
PERSPECTIVE
published: 12 October 2015

doi: 10.3389/fpls.2015.00798

Edited by:
Marie-Pascale Prud’Homme,

University of Caen Lower Normandy,
France

Reviewed by:
Ravi Valluru,

International Maize and Wheat
Improvement Center, Mexico

Maria Angela Machado Carvalho,
Instituto de Botânica, Brazil

*Correspondence:
Giselle M. A. Martínez-Noël,
Instituto de Investigaciones

en Biodiversidad y
Biotecnología-Consejo Nacional de

Investigaciones Científicas y Técnicas,
Vieytes 3103, 7600-Mar del Plata,

Argentina
giselleastrid@gmail.com;

gnoel@inbiotec.conicet.gov.ar

Specialty section:
This article was submitted to

Plant Physiology,
a section of the journal

Frontiers in Plant Science

Received: 15 April 2015
Accepted: 14 September 2015

Published: 12 October 2015

Citation:
Martínez-Noël GMA, Dosio GAA,

Puebla AF, Insani EM and Tognetti JA
(2015) Sunflower: a potential

fructan-bearing crop?
Front. Plant Sci. 6:798.

doi: 10.3389/fpls.2015.00798

Sunflower: a potential
fructan-bearing crop?
Giselle M. A. Martínez-Noël1*, Guillermo A. A. Dosio2, Andrea F. Puebla3,
Ester M. Insani3 and Jorge A. Tognetti2,4

1 Instituto de Investigaciones en Biodiversidad y Biotecnología-Consejo Nacional de Investigaciones Científicas y Técnicas,
Mar del Plata, Argentina, 2 Laboratorio de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del
Plata, Balcarce, Argentina, 3 Instituto de Biotecnología, CICVyA-CNIA-INTA, Hurlingham, Argentina, 4 Comisión de
Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina

Grain filling in sunflower (Helianthus annuus L.) mainly depends on actual
photosynthesis, being the contribution of stored reserves in stems (sucrose, hexoses,
and starch) rather low. Drought periods during grain filling often reduce yield. Increasing
the capacity of stem to store reserves could help to increase grain filling and yield
stability in dry years. Fructans improve water uptake in soils at low water potential,
and allow the storage of large amount of assimilates per unit tissue volume that can
be readily remobilized to grains. Sunflower is a close relative to Jerusalem artichoke
(H. tuberosus L.), which accumulates large amounts of fructan (inulin) in tubers and true
stems. The reason why sunflower does not accumulate fructans is obscure. Through a
bioinformatics analysis of a sunflower transcriptome database, we found sequences that
are homologous to dicotyledon and monocotyledon fructan synthesis genes. A HPLC
analysis of stem sugar composition revealed the presence of low amounts of 1-kestose,
while a drastic enhancement of endogenous sucrose levels by capitulum removal did not
promote 1-kestose accumulation. This suggests that the regulation of fructan synthesis
in this species may differ from the currently best known model, mainly derived from
research on Poaceae, where sucrose acts as both a signaling molecule and substrate, in
the induction of fructan synthesis. Thus, sunflower might potentially constitute a fructan-
bearing species, which could result in an improvement of its performance as a grain
crop. However, a large effort is needed to elucidate how this up to now unsuspected
potential could be effectively expressed.
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Introduction

Sunflower (Helianthus annuus L.) is an important crop worldwide, ranking 4th among oil
producing species 1 which produces high quality oil for human consumption. In this species, grain
filling mainly depends on actual photosynthesis. According to a detailed C budget analysis (Hall
et al., 1990), C fixed during the pre-anthesis period contributed just about 15% of the total C
uptake of the grain in plots without water deficiencies. Increasing the capacity of stem tissues to
store reserves could help to increase grain filling and specially yield stability. In general, grains
located at the inner part of the capitulum (this is, the youngest ones) fail to develop properly,
leaving the center of the harvested organ with a majority of vain grains. This phenomenon is

1http://www.asagir.org.ar/Asagir2008/importancia-economica.asp
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known to depend on photoassimilate availability (Alkio et al.,
2003; Cantagallo et al., 2004) since deficient vascular connections
do not prevent seed filling in sunflower (Alkio and Grimm,
2003). In fact, the situation is frequently aggravated by the
occurrence of drought periods during grain filling, which are
typical of one of the main sunflower regions in the world
such as Argentinean Pampas (Sadras and Hall, 1989). Under
these conditions, photosynthetic rate of sunflower plants may
be severely diminished. Hall et al. (1989, 1990) reported that
C fixed during the pre-anthesis period contributed about 27%
of the total C uptake of the grain in water stressed crops. In
spite of this greater C remobilization, during a water stress
period this may not be enough to compensate for impaired C
fixation since physiological processes such as photosynthesis and
growth are affected as well. Thus, severe yield losses are often
encountered in dry years (Sadras et al., 1993). A decrease in grain
quality is also expected as both the relative oil content and fatty
acid composition depend on intercepted PAR (photosynthetically
active radiation) during grain filling (Dosio et al., 2000; Izquierdo
et al., 2009).

