFinder v1.1.1 (Lanfear et al., 2012) to obtain
the optimal data partitioning scheme (by codon position) and
the associated nucleotide substitution models (GTR + I+ �
substitution model applied independently to the first, second,
and third codon positions). Garli v2.0 (Zwickl, 2006) was
employed to find the best maximum likelihood tree with
“genthreshfortopoterm” set to 500,000 and eight independent
runs from different random-addition starting trees. We carried
out bootstrapping to assess branch support, using RAxML
v8.1.11 (Stamatakis, 2006) with 1,000 replicates. The same
partition scheme and models were used in MrBayes v3.2.3
(Ronquist et al., 2012) Bayesian inference. We carried out two
independent MCMC runs, each with four chains and trees
sampled every 1,000 generations (chain length: 6.451 × 109
generations). We unlinked substitution parameters and set
the rate prior to vary among subsets. The resulting MCMC
statistics were inspected in Tracer (Rambaut and Drummond,
2013) to ensure convergence and proper mixing; 25% of the
total generations were discarded as burn-in before compiling
the majority consensus tree. The alignment and tree files are
deposited in Dryad1.

Target Enrichment for Confirming Phototropin
Copy Number in Hornworts
The target enrichment data were from Li et al. (2015),
whereby a hornwort (Anthoceros punctatus) DNA library was
hybridized with 7,502 120mer RNA probes to enrich phototropin,
phytochrome, and neochrome homologs. The probe sequences
can be found in Dryad2. We used an enrichment protocol
of Li et al. (2013), which can potentially capture sequences
with similarity as low as 61%. The captured fragments were
sequenced on one-tenth of a MiSeq (250 bp paired-end) run.
The reads are deposited in NCBI SRA (SRP055877). We
used Scythe v0.994 (Buffalo, 2014) to remove the adaptor
sequences with the default prior contamination rate, and
Sickle v1.33 (Joshi and Fass, 2011) to trim the low-quality
bases with a quality threshold of 33. We assembled the
processed reads using SOAPdenovo (Luo et al., 2012) with
kmer of 33, 63, and 93, and used CAP3 (Huang, 1999) to
merge the three assemblies from different kmer sizes. The

1http://dx.doi.org/10.5061/dryad.321bv
2http://dx.doi.org/10.5061/dryad.5rs50
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phototropin contigs were identified by BLASTn (Camacho et al.,
2009).

Results

The Origin of Phototropins
We show here that phototropins are present in all major
land plant lineages (seed plants, ferns, lycophytes, mosses,
liverworts, and hornworts), as well as in green algae (charophytes,
chlorophytes, and prasinophytes; Figure 1A). In contrast, we
did not recover phototropins from glaucophytes, red algae
(rhodophytes), cryptophytes, haptophytes, or stramenopiles,
indicating that the origin of phototropin most likely took place in
a common ancestor of Viridiplantae (green algae + land plants;
Figure 1A).

Phototropin Phylogeny
Our phototropin phylogeny is largely congruent with published
organismal relationships (Forrest et al., 2006; Cox et al.,
2010; Gontcharov and Melkonian, 2010; Villarreal and Renner,

2012; Wickett et al., 2014; Rothfels et al., 2015). Seed–plant
phototropins form a monophyletic group that is sister to fern
phototropins (Figure 2). Here we infer a single gene duplication
event in seed plants, leading to A. thaliana AtPHOT1, and
AtPHOT2. Because seed-plant PHOT1 and PHOT2 clades each
include sequences from angiosperms and gymnosperms, the
duplication event that gave rise to these two homologs predates
the divergence of angiosperms from the ancestors of extant
gymnosperms (“A” in Figure 2). We also find strong evidence for
the monophyly of fern phototropins (Figure 2). Leptosporangiate
ferns have two phototropin homologs that we designate
fern PHOT1 and PHOT2, in reference to A. capillus-veneris
AcPHOT1 and AcPHOT2 (Kagawa et al., 2004), respectively.
The earliest-diverging fern lineages, Equisetales, Psilotales, and
Ophioglossales, each have one phototropin gene, representing
the pre-duplicated version of fern PHOT1 and PHOT2. The
exact phylogenetic position of the split of fern PHOT1 and
PHOT2 is ambiguous due to a lack of branch support, although
it probably was prior to the most recent common ancestor of
leptosporangiate ferns and Marattiales (“B” in Figures 1B and
2). We also infer a single duplication event in the lycophyte

