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The element Ni is considered an essential plant micronutrient because it acts as an

activator of the enzyme urease. Recent studies have shown that Ni may activate

an isoform of glyoxalase I, which performs an important step in the degradation

of methylglyoxal (MG), a potent cytotoxic compound naturally produced by cellular

metabolism. Reduced glutathione (GSH) is consumed and regenerated in the process of

detoxification of MG, which is produced during stress (stress-induced production). We

examine the role of Ni in the relationship between the MG cycle and GSH homeostasis

and suggest that Ni may have a key participation in plant antioxidant metabolism,

especially in stressful situations.
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Nickel, an Essential Micronutrient in Plants

The essentiality of nickel as a micronutrient in plants has been established because it is part of the
active site of the enzyme urease, which hydrolyzes urea in plant tissues (Polacco, 1977; Eskew et al.,
1983, 1984). Two forms of urease are present in plants, one found in seeds and another found in
vegetative tissues (ubiquitous). The seed form of urease is highly active (Polacco et al., 2013), while
the activity of the ubiquitous form is low in vegetative tissues, despite playing an important role in
N recycling in plants (Hogan et al., 1983). Potentially toxic amounts of urea are metabolized into
ammonia by the action of ubiquitous urease, and the N from the ammonia may be reused in other
metabolic pathways, e.g., synthesis of amino acids, polyamines, and other nitrogen compounds
(Gerendás and Sattelmacher, 1997, 1999).

Glyoxalases

Glyoxalase I has been extensively studied in microorganism but much less in plants, although its
characterization in mono- and dicotyledonous (Kaur et al., 2013). In microorganisms glyoxalase I
may requires Ni(II) or Zn(II) for activity but only recently it was shown in rice (Oryza sativa) that
Ni may also activate this enzyme in plants (Mustafiz et al., 2014). Studies tracing the origin of metal
ion requirement of glyoxalase I in plants suggested that gene expansion led to multiple two-domain
Ni-Glyoxalase I and different forms of the enzyme have evolved to help plants adapt to stress (Kaur
et al., 2013).

Glyoxalases I and II (GLY-I and II) participate in the degradation pathway of methylglyoxal
(MG), a toxic, mutagenic alpha-ketoaldehyde that may be lethal to cell functions (Ray et al.,
1994; Kalapos, 2008). MG formation in plants begins with dihydroxyacetone phosphate (Figure 1)
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FIGURE 1 | Under normal physiological conditions, methylglyoxal (MG) is formed in plants during glycolysis and photosynthesis from

dihydroxyacetone phosphate, which is catalyzed by triose phosphate isomerase to form glyceraldehyde 3-phosphate (Richard, 1993). The intermediate

enediolate-P is formed in this reaction, which, after losing a phosphoryl group by beta-elimination, forms enol, which in turn is converted into MG. The reactions

between the intermediate enediol and MG are non-enzymatic (blue arrows). The MG formed is eliminated by the sequential actions of glyoxalase I and II, in which the

consumption and regeneration of reduced glutathione occurs.

production in glycolysis and photosynthesis (Kaur et al.,
2014). MG production increases considerably during stressful
conditions, in which the glycolysis and photosynthesis pathways
may become imbalanced, (Richard, 1993) and the MG levels
may increase by two- to six-fold (Yadav et al., 2007).
The accumulation of MG in plants increases the levels of
intracellular oxidative stress due to the production of reactive
oxygen species (Maeta et al., 2005; Kalapos, 2008), generates
advanced glycation end-products (Thornalley, 2003), disables
the mechanisms of the antioxidant defense system (Martins
et al., 2001), and interferes with the cell division processes (Ray
et al., 1994). MG degradation is initiated by a spontaneous
reaction between MG and reduced glutathione (GSH) that
forms hemithioacetal, which is then converted into S-D-
lactoylglutathione in a reaction catalyzed by GLY-I (Figure 1).
GLY-II releases D-lactate from S-D-lactoylglutathione and
regenerates GSH.

Eleven genes encode GLY-I, and three encode GLY-II in
rice (Mustafiz et al., 2011). The isoform expression patterns
change depending on the plant tissue, stage of development,
and environmental conditions applied. However, all expression
patterns seem to have similar functions in MG degradation
(Mustafiz et al., 2011). The genes OsGLYI-3 and OsGLYI10, for
example, are expressed only in seeds, while other isoforms are
only present during specific stages of the embryo or endosperm.
Each isoform may exhibit modified expression (induced or
repressed) during stressful conditions. Experiments on two
varieties of rice, one resistant to salt stress (Pokkali) and another
sensitive to stress (IR64), showed different responses of different
isoforms depending on the applied treatment. The OsGLYI-6
and OsGLYI-11 isoforms were increased when stress was applied.
Both showed higher expression levels during salt, osmotic, and
oxidative (adding H2O2 and MG) stresses (Mustafiz et al., 2011).
These results support the conclusion that these two isoforms

are important for the metabolism of MG but may also be
important for protecting the cells against oxidative stress caused
by ROS, given that GSH regeneration occurs during the MG
metabolization process.