Stored sugars in sunflower stem consist of sucrose and
mono-saccharides, which together with a limited amount of
starch constitute the reserves that could be remobilized to
grains (Goldschmidt and Huber, 1992; Sims et al., 1999). Since
C storage in the form of mono and disaccharides implies a
high increase in cell osmolality, accumulation of these sugars
in stems leads to a rapid increase in cell and tissue volume,
which is revealed mainly by stem thickening. Thus, part of
C surplus is diverted to investment in structural components,
instead of remaining as reserve carbohydrates which could be
remobilized to the capitulum. The polymerization of sucrose
into fructans could give the possibility of storing much larger
amount of assimilates per unit issue volume without a significant
osmotic effect. Accordingly, by introducing fructosyltransferase
genes into sugarcane plants, Nell (2007) found sugar content
to be up to 63% higher than in control, untransformed plants.
Stored fructans are in turn readily mobilized when necessary.
In most small grain crops, fructans are stored in the stem
and then contribute to grain filling in a higher degree than
sucrose does in sunflower. For example, Borrell et al. (1989)
reported that post-anthesis stem reserves may have contributed
at least 21% of final grain yield of semi-dwarf wheat, while
Gebbing et al. (1999) reported similar average values for two
cultivars of this species. These percentages are increased during
periods of drought (Blum, 1998; Gupta et al., 2011). Because
reserve assimilates stored in vegetative organs of the plant before
anthesis may be mobilized during grain filling, they may buffer
grain yield against adverse conditions for photosynthesis during
that period. This is a general phenomenon observed in cereals
(Gebbing et al., 1999), and other crops including sunflower
(Hall et al., 1989). Besides its putative effect on C storage and
remobilization to reproductive structures, the possibility that
sunflower accumulates fructan could also have a direct impact
on crop tolerance to summer drought. It has been demonstrated
that sunflower capacity for osmoregulation is closely related to
yield maintenance in dry years (Chimenti et al., 2002). Fructans
are known to provide osmotic regulation to plants, since they are

present as a continuum of oligomers that differ from each other
in one fructose residue, and they can be easily depolymerized
into hexoses. This feature enables fructan-bearing plants to
extract water at lower soil water potentials (Garcia et al., 2011).
Moreover, fructans are known to protect membranes by direct
insertion within lipids and thus relief plants from drought stresses
(Valluru and Van den Ende, 2008; Livingston et al., 2009; Van den
Ende, 2013).

During the last two decades several attempts have been
made to transfer fructan genes from fructan-bearing species to
other plants. As a result, improved drought or freeze resistance
have been reported in several cases (Pilon-Smits et al., 1995;
Konstantinova et al., 2002; Hisano et al., 2004; Parvanova et al.,
2004; Bie et al., 2012) but as a general rule the success of
such transformations has been rather limited since transgenic
plants tend to produce fructan in a low concentration (Cairns,
2003). Furthermore, in sunflower this possibility is uncertain
since this species has been considered as recalcitrant for genetic
transformation, because of difficulties in plant regeneration
procedures (Moschen et al., 2014).

Sunflower is a close relative to Jerusalem artichoke
(H. tuberosus L.), which accumulates large amounts of fructan
of the inulin type in tubers (which are modified stems) but also
in true stems and even in roots (Seiler, 2007). In fact, Jerusalem
artichoke (as a sugar crop) can be grown for both tubers and
aboveground biomass, for which there are cultivars characterized
by well-developed stalks and low tuber yields (Caserta and
Cervigni, 1991). The reason why sunflower does not accumulate
fructans is obscure. Early in the 20th century M. H. Colin in
France performed grafting experiments between sunflower and
Jerusalem artichoke which revealed that only the parts belonging
to the latter accumulated inulin, irrespective of which species
was at the base of the graft (Colin, 1922). A first possibility to
explain the lack of fructan in sunflower is that genes for fructan
synthesis enzymes may be missing, or non-functional, in this
species. A second possibility is that, even if present, expression
of fructan synthesizing enzymes in sunflower is inhibited
because of metabolic reasons. Both possibilities are analyzed
below.