FIGURE 1 | Organismal lineages screened for phototropin homologs.
(A) Viridiplantae and algae. Lineages that lack phototropin are depicted in gray.
Topology derived from Burki et al. (2012) and Wickett et al. (2014). Phototropin
(PHOT) and phytochrome (PHY) duplications are only shown on land plant
branches (within gray box). (B) Ferns and lycophytes; topology derived from

Rothfels et al. (2015). (C) Mosses; topology derived from Cox et al. (2010).
Capital letters above blue squares denote phototropin duplication events
mentioned in the text and in Figures 2–4. “?” indicates that the exact
phylogenetic position of the gene duplication event is ambiguous. “∗” indicates
that the lineage was not sampled.
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FIGURE 2 | Phylogenetic relationships of seed plant and fern
phototropins. The phylogeny tree continues to Figures 3 and 4. Orange
circles indicate inferred phototropin (PHOT) duplication events. The
italicized capital letter within each circle corresponds to the duplication
event mentioned in the text, and the numbers/letters adjacent to each
orange circle are the names of the gene duplicates. Support values

associated with branches are maximum likelihood bootstrap values
(BS)/Bayesian posterior probabilities (PP); these are only displayed (along
with thickened branches) if BS > 70 and PP > 0.95. “+” denotes
BS = 100 or PP = 1.00. Thickened branches without numbers are
100/1.0. “?” indicates that the exact phylogenetic position of the gene
duplication event is ambiguous.
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FIGURE 3 | Phylogenetic relationships of lycophyte and bryophyte
phototropins. The phylogeny tree is continued from Figure 2. Previous
gene annotations for Physcomitrella patens are in parentheses. Orange
circles indicate inferred phototropin (PHOT) duplication events. The italicized
capital letter within each circle corresponds to the duplication event
mentioned in the text, and the numbers/letters adjacent to each orange

circle are the names of the gene duplicates. Support values associated with
branches are maximum likelihood bootstrap values (BS)/Bayesian posterior
probabilities (PP); these are only displayed (along with thickened branches) if
BS > 70 and PP > 0.95. “+” denotes BS = 100 or PP = 1.00. Thickened
branches without numbers are 100/1.0. “?” indicates that the exact
phylogenetic position of the gene duplication event is ambiguous.
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Selaginella, leading to Selaginella PHOT1 and PHOT2 based on
the genome annotation of S. moellendorffii (Banks et al., 2011).
The phylogenetic position of this duplication is unclear (“C” in
Figure 3), but it must predate the common ancestor of extant
Selaginella because the PHOT1 clade contains all known major
Selaginella lineages (Korall and Kenrick, 2002). For Isoetales
and Lycopodiales, we found only one phototropin homolog, but
determining whether it is indeed a single-copy gene in these
lineages will require confirmation with additional data.

All liverwort transcriptomes we examined contained a single
phototropin (Figure 3), a result consistent with the recent
demonstration that phototropin in Marchantia polymorpha is a
single-copy gene (Komatsu et al., 2014). Hornwort phototropins
also appear to be single-copy based on our screening of hornwort
transcriptomes and a low-coverage genome draft of Anthoceros
punctatus (Li et al., 2014). To further investigate gene copy
number in hornworts, we used a target-enrichment strategy
to sequence all phototropin-, phytochrome- and neochrome-
like genomic fragments in Anthoceros punctatus. We found
no additional divergent phototropin copies, and recovered one
phytochrome and one neochrome gene copy.

