
REVIEW
published: 28 September 2015
doi: 10.3389/fpls.2015.00800

Edited by:
Wei Huang,

Kunming Institute of Botany, Chinese
Academy of Sciences, China

Reviewed by:
Wah Soon Chow,

The Australian National University,
Australia

Jean Alric,
Centre National de la Recherche

Scientifique, France

*Correspondence:
Marjaana Suorsa,

Molecular Plant Biology, Department
of Biochemistry, University of Turku,

FI-20014 Turku, Finland
msuorsa@utu.fi

Specialty section:
This article was submitted to

Plant Physiology,
a section of the journal

Frontiers in Plant Science

Received: 04 August 2015
Accepted: 14 September 2015
Published: 28 September 2015

Citation:
Suorsa M (2015) Cyclic electron flow

provides acclimatory plasticity
for the photosynthetic machinery

under various environmental
conditions and developmental stages.

Front. Plant Sci. 6:800.
doi: 10.3389/fpls.2015.00800

Cyclic electron flow provides
acclimatory plasticity for the
photosynthetic machinery under
various environmental conditions
and developmental stages
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Photosynthetic electron flow operates in two modes, linear and cyclic. In cyclic
electron flow (CEF), electrons are recycled around photosystem I. As a result, a
transthylakoid proton gradient (�pH) is generated, leading to the production of ATP
without concomitant production of NADPH, thus increasing the ATP/NADPH ratio
within the chloroplast. At least two routes for CEF exist: a PROTON GRADIENT
REGULATION5–PGRL1–and a chloroplast NDH-like complex mediated pathway. This
review focuses on recent findings concerning the characteristics of both CEF routes in
higher plants, with special emphasis paid on the crucial role of CEF in under challenging
environmental conditions and developmental stages.

Keywords: acclimation, cyclic electron flow, development, electron transfer, environment, NDH complex, PGR5,
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Introduction

Photosynthetic light reactions occur in four thylakoid membrane-embedded multiprotein
complexes; photosystem (PS) II, cytochrome b6f (Cytb6f ), PSI and ATP synthase. In higher plants,
these complexes are unevenly distributed along thylakoid membrane, as PSII complexes are mostly
located in grana stacks, whilst PSI and the ATP synthase are enriched in the stroma-exposed
thylakoids. The Cytb6f complex has been traditionally assigned to be rather evenly distributed
between the appressed and non-appressed regions, however, recent results from biochemical
(Grieco et al., 2015) and immunolabeling (Armbruster et al., 2013) experiments suggest its
predominant localization in the non-appressed thylakoid domains.

In linear electron flow (LEF), the PSs function in series and electrons are transferred all
the way from water to NADP+ with concomitant production of NADPH and ATP. Cyclic
electron flow (CEF), in contrast, recycles electrons around PSI by re-routing them from
ferredoxin (Fd) to the plastoquinone (PQ). As a result, a transthylakoid proton gradient
(�pH) is generated, leading to the production of only ATP. Consequently, CEF has been
proposed to balance the ATP/NAPDH ratio. The �pH component forms part of the proton
motive force (pmf), which drives the ATP synthase and can be monitored as electrochromic
bandshift (ECS) from intact leaves. Besides �pH, also the transthylakoid electric potential
(�ψ) contributes to pmf. The transthylakoid �pH is crucial for the regulation of LEF via two
mechanisms: (i) increased �pH downregulates the Cytb6f complex (“photosynthetic control”),
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which limits the electron flow from PSII toward PSI and
thus protects PSI particularly upon sudden exposure to high
light intensity (Joliot and Johnson, 2011; Suorsa et al., 2012).
Furthermore, (ii) lumen acidification triggers induction of non-
photochemical quenching (NPQ) of excess light energy, which
protects PSII from photoinhibition (Li et al., 2009).

Two routes for CEF exist: (i) antimycin A sensitive pathway,
which includes the PROTON GRADIENT REGULATION5
(PGR5) and PGR5-LIKE PROTEIN1 (PGRL1) proteins
(Munekage et al., 2002, 2004; DalCorso et al., 2008) and (ii)
antimycin A insensitive pathway, which transfers electrons
via the NAD(P)H dehydrogenase-like (NDH) complex (Ifuku
et al., 2011) [for a recent reviews, see (Leister and Shikanai,
2013; Shikanai, 2014]. Both of these pathways receive electrons
from Fd (Yamamoto et al., 2011; Hertle et al., 2013). It has
been estimated that in C3 plants, roughly one tenth of the total
electron flow derives from CEF (Avenson et al., 2005). However,
it is likely that under some specific conditions, such as upon
onset on light illumination and under certain environmental and
developmental conditions (see below), the proportion of CEF
might be substantially higher. Based on the current knowledge,
the major part of CEF in C3 plants is thought to be driven
by the PGR5–PGRL1 pathway (Avenson et al., 2005; Wang
et al., 2014). Besides defective pmf, the pgr5 mutants of both
Arabidopsis and rice have also been shown to exhibit an elevated
proton conductance of the ATP synthase (Avenson et al., 2005;
Nishikawa et al., 2012; Wang et al., 2014), as well as an increased
amount of the ATP synthase β subunit (Suorsa et al., 2012). In
contrast, the ndh mutants show an ATP synthase activity similar
to that of wild type (WT; Wang et al., 2014). Whilst a deficiency
of either of CEF pathways does not lead to a visual phenotype
under standard growth conditions, a complete inhibition of
CEF in the Arabidopsis pgr5 crr-2 double mutant deficient in
both pathways severely impairs plant growth and performance
(Munekage et al., 2004), implying that CEF is essential for
photosynthesis even in the C3 species.