Presence of Fructan Synthesizing
Enzymes in Sunflower

An exhaustive analysis regarding the possibility that genes
for fructan synthesis enzymes in sunflower may be lacking,
or non-functional, has not been conducted yet. This may
be attributed to the fact that the sunflower genome is
still not available. The accepted model for fructan synthesis
in higher plants involves the presence of distinct enzymes,
mainly including 1-SST (1-sucrose:sucrose fructosyltransferase)
and 1-FFT (fructan:fructan 1-fructosyltransferase) for fructan
initiation and polymerization respectively, (Vijn and Smeekens,
1999). With the goal of investigating whether sunflower
genome encodes fructan synthesizing enzymes we searched for
homologous sequences of 1-SST and 1-FFT from different plant
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species within a public sunflower EST database2 (Bioinformatics
Unit at INTA, Hurlingham, Buenos Aires, Argentina). From
several contigs identified that showed high similarity with
invertases (INV) and fructosyltransferases from several plant
species genes, two showed high similarity to fructan synthesis
enzyme genes: HeAn_C_8450_Contig8450 (Hacontig8450) to
1-SST and HeAn_C_12894_Contig12894 (Ha12894) to 1-FFT
(Table 1). It was previously described that development of
transfructosylation ability in INV is evidenced by different amino
acid substitutions, e.g., W to Y or F and/or N to S in the
WMNDPNG motif, and WGW to WGY, or WGF (Lammens
et al., 2012). While most of the contigs we found seem to belong
to the INV family (e.g., HeAn_C_12706_Contig12706, Ha12706),
Hacontig8450 and Ha12894 lack all the essential amino acids that
characterize INV enzymes (Table 1) suggesting that they belong
to fructosyltransferases group.

Regulation of Fructan Synthesizing
Enzymes in Helianthus

The best known model for the induction of fructan synthesis has
been developed from research on Poaceae such as wheat and
barley. According to the model, sucrose must exceed a certain
threshold to elicit the expression of fructan synthesizing enzymes
(Pollock et al., 2003). Therefore, sucrose appears to play a double
role in fructan metabolism, it is both the essential substrate used
in fructan synthesis and it also starts the signal transduction
pathway that induces the fructosyl-sucrose synthesizing enzymes
(Tognetti et al., 2013). It could be possible that, in the case
of sunflower, insufficient sucrose levels are accumulated for 1-
SST induction, either as a consequence of a higher threshold

2http://atgc-sur.inta.gob.ar/welcome/default/index

for sucrose-driven induction in sunflower than in Jerusalem
artichoke, or to a high fructan hydrolase activity which could
preclude fructan from accumulating in sunflower tissues.

We subsequently performed an experiment in which
endogenous sucrose levels in sunflower stems were drastically
enhanced by removing the main sink organ (capitulum), to
analyze a possible induction of fructan synthesis. A commercial
sunflower hybrid (VDH481, Advanta Semillas SAIC) was grown
in the field at Balcarce, Argentina, under potential conditions
for this environment. When the crop had reached Schneiter
and Miller’s R3 phenological stage (about 120◦ days before
anthesis, considering a base temperature of 6◦C) half of the
plants were decapitated. This treatment resulted in both a large
(152%) increase in stem diameter, and enhanced (>24-fold)
total sugar concentration in stem tissues, relative to intact plants
(Figures 1A,B). Stem sucrose concentration of decapitated plants
ranged between 5.73 and 7.45 mg sucrose g−1 FW, depending
on sampling date. Thus, it may be hypothesized that the large
tissue expansion driven by decapitation precluded sucrose from
reaching concentrations that could have exceeded 15 mg g−1

FW if stem volume had remained unchanged. Sucrose threshold
values for fructan induction in grass species close to 15 mg g−1

FW have been reported (Koroleva et al., 1998), although a
straightforward comparison between species is not feasible due
to stem volume change in sunflower. A HPLC analysis of sugar
composition revealed the presence of 1-kestose in stem of control
plants, but its levels were not increased by capitulum decapitation
despite the large accumulation of sucrose (Figure 1C), reaching
0.24 mg g−1 FW. On the other hand, non-significant amounts
of oligomers with a higher degree of polymerization were found
(not shown).

The inability of sunflower to substantially accumulate fructan
is likely not atributtable to a high fructan hydrolase activity, since
the latter enzyme is known to be inhibited by sucrose in most

TABLE 1 | Multiple alignment of amino acids of a selection of plant 1-sucrose:sucrose fructosyltransferase (1-SST), fructan:fructan
1-fructosyltransferase (1-FFT), and invertases (INV) enzymes showing essential motifs in the vicinity of the active site.