Moss phototropins, on the other hand, have a significantly
more complex evolutionary history (Figures 1C and 3). We
discovered that the published phototropin annotations from the
moss P. patens genome (Rensing et al., 2008) do not correctly
reflect gene orthology. Because “PHOTAs” and “PHOTBs” are
intermingled, we reclassified the moss phototropins based on
the phylogenetic relationships inferred here (Table 1, Figure 3).
Prior to the initial divergences among extant mosses, a gene
duplication (“D” in Figures 1C and 3) gave rise to moss PHOT1
and PHOT2. In moss PHOT1, a second duplication occurred in
a common ancestor of Bryopsida and Polytrichopsida (“E” in
Figures 1C and 3) that split moss PHOT1 intomoss PHOT1A and
PHOT1B. In moss PHOT2, two additional duplications occurred
(“F” and “G” in Figures 1C and 3) subsequent to the divergence
of Diphysciidae (Bryopsida), resulting in moss PHOT2A-C. Both
moss PHOT2A and PHOT2B are present in Dicranidae and
Bryidae, whereas moss PHOT2C is only known in P. patens
(Funariidae). P. patensmay also have lost the PHOT2A homolog.
Alternatively, because the placement of PHY2C is not supported,
these P. patens sequences could belong to PHY2A, requiring only
one gene duplication that resulted in moss PHY2A and PHY2B.
Most green algal transcriptomes and genomes revealed a single
phototropin gene (Figure 4), with the exception of those from
Zygnematales, where two phototropin homologs are present
(PHOTA and PHOTB).

All Algal Neochromes Lack the Conserved
Cysteine Residue at the LOV2 Domain
Neochrome (neo, Figures 3 and 4) is a unique chimeric
phototropin variant that possesses supplementary red/far-red-
sensing domains from phytochromes (Nozue et al., 1998). Recent
studies have revealed two independent origins of neochromes,
one in zygnematalean algae and the other in hornworts (Suetsugu
et al., 2005; Li et al., 2014). Interestingly, the neochromes found
in ferns were determined to be derived from hornworts via
horizontal gene transfer (Li et al., 2014). Neochrome perceives

TABLE 1 | Reclassification of Physcomitrella patens phototropins based
on gene orthology.

Proposed new name Previous annotation Genbank accession

PpPHOT1A-1 PpPHOTA1 XM_001774204

PpPHOT1A-2 PpPHOTA2 XM_001774562

PpPHOT1A-3 PpPHOTB3 XM_001755269

PpPHOT1B PpPHOTA3 XM_001765356

PpPHOT2B PpPHOTB2 XM_001785674

PpPHOT2C-1 PpPHOTB1 XM_001766357

PpPHOT2C-2 PpPHOTA4 XM_001763052

both blue and red/far-red light to mediate phototropic responses
in ferns (Kawai et al., 2003; Kanegae et al., 2006; Kanegae and
Kimura, 2015), and it appears to have played a significant role
in their diversification (Schneider et al., 2004; Schuettpelz and
Pryer, 2009). The function of neochrome in hornworts and
zygnematalean algae, however, remains unclear. Because some
zygnematalean algae have plate-like chloroplasts that rotate in
response to both blue and red/far-red light irradiation (Haupt
and Scheuerlein, 1990), it was hypothesized that algal neochrome,
originally discovered inMougeotia scalaris, is the candidate gene
responsible for this movement (Suetsugu et al., 2005). However,
neochrome in M. scalaris responds only to red/far-red light and
not to blue light (Suetsugu et al., 2005; Kagawa and Suetsugu,
2007).