This review focuses on the recent findings concerning the
characteristics of both CEF routes, with special emphasis paid
on the crucial role of CEF in higher plants under challenging
environmental and developmental conditions.

The PGR5–PGRL1 Route of CEF

The crucial role of the PGR5 protein for the maintenance of
proper �pH was demonstrated already more than 10 years ago
(Munekage et al., 2002) and a few years later, its interaction with
PGRL1 was characterized (DalCorso et al., 2008). Whilst PGR5
does not contain a transmembrane helix, it is present in purified
thylakoid fractions (Munekage et al., 2002). The interaction of
PGR5 with the membrane-spanning PGRL1 likely takes place
via conserved Cys residues present in both PGR5 and PGRL1
(Hertle et al., 2013). In vitro –assays indicate that PGRL1 interacts
also with Cytb6f, Fd, the PSI subunit PsaD, and with both
isoforms of the Fd-NADP+-oxidoreductase (FNR) (DalCorso
et al., 2008). Furthermore, it was recently demonstrated that the
PGRL1-PGR5 complex is capable of accepting electrons from

Fd, and PGRL1 can reduce quinones, indicating that the long-
sought hypothetical ferredoxin-plastoquinone reductase (FQR)
has finally been experimentally characterized (Hertle et al., 2013).

PROTON GRADIENT REGULATION5 is present in all
photosynthetic organisms, whereas PGRL1 is specific for green
algae and plants (DalCorso et al., 2008). In the green algae
Chlamydomonas reinhardtii (Chlamydomonas), PGRL1 has been
shown to be present in the protein complex mediating CEF under
state 2 conditions, together with PSI, its light harvesting complex
(LHCI), LHCII, Cytb6f, and FNR (Iwai et al., 2010). PGR5, in
contrast, was not found to be part of the complex (Iwai et al.,
2010). However, the recently characterized Chlamydomonas pgr5
and pgrl1 mutants (Petroutsos et al., 2009; Tolleter et al., 2011;
Dang et al., 2014; Johnson et al., 2014) exhibit characteristics
resembling Arabidopsis pgr5 and pgrl1 mutants, indicating that
also the PGR5 protein of Chlamydomonas has a role in CEF.

In Arabidopsis, PGRL1 is encoded by two genes, the PGRL1A
isoform (encoded by the AT4G22890 gene) of which has been
shown to be phosphorylated by the STN8 kinase (Reiland et al.,
2011). Even though the stn8 mutant was capable of reaching
similar overall rate of CEF as compared to WT, its capacity to
maintain CEF upon shift from darkness to light was lowered
(Reiland et al., 2011), indicating that the STN8 kinase regulates
the kinetics of CEF. However, as not only green algae, diatoms,
mosses, and lycophytes, but also the monocot species lack the
phosphorylated threonine from their PGRL1A sequence, this
regulatory mechanism seems to be specific for dicots (Reiland
et al., 2011). Thus, evolutionary aspects should be taken into
account before drawing strict conclusions about the regulation
of CEF (see also below).