Glutathione

The balance of the biosynthesis, transport, and degradation of
glutathione is important in the defense against oxidative stress
in plant cells in normal as well as in stressful situations (Noctor
et al., 2012). GSH is continuously oxidized to GSSG (oxidized
glutathione) and then regenerated by glutathione reductase (GR),
which is dependent on NADPH. GSH is a key molecule in the
cellular defense against oxidative damage caused by ROS, and
new functions for this molecule are still being discovered. ROS
preferably oxidizes GSH rather than molecules such as lipids,
structural proteins, and nucleic acids, which prevents possible
damage to these structures and their functions (Halliwell and
Foyer, 1978). The role of GSH in antioxidant metabolism is well-
discussed in the literature (Galant et al., 2011; Noctor et al.,
2012).

Two enzymes are responsible for synthesizing GSH in plants,
each one encoded by a single gene, and GSH synthesis occurs in
twoATP-dependent steps (Figure 2). The geneGSH1 encodes the
enzyme gamma-EC synthase (gamma-ECS), which is responsible
for the first step of GSH synthesis, and the gene GSH2 encodes
the enzyme glutathione synthetase (GSH-S), which is responsible
for the second step. In Arabidopsis thaliana, the first enzyme is
likely exclusive to the chloroplast, while the second is present in
the cytoplasm and chloroplast (Galant et al., 2011). Nevertheless,
GSH is found in several cellular compartments, including the
apoplast and phloem, indicating its ability to easily move within
the intra- and extra-cellular environments (Noctor et al., 2012).
The cytoplasm and chloroplasts are the cellular compartments
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FIGURE 2 | Biosynthesis of GSH. Glu, glutamine; Cys, cysteine; Gly,

glycine; γ-ECS, gamma-EC synthase; GSH-S, glutathione synthetase; GR,

glutathione reductase.

that store most of the GSH in A. thaliana leaves, 50 and 30%,
respectively (Queval et al., 2011).

Ni May be a Key Factor for GSH
Homeostasis

Among the GLY-I isoforms studied in rice, OsGLY11.2 uses
Ni as an activator (Mustafiz et al., 2014). Various stress types
induce this isoform; therefore, suggesting (and determining)
the importance of Ni for the redox balance of the cells
during oxidative stress is possible. Other genes encoding GLY-
I including OsGLYI2, OsGLYI8, OsGLYI9.1, OsGLYI9.2, and
OsGLYI12 do not exhibit altered expression in stressful situations.
Among the three GLY-II genes, OsGLYII-1 showed increased
expression during the application of salt stress; OsGLYII-2
showed high expression levels in all plant tissues (except seeds),
and OsGLYII-3 may provide tolerance during abiotic stress such
as salt stress, heavymetals (Singla-Pareek et al., 2003, 2006, 2008),
and MG accumulation (Yadav et al., 2007).

The gene expression levels and the activity of GLY-I may be
increased by biotic and abiotic stresses, many of which have
been related in the literature to increasing ROS production
and, consequently, stimulation of the antioxidant metabolism for
cellular protection (Mustafiz et al., 2011; Sharma et al., 2012;
Wu et al., 2013; Kaur et al., 2014). Thus, the fact that Ni is an
activator of a GLY-I suggests that it may play an important role in
antioxidant metabolism.

Proving that Ni participates in the homeostasis of GSH in
plant cells may not be simple, given that single and double
mutants of GSH1 and GSH2 produce lethal phenotypes (Cairns
et al., 2006; Noctor et al., 2012). In addition, the amount of
MG in the leaves of certain plants (rice, Pennisetum, tobacco,
and brassica) ranges from 30 to 75µM under normal conditions
(Yadav et al., 2005a), while overall, the total pool of GSH is

nearly 20 times greater for plants (Noctor et al., 2012). The
concentration of GSH is high in the leaves of plants growing
under non-stressful conditions, where the GSH:GSSG ratio
may be 20:1 (Mhamdi et al., 2010). In stressful situations, the
amount of reduced molecules declines, and the GSH:GSSG ratio
consequently changes (Mhamdi et al., 2010).

However, assays with double-mutant tobacco plants that
overexpress GLY-I and GLY-II show that an effective relationship

between the metabolism of MG and GSH may exist (Yadav et al.,
2005b).When stressed with 200mMNaCl, thesemutants showed
a GSH:GSSG ratio similar to that reported in unstressed wild-
type plants. The activities of glutathione reductase, glutathione
S-transferase, glutathione peroxidase, and ascorbate peroxidase
were three- to four-fold higher in transgenic stressed plants
than in the control unstressed plants, which clearly showed an
associated effect between the metabolism of GSH and MG.

Potato plants overexpressing an ascorbic acid biosynthesis
gene stressed with 200mMNaClmaintained a higher GSH:GSSH
ratio, which was followed by increased activity of antioxidant
enzymes dependent on glutathione and glyoxalases, resulting in
the inhibition of MG accumulation (Upadhyaya et al., 2011).

Therefore, the dependence between the two systems is clear.
As this is a coupled system, the GLY-I dependence on Ni may
play an additional role in the regeneration of GSH and therefore
in homeostasis. Considering that MG is synthesized from
dihydroxyacetone phosphate (generatedmainly during glycolysis
within the cytoplasm) and that the highest GSH concentration is
also found in the cytoplasm, depending on the intensity of the
stress MG production may be significant. In this context, Ni may
be a key element for protecting plants against stressful conditions
by decreasing the level ofMG through the activity of glyoxalase as
well as participating in the regulation of the GSH pool. Evidences
exist and are strong, but new experiments will be necessary to
prove that. Thus, the essentiality of Ni may be defined not only
by urease activation, but also by modulating stress tolerance.
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