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Light can penetrate several centimeters below the soil surface. Growth, development
and behavior of plant roots are markedly affected by light despite their underground
lifestyle. Early studies provided contrasting information on the spatial and temporal
distribution of light-sensing cells in the apical region of root apex and discussed the
physiological roles of plant hormones in root responses to light. Recent biological and
microscopic advances have improved our understanding of the processes involved in
the sensing and transduction of light signals, resulting in subsequent physiological and
behavioral responses in growing root apices. Here, we review current knowledge of
cellular distributions of photoreceptors and their signal transduction pathways in diverse
root tissues and root apex zones. We are discussing also the roles of auxin transporters
in roots exposed to light, as well as interactions of light signal perceptions with sensing
of other environmental factors relevant to plant roots.
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Introduction

Roots, the underground organ of all terrestrial plants, do not grow in a completely dark
environment. Actually, sunlight can penetrate several millimeters beneath the soil surface, affecting
the development of root architecture and guiding the growth direction of roots (Woolley and Stoller,
1978; Tester and Morris, 1987). When sunlight strikes the ground, the spectral characters of light
are altered with depth under the soil surface (Figure 1A; Kasperbauer and Hunt, 1988; Mandoli
et al., 1990). Photons in the red and far-red part of the spectrum can penetrate deeper than blue
light photons. Furthermore, vascular tissue can conduct light to the roots over several centimeters
and, again, red to far-red light reaches deeper than blue light (Briggs and Mandoli, 1984; Sun
et al., 2003, 2005). Plants have evolved complex and extremely sensitive light sensing systems to
react properly to light of different spectra. Plants have several classes of sensory photoreceptors,
including the UV-B photoreceptor, UV-A/blue (B) light receptors and red (R)/far-red (FR) receptors
(Briggs and Lin, 2012). Most members of these photoreceptors can be expressed in plant roots,
giving roots the ability to sense light at wavelengths from the spectral UV-B to FR regions. For
laboratory maintained Arabidopsis seedlings, when shoots and cotyledons are exposed to light
and roots are grown in shadowed conditions, the root growth and the root-shoot ratio change
prominently (Xu et al., 2013; Yokawa et al., 2013, 2014; Novák et al., 2015). Young seedlings with
illuminated roots have shorter hypocotyls and longer roots (Novák et al., 2015). The shading
roots condition was applied via new method “GLO-Roots” to analyze the root system architecture,
showing that light changes the root architecture (Rellán-Álvarez et al., 2015). Importantly, the phot1
mutant is not affected by light exposure (Rellán-Álvarez et al., 2015). Arabidopsis roots exposed to
continuous light generate immediate burst of reactive oxygen species (ROS) and show significantly
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altered responses to salt stresses (Yokawa et al., 2011, 2014).
Moreover, Gundel et al. (2014) have hypothesized that the light
perceived by the shoots and canopy cover could affect the
root architecture. Glucose, synthesized by the photosynthetic
process, influences root growth direction and root architecture by
adjusting transport and response of phytohormones, for instance,
brassinosteroids, auxin, cytokinin, and ethylene (Kircher and
Schopfer, 2012; Roycewicz and Malamy, 2012; Singh et al.,
2014a,b). Light, directly or/and indirectly, affects root growth,
lateral root initiation, root hair formation and root gravitropic
and phototropic bending (Lake and Slack, 1961; Klemmer and
Schneider, 1979; Burbach et al., 2012; Hopkins and Kiss, 2012;
Wan et al., 2012). Another newly proposed system for cultivating
young Arabidopsis seedlings with shaded roots is a D–root system
(Silva-Navas et al., 2015). In the D–Root system, the light comes
from the top and shoots perceive the same amount and intensity
of light whereas roots do not get any light. Only in the modified
D-Root system, used to analyze specific wavelengths, the light is
provided frontally (Silva-Navas et al., 2015).