To explore whether M. scalaris might be anomalous among
zygnematalean algae in having a neochrome that is not
responsive to blue light, we examined all the algal neochromes
that we recovered. As is the case with the neochrome of
M. scalaris, none has the conserved cysteine residue in the
LOV2 domain (Figure 5) that is essential for the formation of
flavin mononucleotide (FMN) chromophore adduct and blue-
light signal transduction (Christie, 2007; but see Kanegae and
Kimura, 2015). Furthermore, many of the FMN-interacting
residues (Crosson and Moffat, 2001) are also not conserved
in zygnematalean neochromes (Figure 5). It is thus possible
that all zygnematalean algae use neochromes only for sensing
red/far-red light, and use other blue-light photoreceptors (most
likely phototropins; Kagawa and Suetsugu, 2007; Banas et al.,
2012) to maneuver chloroplast rotations. However, Kanegae and
Kimura (2015) recently discovered that in fern neochromes,
substitution of the cysteine residue did not completely abolish
blue-light-induced phototropism. They further suggested that
the phytochrome chromophore, phytochromobilin, could have
the capacity to perceive blue light and then relay the signals.
Therefore, we cannot rule out the possibility that some
zygnematalean neochromes can sense blue light through a FMN-
independent mechanism.

Discussions

A New Phototropin Gene Orthology
With a detailed phototropin phylogeny that encompasses
all of green plant representatives, we were able to discover
new phototropin lineages and pinpoint the timing of gene
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FIGURE 4 | Phylogenetic relationships of algal phototropins. The
phylogenetic tree is continued from Figure 3. Orange circles indicate
inferred phototropin (PHOT) duplication events. The italicized capital letter
within each circle corresponds to the duplication event mentioned in the
text, and the numbers/letters adjacent to each orange circle are the

names of the gene duplicates. Support values associated with branches
are maximum likelihood bootstrap values (BS)/Bayesian posterior
probabilities (PP); these are only displayed (along with thickened branches)
if BS > 70 and PP > 0.95. “+” denotes BS = 100 or PP = 1.00.
Thickened branches without numbers are 100/1.0.

duplications (Figures 1–4). This new understanding of
phototropin gene orthology refutes the previous assertion
that the “PHOT2” ortholog is the ancestral phototropin and
that “PHOT1” evolved later in seed plants (Galván-Ampudia
and Offringa, 2007); the ancestral phototropin is neither
“PHOT1” nor “PHOT2.” Rather, a single PHOT ancestral
sequence gave rise to the multiple gene copies found in seed
plants, lycophytes, ferns, mosses, and zygnematalean algae
(Figures 1–4). Independent duplications occurred subsequently,
such that PHOT1 and PHOT2 in each of these plant lineages

are more closely related to one another than they are to other
PHOT1s or PHOT2s.

Convergent Sub-Functionalization of
Phototropins
Our findings on gene orthology also have important implications
for understanding the functional evolution of phototropins.
Plants often respond differently under low- and high-light levels;
chloroplasts, in particular, accumulate on the periclinal walls
under weak light, but retreat to anticlinal walls when the light
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FIGURE 5 | Alignment of a portion of LOV1 and LOV2 domains in
selected phototropins and neochromes. The site for flavin mononucleotide
(FMN) adduct formation is marked by an arrow, and the FMN-interacting sites

are shown in green with a blue background. All zygnematalean neochromes
(highlighted in a gray box) lack the conserved cysteine residue in the LOV2
domain, and several residues that interact with FMN are also not conserved.

intensity is too high. Our phylogenetic reconstruction suggests
that phototropins repeatedly duplicated and diverged, and that
after doing so, they subsequently specialized in mediating either
low– or high-light responses, although functional redundancies
do exist (Christie, 2007). Of the two phototropins known in
A. thaliana, Atphot1 mediates phototropism under low light
intensity, and is more sensitive than Atphot2 in triggering
chloroplast accumulation (Sakai et al., 2001). Atphot2, in
contrast, responds predominantly to high-light intensity, and
is primarily responsible for chloroplast avoidance under strong
light (Kagawa et al., 2001; Luesse et al., 2010). A similar functional
differentiation can also be seen in the fern A. capillus-veneris
Acphot1 and Acphot2. Acphot2 controls chloroplast avoidance
under high-light intensity, whereas Acphot1 has little or no role
in this response (Kagawa et al., 2004). Similarly, in the moss
P. patens, Ppphot1A-2 (see Table 1) is the primary mediator for
the chloroplast avoidance response, and plays a redundant role in
the accumulation behavior (Kasahara et al., 2004).