The Chloroplast NDH Complex

The chloroplast NDH complex is located in non-appressed
thylakoid membranes, and is present in small amounts as
compared to major photosynthetic protein complexes. Besides
functioning in CEF, NDH is considered to be involved also
in chlororespiration (Rumeau et al., 2007). In Arabidopsis,
the chloroplast NDH complex is composed of more than
30 subunits, which form five subcomplexes: the membrane-
embedded subcomplex, the subcomplexes A and B, the electron
donor subcomplex and the lumenal subcomplex [for recent
reviews, see (Peng et al., 2010; Ifuku et al., 2011)]. The electron
donor subcomplex is made of the subunits NdhS, T, U, and
V (Yamamoto et al., 2011; Fan et al., 2015), of which the
NdhS subunit is responsible for the binding of Fd (Yamamoto
et al., 2011; Yamamoto and Shikanai, 2013). The subcomplexes
B and the lumenal subcomplex are absent from cyanobacteria.
Furthermore, also a liverworth Marchantia polymorpha lacks the
lumenal subcomplex (Ueda et al., 2012). In angiosperms, the
NDH complex further forms supercomplexes with PSI, the minor
LHCI proteins Lhac5 and Lhca6 functioning as linkers (Peng
et al., 2008, 2009; Peng and Shikanai, 2011; Kouril et al., 2014),
whereas in cyanobacteria andMarchantia, NDH exists as a single
complex. Intriguingly, gymnosperms and Chlamydomonas lack
the chloroplast NDH complex (Wakasugi et al., 1994; Maul et al.,
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2002), however, in Chlamydomonas, a type-II NDH (NDH-2) has
been shown to function in the non-photochemical PQ reduction
(Mus et al., 2005; Jans et al., 2008; Desplats et al., 2009).

While the NDH complex plays a crucial role for carbon
fixation in the bundle sheath cells of the C4 plants (Majeran et al.,
2008), the physiological role of the NDH complex in mature C3
plants has remained largely uncharacterized. However, existence
and maintenance of such a massive complex with both nuclear
and plastid encoded subunits and a complex assembly pathway
(Peng et al., 2009) concomitantly suggest that the NDH complex
must bear a crucial role for plant performance. Particularly the
drastic phenotype of the pgr5 crr-2 double mutant even under
optimal conditions (Munekage et al., 2004) indicates that the
NDH-mediated CEF bears a compensatory role in the pgr5
mutant background. The exact molecular mechanism for this
still remains elusive, particularly as no increase in the level
of the NDH subunits has been reported for the pgr5 mutant
(Munekage et al., 2004; DalCorso et al., 2008; Suorsa et al.,
2012). However, it has been suggested that NDH might act
as a proton pump (Shikanai, 2014), similar to mitochondrial
complex I (Baradaran et al., 2013). The role for NDH in proton-
pumping and lumen acidification would explain the severe
phenotype of pgr5 crr-2 double mutant. However, experimental
evidence demonstrating such a function for NDH is still
missing.

The present lack of physiological knowledge on the role of
NDH complex likely stems from the fact that majority of the
studies concerning the NDH complex have been focused on
identification and characterization of the novel subunits and
assembly factors, rather than in addressing its functional role
under varying environmental and/or developmental conditions.
It is highly likely that during the forthcoming years, our
knowledge on the physiological role of NDH will be markedly
broadened. Indeed, the rice ndh mutants were recently shown
to exhibit disturbed electron transfer parameters as well
as reduced growth and yield particularly under low light
conditions, highlighting the physiological significance of the
NDH complex under non-optimal growth conditions (Yamori
et al., 2015).

The involvement of NDH also in chloroplast redox regulation
is already well-documented, and it is conceivable that the
NDH-dependent CEF has a role in alleviating oxidative stress
under various challenging conditions, such as under drought,
extreme temperatures or during early developmental phases
(see below). It has been shown that treatment of barley leaves
with H2O2 increased the expression of plastid-encoded NDH
genes and subunits (Casano et al., 2001). It was also recently
demonstrated that increased levels of H2O2, occurring either
after infiltration of the WT Arabidopsis leaves or in mutants
producing elevated levels of H2O2, triggered specifically the
NDH-dependent CEF (Strand et al., 2015). In agreement with
these observations, Arabidopsis ndh mutants showed enhanced
levels of foliar H2O2 upon transfer of plants from darkness
to light (Sirpio et al., 2009). On the other hand, Arabidopsis
mutants with strongly lowered production of glutathione or
thylakoid-bound ascorbate peroxidase have been shown to
downregulate the expression of several nuclear genes encoding

the NDH subunits or assembly factors (Queval and Foyer,
2012).

Arabidopsis ndh mutants have been demonstrated to exhibit
increased resistance against fungal pathogen (Garcia-Andrade
et al., 2013). Vice versa, inoculation of the WT plants with
fungal pathogens or chitosan, a pathogen-associated molecular
pattern that triggers immune responses, resulted in rapid and
specific decline in the content of the NDH complex subunit
NdhI. More specifically, pathogen exposure was shown to include
modulated editing of the chloroplast-encoded NDH transcripts
(Garcia-Andrade et al., 2013). The chloroplast NDH complex
thus appears to be involved in plant immunity regulation.
Intriguingly, an extrinsic PSII oxygen evolving complex protein
PsbQ has been shown to be a specific target for pathogen attack
(Rodriguez-Herva et al., 2012), and the lumenal subcomplex
of NDH contains proteins homologous to PsbQ (Suorsa
et al., 2010; Yabuta et al., 2010). However, it still remains
to be elucidated whether some subunits or subcomplex(es) of
NDH bear more important role in immune responses than
others.