Plants and their roots actively sense light and analyze both
the spectrum and intensity of light using several photoreceptors,
to integrate the development of organs growing aboveground
and underground. In this review, we will discuss the spatial
distribution of these photoreceptors and the physiological
responses of roots to different light signals. It complements the
more general reviews published recently (Kutschera and Briggs,
2012; Goyal et al., 2013; Briggs, 2014; Liscum et al., 2014;
Fankhauser and Christie, 2015).

Phytochromes

The plant sensory photoreceptor, phytochrome, was first
discovered in the 1960s (Siegelman and Hendricks, 1964). Five
members of this red/far-red photoreceptor family, phyA-phyE, are
encoded by the nuclear genome in Arabidopsis thaliana (Briggs
and Olney, 2001). All phytochromes use a single chromophore,
phytochromobilin, to sense light signals (Lamparter, 2004).
Phytochromes have two spectrally distinct conformations. The Pr
form has a maximum absorption wavelength in the red spectrum
(max = 660 nm), while Pfr absorbs far-red light (max = 730 nm)
and these two conformations are photoconvertible. For example,
quantification of seed germination rate under special light
conditions revealed that Pfr is the active form initiating the
germination of plants (Shinomura et al., 1994).

Schwarz and Schneider (1987) reported that phytochromes
accumulated in the coleoptile tip, shoot apex and the root cap
of Zea mays, while other root regions almost lack expression of
phytochromes. Seven years later, expression of reporter genes
driven by endogenous promoters was reported for phytochromes
in different model plants. Adam et al. (1994) reported that
the PHYA gene was mainly expressed in the root meristem
and root cap in both light- and dark-grown Nicotiana tabacum
seedlings. Later, Somers and Quail (1995a,b) agreed with this
expression pattern of PHYA in A. thaliana, with additional PHYA
expression in initiation sites of lateral roots. They further found
that the expression of PHYB genes in meristem and root cap
was induced by light illumination (Somers and Quail, 1995a,b).

FIGURE 1 | (A) Plant organs and their light environment. Shoot part of plants
is fully exposed to light during a day. Root part is exposed only to limited
amounts of light which penetrates into the soil during a day. Actual light
mosaics in the soil depend on numerous factors and it changes with the
depth (Woolley and Stoller, 1978; Tester and Morris, 1987; Kasperbauer and
Hunt, 1988). (B) Root apex zonation with respect of light-sensitivity. Root cap,
meristem and transition zone are expressing phytochromes (Adam et al.,
1994; Somers and Quail, 1995a,b; Goosey et al., 1997) whereas only the
transition zone is abundantly expressing phototropin phot1 (Wan et al., 2008,
2012). UVR8 is expressed, similarly as phytochromes, in all zones of
Arabidopsis root apex (Rizzini et al., 2011; Yokawa et al., 2014). RUS1 and
RUS2 are also expressed preferentially in cells of the transition zone (Leasure
et al., 2009; Yu et al., 2013). (C) Tissue-specific and polar distribution of
phot1 in cells of the transition zone. While epidermis cells do not express
phot1, this blue light photoreceptor essential for negative phototropism of
roots is abundant and polarly distributed (shown in blue) in underlying cortex
cells (Wan et al., 2008) and controls PIN2 distribution and recycling (Wan
et al., 2012). This tissue-specific expression and polarity of phot1 fits nicely to
the plant “ocelli” concept (the epidermis act as lens-like tissue and the
sub-epidermis as retina-like tissue) as proposed by Haberland for shoots
(Haberlandt, 1904; Darwin, 1907; von Guttenberg, 1955).