The single phototropin in the liverwort M. polymorpha can
respond to a wide range of light intensities and triggers both
chloroplast avoidance and accumulation responses (Komatsu
et al., 2014). Because liverworts represent one of the deepest splits
in land-plant phylogeny (Wickett et al., 2014), their unspecialized
phototropins suggest that the ancestral land plant phototropin
was probably a “general-purpose” photoreceptor. The subsequent
and parallel specializations of phototropin into forms that are
responsive to low–, or high-light intensities may have played an
important role in the adaptation of early land plants to Earth’s
changing landscapes. From the formation of the earliest forests by
cladoxylopsid ferns about 385million years ago (Stein et al., 2007)
through to today’s angiosperm-dominated terrestrial ecosystems,
light environments have become increasingly complex, and
deeply shaded habitats have expanded. Possessing duplicated
phototropin genes dedicated to functioning under different light
intensities would have been advantageous (Galen et al., 2004)
compared with having a single, general-purpose phototropin.
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The fact that land plant lineages with duplicated phototropins
(seed plants, leptosporangiate ferns and mosses) are more
species-rich than those without (liverworts, hornworts, and non-
leptosporangiate ferns) is consistent with such an advantage,
although many other traits could also have contributed to this
disparity in diversity.

Compared to land-plant phototropins, much less is known
about the function of algal phototropins, where most of
the research done on Chlamydomonas reinhardtii shows that
phototropins regulate sexual processes (Huang and Beck,
2003), eyespot size and phototactic behavior (Trippens et al.,
2012). Interestingly, the phototropin gene from C. reinhardtii
can partially rescue A. thaliana phot1 phot2 double mutant
phenotypes, suggesting that the phototropin signal transduction
pathway is deeply conserved from green algae to seed plants
(Onodera et al., 2005). Future studies focusing on phototropins
across more algal lineages (Figure 4) should help to clarify early
phototropin evolution in unicellular organisms, and the genetic
basis of its functional differentiation in land plants.

Patterns of Phototropin Copy Expansion and
Stasis Resemble that of Phytochromes
The evolutionary pattern that we observe here for phototropins
shows a striking resemblance to that for phytochromes. Both
photoreceptors (phytochromes and phototropins) duplicated
repeatedly in seed plants, ferns, lycophytes, and mosses, while
remaining single-copy in liverworts and hornworts (Figure 1;
Li et al., 2015). Although this pattern of concerted gene
family expansion and stasis could be due to whole genome
duplications (WGD), the exact evolutionary positions of gene
duplication events in these two photoreceptors differ—they
did not all happen along the same phylogenetic branches
(Figure 1), suggesting that WGD is not solely responsible.
Recent studies have shown that phototropins and phytochromes
not only share cross-talk in their signal transduction pathways
(Lariguet et al., 2006; de Carbonnel et al., 2010; Demarsy
et al., 2012), but also can physically interact (Jaedicke et al.,

2012). The extent to which phototropins and phytochromes
are co-evolving would be an interesting topic for future
research.

Conclusion

In summary, we have leveraged recent genomic and
transcriptomic data to discover phototropins from across a
broad sample of photosynthetic eukaryotes. Our study reveals
that phototropins are unique to Viridiplantae, and that gene
family expansion and stasis have operated uniquely within each
of the various land plant lineages, a pattern similar to that
of phytochromes (Li et al., 2015). Existing functional data for
phototropins, interpreted in light of our gene phylogeny, suggest
a history of repeated gene duplications followed by parallel
functional divergences. Our broad phylogenetic approach is
an important complement to ongoing photobiological research
focused on a small number of plant model organisms, and
will enable new research linking ecology, evolution, and
photochemistry to understanding how plants adapt (and have
adapted) to variable light environments.
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