Helianthus tuberosus 1-SST (AJ009757) FISDPDG WGN MTGSAT QVQ DEDR WGY GWAN

Cichorium intybus 1-SST (JQ346799) FISDPDG WGN MTGSAT QLQ DEDR WGY GWAN

Hacontig8450 FISDPDG WGN MTGSAT QVQ DEDR WGY GWAN

Cynara scolymus 1-SST (Y09662.1) YISDPDG WGN MTGSAT QLQ DEDR WGY GWAN

Allium cepa 1-SST (AJ006066) FMADPNA WDY WSGYAT QVQ DDER WGY GWAS

Triticum aestivum 1-SST (AB029888) YQNDPNG WEP LTGSIT QVT DDDR WAY GWAN

Lolium perenne 1-SST (AA086693) YMNDPNG WGN LTGSIT QVQ DDER WAY GWAN

H. tuberosus 1-FFT (AJ009756) FIYDPDG WGN LSGSTT QLQ EGHG WGY GWAT

C. intybus 1-FFT (U84398) FIYDPNG WGN LSGSTT QLQ EGHG WGY GWAT

C. scolymus 1-FFT (AJ000481) FIYDPNG WGN LSGSTT QLQ EGHA WGY GWAT

Hacontigl2894 FIYDPNG WGN LSGSTT QLQ EGHG WGY GWAT

T. aestivum 1-FFT-A (AB088409) YQNDPNG WGN LTGSIT QVT DDDR WGY GWAN

T. aestivum 1-FFT-B (AB088410) YQNDPNG WGN LTGSIT QVT DDDR WGY GWAN

Solanum tuberosum INV (AEV46297) WMNDPNG WGN WTGSAT QVQ DDNK WGW GWAS

Agave tequiliana INV (AFJ21575) WMNDPNG WGN WSGSAT QVQ SDDN WGW GWAS

Hacontigl2706 WMNDPNG WGK WTGSAT QVQ DDDR WSW GWAS

Underlined letters indicate amino acid substitutions that confer transfructosylation ability. Gray boxes show amino acids that are essential for vacuolar INV activity, which
are not present in fructan synthesizing enzymes. Contigs from H. annuus are shown in bold.
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FIGURE 1 | Sugar accumulation and profiles in sunflower stems from control and decapitated plants. (A) View of a decapitated plant (left) showing large
stem thickening and generalized growth promotion, in comparison to a control plant (right). (B) Total soluble carbohydrate concentration (TSC) in stems of
decapitated (triangles, dashed line) and control (circles, full line) plants (±SE), measured spectrophotometrically from aqueous extracts, according to the
phenol-sulfuric method (arrow indicates sampling date). (C) HPLC chromatograms of aqueous stem extracts separated on a Prevail carbohydrates ES column and
detected by refractive index detector (RID).

species (Van Riet et al., 2006). On the other hand, it is possible that
in sunflower (and perhaps in Asteraceae in general) sucrose alone
is not sufficient to induce synthesis of fructans, in contrast to
monocots. In this sense, working with chicory hairy root cultures,
Kusch et al. (2009) showed that in addition to high levels of
sucrose, low N levels are required to induce fructan synthesizing
enzymes. Furthermore, from work on H. tuberosus it appears as
possible that fructan synthesis initiation may be related to the
induction of tuberization, because no polymerization of sucrose
appears to occur before the beginning of tuber growth (Monti
et al., 2005). The onset of tubering is hormonally regulated,
being jasmonic acid a well-known promoter (Koda et al., 1994).
Deepening our knowledge on H. tuberosus biology with studies
such as that by Jung et al. (2014) may also help find the responses.

Conclusion and Future Prospects

Our results suggest that the inability of sunflower to substantially
accumulate fructan is not attributable to the lack of functional
genes encoding for enzymes of fructan synthesis, neither to
insufficient sucrose levels to induce fructan synthesizing enzymes
in stems. Evidence is presented indicating that the main fructan
synthesizing enzymes (1-SST and 1-FFT) are indeed expressed
in sunflower, and that 1-Kestose (i.e., the product of SST
activity), is also detectable among sugars stored in the stem.
However, fructan amount appears to be only marginal, and its
accumulation is likely not to be induced by treatments promoting
high sucrose concentrations in the stem. These findings suggest
that sunflower might potentially constitute a fructan-bearing
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crop, which might have an important impact from an
agronomic point of view. An increase in grain yield and
oil content, a more convenient fatty acids composition and,
specially, an improvement in yield stability against drought
and other abiotic stresses, could hypothetically be achieved if
substantial amount of fructans could be accumulated in the
sunflower stem. However, a large effort is needed to elucidate
how sunflower potential to accumulate fructans is effectively
elicited. A close examination of the regulatory mechanisms

involved in its synthesis may be a first step toward achieving
this goal.
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