In addition, light stimulation of the dark-grown Arabidopsis
seedlings induced the PHYD expression in whole roots with high
expression rate in the root elongation and transition zones, but
not in the root apical meristem and root cap (Goosey et al.,
1997).
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Phytochromesmediate variable physiological processes in roots
of Arabidopsis seedlings, including promotion of root elongation,
formation of lateral roots and mediation of root phototropic
responses (Takano et al., 2001; Kiss et al., 2003a; Costigan
et al., 2011; Raya-Gonzalez et al., 2014). PhyA and phyB act
as active photoreceptors leading to red light-induced positive
root phototropism (Kiss et al., 2003a). PhyA inhibits the blue
light-induced negative root phototropism in Arabidopsis (Kiss
et al., 2003b). Later, Correll and Kiss (2005) reported that both
phyA and phyB have roles in light-stimulated root elongation,
which is related to the root gravitropism. Hopkins and Kiss
(2012) used mutant lines lacking PHY chromophore in shoots
(CAB3::pBVR) and roots (M0062/UASBVR) to determine that the
root growth was directly affected by the light sensing in roots.
The signaling systems mediated by phys provide a mechanism
to balance and integrate the development of shoots and roots
(Salisbury et al., 2007). Interestingly, light signals sensed by the
root apices influence also the shoot gravitropic bending (Hopkins
and Kiss, 2012).

Cryptochromes

Cryptochromes (CRYs) were discovered as a blue light
photoreceptor in plants in the 1990s. CRYs are nuclear
flavoproteins, with homology to photolyases, which exist in
almost all organisms (Thompson and Sancar, 2002; Chaves
et al., 2006; Ikeda et al., 2011; Christie et al., 2015). The
model plant Arabidopsis has two members, cry1 and cry2
(Christie et al., 2015), which mediate inhibition of hypocotyl
elongation under blue light, floral initiation controlled by
circadian rhythms and other blue light-induced processes (Li
and Yang, 2007; Yu et al., 2010). Crys have similar structures
with two functional domains, the N-terminal PHR (photolyase-
homologous region) domain that binds the chromophore FAD
(flavin adenine dinucleotide) and a CCE (CRY C-terminal
extension) domain at the C-terminal (Yu et al., 2010). Blue light
changes the protein conformation by altering phosphorylation
status, adjusting the interaction with protein partners, such as
CIB1 (CRYPTOCHROME-INTERACTING bHLH1), COP1
(CONSTITUTIVELY PHOTOMORPHOGENIC 1), and SPAs
(SUPPRESSOR OF PHYA), to activate the cry signaling pathways
(Yu et al., 2007, 2010). cry3, or CRY-dash, is another putative
member of the cry family, but its physiological roles are still
unclear (Brudler et al., 2003; Huang et al., 2006).

Expression of CRY1 and CRY2 were detected in Arabidopsis
roots at the transcriptional and post-transcriptional levels. It
appears that CRYs affect root elongation via indirect pathways.
The perception site of blue light is within the shoot, affecting root
elongation by inhibiting rootward auxin transport (Canamero
et al., 2006; Mao et al., 2014). However, more direct impacts of
CRYs on root growth were also reported (Zeng et al., 2010a,b).
Both cry1 and cry2 inhibit root growth, lower levels of free
auxin and PIN1 amount, and increase flavonoids (Zeng et al.,
2010b). Over-expression of CRY1 and CRY2 inhibit root growth
and make it less sensitive toward auxin transport inhibitor NPA
(Zeng et al., 2010a). In addition, cry1 restrains lateral root
formation via inhibiting polar auxin transport (Zeng et al., 2010b).

Interestingly, the blue light induced development of chloroplasts
in root is synergistically mediated by crys and phys (Usami
et al., 2004). Light signals are transduced via auxin/cytokinin
signaling pathways to modify transcriptional factors LONG
HYPOCOTYL5 (HY5) and GOLDEN2-LIKE2 (GLK2), initiating
root greening processes (Kobayashi et al., 2012).

Phototropins

Phototropins are blue light photoreceptors mediating dynamic
plant behaviors, including shoot and root phototropism,
chloroplast relocalization, adjustment of stomatal opening and
expansion of cotyledons (Christie, 2007). The phototropin family
has two members, phot1 and phot2. Both phots have similar
structures and molecular mechanisms that sense blue light. They
have two N-terminal LOV (light, oxygen, voltage) domains,
which bind to flavin mononucleotide (FMN; Christie et al., 1999).
The LOV domains are activated under illumination by forming a
covalent bond between the cysteine residue and FMNs (Harper
et al., 2003). The C-terminal kinase activities are released by
activation of the LOV2 domain, causing self-phosphorylation
or/and cross-phosphorylation of phototropins (Kaiserli et al.,
2009). In addition to phototropin itself, several substrates of
phot1-kinase were published in recent years. Among them,
the ATP-BINDING CASSETTE B19 (ABCB19) is an auxin
efflux transporter that can adjust the phototropic responses by
maintaining the polar auxin transport in hypocotyls (Christie
et al., 2011). The PHYTOCHROME KINASE SUBSTRATE
4 (PKS4) may have roles in adjusting phototropin- and
phytochrome-mediated responses (Demarsy et al., 2012).
However, PKS4 has only limited roles in the phototropic
signaling process. BLUE LIGHT SIGNALING1 (BLUS1) is
another known phosphorylation substrate of phots, mediating
blue light-induced stomata opening of Arabidopsis (Takemiya
et al., 2013). Besides these signaling proteins, phots need variable
interaction proteins to mediate blue light signaling, including
the NPH3 protein family (NPH3/RPT2/CPT1; Motchoulski and
Liscum, 1999; Inada et al., 2004; Haga et al., 2005; Pedmale and
Liscum, 2007), 14-3-3 proteins and small G-protein ARF proteins
(Sullivan et al., 2009; Tseng et al., 2012). Tissue specific expression
of phots provides another mechanism (see Figure 1C, for the
root apex) to mediate a wide range of physiological processes
(Sakamoto and Briggs, 2002; Wan et al., 2008; Preuten et al.,
2013).

In mature Arabidopsis root system, phot1 is strongly expressed
in the upper (closer to the soil surface) roots, where blue light
reaches (Figure 1A), to increase drought tolerance in roots
(Galen et al., 2007a,b). Moreover, mutant roots lacking phot1
showed random growth whereas control roots with active phot1
enjoyed directional and efficient growth (Galen et al., 2007a). In
Arabidopsis root apices, phot1 accumulates in the apical region of
primary and lateral roots, mediating blue light induced negative
bending in primary roots and suppressing lateral root elongation
(Sakamoto and Briggs, 2002; Wan et al., 2008; Zhang et al., 2013;
Moni et al., 2015). Compared to the important roles of phot1 in
roots, phot2 has only very weak distribution in root tissues (Kong
et al., 2006; Wan et al., 2008). Interestingly, Arabidopsis root caps
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(Figures 1B,C) do not express phot1 (Sakamoto and Briggs, 2002;
Wan et al., 2008), implying that the site of blue light perception
is the root transition zone, adjusting root bending by controlling
polar auxin transport (Figure 1: Wan et al., 2012; Zhang et al.,
2013).

Root Phototropism via Light-Activated
Root Photoreceptors: Root Cap Versus
Transition Zone

Both root and light tropisms have attracted the attention of
researchers since a long time (Darwin, 1907;Kutschera andBriggs,
2012; Briggs, 2014). According to a classic study to quantify root
phototropic behaviors in 166 plant species under unilateral white
light illumination, 88 species showed no phototropic bending,
while 72 had negative and 8 had positive phototropic bending
responses (Schaefer, 1911). Naundorf (1940) reported that the
root caps of sunflower seedlings are responsible for negative
phototropic bending in roots. However, Schneider suggested that
removing the apical 1 mm of the roots of maize plants did not
result in altered phototropic bending behavior (Schneider, 1964).
Mullen et al. (2002) designed a computer feedback system to
maintain the root tip in a vertical position, and a fine optic fiber
to control the exact light perception site of maize. They confirmed
that the root cap is the organ of blue light perception in maize
(Mullen et al., 2002).

Interestingly, the phot1-GFP protein driven by an endogenous
promoter is not expressed in the root cap in Arabidopsis, but has
a high expression level in the apical part of the transition zone
(Figure 1C; Sakamoto and Briggs, 2002; Wan et al., 2008). The
root cap, a site of perception of gravity signals (Swarup et al., 2005;
Leitz et al., 2009), is rather a red-light-sensing organ as PHYA and
PHYB are expressed there (Figures 1B,C and 2; Adam et al., 1994;
Somers and Quail, 1995a,b; Goosey et al., 1997). Therefore, the
critical question is this: is the root cap also a blue light-sensing
organ? Is the root cap an organ for interaction between gravity
and light signals to determine tropic bending?

The classic Cholodny–Went theory postulates that the
asymmetric distribution of auxin determines both gravitropic
and phototropic bending (Went and Thimann, 1937). It is logical
to presume that phototropic and gravitropic signaling interacts
via polar auxin transport in roots. The sensing of and response to
tropic signals are spatially separated. In the maize root apex, the
bending position responses to light and gravity signals have been
determined, and gravitropic bending occurs at the transition zone
(Baluška et al., 1996, 2010; Verbelen et al., 2006), also known
as the distal elongation zone or the oscillatory zone (Baluška
and Mancuso, 2013); whereas phototropic bending occurs above
it, at the central elongation zone (Ishikawa and Evans, 1993;
Mullen et al., 2002). The sensing of gravity occurs in the root
caps. Re-orientation of roots causes sedimentation statoliths in
the cortical endoplasmic reticulum to reorient to the new bottom
in central S2 columella cells (Leitz et al., 2009). The dynamic
force triggers release of Ca2+ from the endoplasmic reticulum,
resulting in redistribution of PIN3 protein, an auxin efflux carrier,
in these columella cells (Friml et al., 2002). However, the critical
photoreceptor for blue light-induced root phototropism, phot1,

FIGURE 2 | Polar auxin transport based on PIN1, PIN2, and PIN3 is
light sensitive and involved in the light-induced negative phototropism
of roots (Friml et al., 2002; Wan et al., 2012; Zhang et al., 2014). PIN1 is
involved in the acropetal (rootward) auxin transport, PIN3 in the lateral auxin
transport in statocytes, and PIN2 in the basipetal (shootward) auxin transport
in epidermis and cortex cells. CC, central cylinder; En, endodermis; Co,
cortex; Ep, epidermis.

is not expressed in root cap cells. Lateral blue light affects PIN3
localization in root cap columella cells, while the phot1 mutant
lacks this response (Zhang et al., 2013). How the phot1 sensing
of blue light adjusts localization of PIN3 in columella cells is still
unclear.

Furthermore, Wan et al. (2012) reported that activated phot1
determines the cellular behavior of PIN2 via the NPH3-based
signal transduction process, affecting polar auxin transport in
cortical cells of the root apex transition zone. Interestingly,
PIN2 and phot1 are expressed preferentially in the transition
zone (Figure 2), special root apex zone in which sensory-
response integration is accomplished for root gravitropism and
phototropism (Baluška et al., 2001, 2010;Wan et al., 2012; Baluška
and Mancuso, 2013). Phot1-mediated signaling determines polar
localization of PIN2 and PIN3, resulting in asymmetric auxin
distribution on the shaded and lighted sides, leading to negative
root phototropism. When roots were illuminated by symmetric
blue light illumination, root gravitropic bending was reduced
(Wan et al., 2012). Adjustment of the polar localization of PINs is a
crucial process in polar auxin transport and PINOID (PID) kinase
is one of the key regulators (Kleine-Vehn et al., 2009; Sukumar
et al., 2009). Phot1 and PID belong to the same AGC kinase
group, with a close evolutionary relationship (Galván-Ampudia
and Offringa, 2007; Robert and Offringa, 2008). PID acts as a
negative regulator of root apex phototropism and is expressed
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in the transition zone (Haga and Sakai, 2015). Intriguingly,
blue light irradiation changed the symmetric PID distribution
into an asymmetric one, with reduced PID on the shaded root
apex side (Haga and Sakai, 2015). Thus, these results suggest
that phototropic and gravitropic signaling may share a similar
regulatory mechanism via a PIN-based auxin transport through
the root apical zones.

Recently, PIN1 has also been shown to be needed for the
root negative phototropism (Zhang et al., 2014). Blue light
induced redistribution of both PIN2 (Wan et al., 2012), and PIN1
(Zhang et al., 2014) is mediated via BFA and GNOM-dependent
endosomal trafficking pathways. Moreover, PINOID and PP2A
are involved in the blue light induced redistribution of PIN1.
Since PINOID is not expressed in stele cells expressing PIN1
(Dhonukshe et al., 2010; Zhang et al., 2014), it remains a mystery
how PINOID controls the status of PIN1 protein.

Phys, the red light receptors, affect tropic bending via different
mechanisms. Lariguet and Fankhauser (2004) revealed that top
blue light illumination inhibited hypocotyl gravitropism through
phyA-mediated pathways, while phot1 rescued upward growth
by promoting phototropism. PhyA and phyB were found to
have roles in adjusting root elongation and root gravitropism
(Correll and Kiss, 2005). The phytochrome interaction protein,
PKS1 acts as a signal transducer to inhibit gravitropic bending
and adjust blue light-induced phototropism in Arabidopsis roots
(Boccalandro et al., 2007). PhyAmaymediate blue light responses
by forming a signal complex with phot1 (Jaedicke et al., 2012).
Interestingly, PKS1 is an interaction partner with phot1 and PKS4
is the substrate of phot1 kinase (Lariguet et al., 2006; Demarsy
et al., 2012). Current structure analysis of the signaling protein
complexmay reveal themolecular mechanisms of phots, phys and
PKSs interactions to reveal the mechanism of root phototropism
and gravitropism.

Light Spectra and Root Apex Functional
Zones

Sunlight can penetrate the soil for centimeters. The spectrum
and intensity of light underneath the soil surface can be sensed
by roots, with diverse photoreceptors distributed specifically in
different root zones. In addition to the phytochromes, CRYs
and phototropin photoreceptors, studies showed that UV-B light
affects root growth and development. Root development of UV-
B sensitive1 (rus1, rus2) mutants of Arabidopsis is blocked under
weak UV-B illumination (Tong et al., 2008; Leasure et al., 2009).
The RUS1 protein is an essential factor for polar auxin transport

in Arabidopsis (Yu et al., 2013). A UV-B receptor, UVR8, was
identified and its crystal structure characterized (Christie et al.,
2012). UVR8 is expressed in root apices of Arabidopsis (Rizzini
et al., 2011; Yokawa et al., 2014) and its over-expression reduces
growth of illuminated roots (Fasano et al., 2014).

Another protein, the F-box protein ZEITLUPE, uses the
LOV domain to sense light, modulating circadian rhythms and
mediating hypocotyl elongation under light conditions (Kim et al.,
2007). However, we have little knowledge of these photoreceptors
and their sensing mechanisms, especially in roots. The root
apical region may act as a site to sense and respond properly
to light signals of different intensities and wavelengths. Root
caps express both phyA and phyB, allowing them to act as a
sensing organ for red and blue light (Figure 1B). The root apex
transition zone acts as a command center for interactions between
sensory and endogenous signals (Baluška et al., 2010; Baluška
and Mancuso, 2013). Polar localization of phot1 in the transition
zone (Figure 1C) provides a fine adjustmentmechanism for auxin
polar transport in the root apex, influencing phototropism and
gravitropism at the root apex. Since blue light cannot penetrate
deep beneath the soil surface (Figure 1A), blue and red light
receptors are more highly expressed in the upper portion of roots,
adjusting formation and initiation of lateral roots to better cope
with drought stress, and initiation development of chloroplast in
roots.

In conclusion, plant roots can sense light and respond to
a colorful underground world via complex signaling networks
constructed from interwoven signaling pathways based on plant-
specific photoreceptors. It is important to maintain the roots of
laboratory-grown Arabidopsis seedlings in darkened Petri dishes
(Yokawa et al., 2011, 2014; Xu et al., 2013: Novák et al., 2015).
Illumination of roots affects not only roots but changes the whole
seedlings, their metabolism, physiology and perhaps also their
circadian rhythms.
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