The Role of PGR5 in Acclimation to
Fluctuating Light Intensities

Involvement of the PGR5 protein in acclimation to high light has
been demonstrated already upon initial characterization of the
protein, as the pgr5 mutants were found to be more susceptible
to high light intensities as compared to WT (Munekage et al.,
2002). The pgr5 mutant is incapable of the induction of the
NPQ; furthermore, and in contrast to the npq4 mutant (Grieco
et al., 2012; Tikkanen et al., 2015), pgr5 cannot oxidize its P700
under high light (Munekage et al., 2002). Indeed, high light
intensities lead to preferential damage of PSI in pgr5 plants
(Munekage et al., 2002), confirming a crucial role of the PGR5
protein in photoprotection of PSI under high light. In line with
its susceptibility for high light, it has been reported that the
pgr5 mutant shows stunted growth under high light intensities,
a defect alleviated by increased CO2 concentrations (Munekage
et al., 2008).

In any case, it is remarkable that the pgr5 mutant is capable
of growing under constant high light, since growth under
fluctuating light, in which low light intensity of 50 μmol
photons m−2 s−1 becomes repeatedly interrupted with peaks of
moderately high light (500 μmol photons m−2 s−1), resulted in
lethal phenotype of the pgr5mutant (Tikkanen et al., 2010; Suorsa
et al., 2012). In order to successfully acclimate for fluctuating light
intensity, plants must acquire rapid acclimation shifts between an
intense light harvesting mode (low light phase) and a quenching
mode (high light phase). Consequently, long-term acclimation
strategies applied for growth under constant high light, such
as leaf pigmentation, morphological, and ultrastructural changes
and constantly enhanced NPQ (Li et al., 2009), cannot be utilized
for acclimation for the high light phases of fluctuating light,
as they would severely compromise efficient light harvesting
under low light phases. Therefore, acclimation to fluctuating
light requires specific acclimation mechanisms, of which the so
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called “photosynthetic control,” i.e., strong down-regulation of
electron flow to PSI, bears the most crucial role (for review,
Suorsa et al., 2013). Limitation of electron flow to PSI enables
its oxidation upon high light phases of the fluctuating light,
thus safeguarding the function and stability of PSI. Indeed,
Arabidopsis pgr5 mutants exhibit severe photoinhibition of PSI
under fluctuating light (Suorsa et al., 2012; Kono et al., 2014).
Furthermore, the rate of CEF has been shown to increase during
photosynthetic induction (Fan et al., 2007), which likely prevents
PSI acceptor site limitation when the Calvin-Banson-Bassham
cycle is not yet properly optimized. The pgr5 mutant under
fluctuating light might thus suffer also due to defects in re-routing
the electrons upon photosynthetic induction. However, it is not
yet known whether the role of photosynthetic induction is as
crucial upon shift from low light to high light, as it is known
to be upon shift of plants from darkness to light. Noteworthy,
the Arabidopsis ndh mutants do not show any phenotype under
the fluctuating light conditions described above, indicating the
NDH complex does not bear a crucial role for acclimation to
light conditions in which light intensity fluctuates between low
and moderately high light (Suorsa et al., 2012).

Involvement of CEF Upon Drought and
Extreme Temperatures

Drought stress with subsequent lack of CO2 for carbon
fixation due to stomatal closure is one of the well-characterized
environmental conditions triggering CEF (Golding and Johnson,
2003; Golding et al., 2004; Rumeau et al., 2007; Munekage et al.,
2008; Kohzuma et al., 2009; Johnson, 2011). Arabidopsis plants
overexpressing PGR5 have been shown to exhibit enhanced
tolerance to drought stress (Long et al., 2008). Furthermore,
drought-stressed Arabidopsis plants upregulated the expression
of the PGR5, PGRL1A, and PGRL1B genes with concomitant
accumulation of the PGR5 and PGRL1 proteins, whereas both
the transcript and the protein levels of the NDH subunit NdhH
remained stable (Lehtimaki et al., 2010). On the other hand,
under low air humidity but normal watering, the tobacco ndhb
mutant has been shown to exhibit compromised growth as
compared to WT plants (Horvath et al., 2000). Additionally,
tobacco ndhb mutants were shown to upregulate the PGR5–
PGRL1-dependent CEF under drought stress (Munne-Bosch
et al., 2005), indicting compensatory roles for the two CEF routes.

It is pivotal to keep in mind that due to evolutionary
adaptation to a variety of growth habitats, physiological responses
to environmental stress conditions are highly species-dependent,
and results obtained with one species cannot always be
generalized to others. For instance, in comparison to upregulated
levels of PGR5 upon drought stress in Arabidopsis (Long et al.,
2008; Lehtimaki et al., 2010), Rosa meillandina, which is very
tolerant against high temperatures and high light as long as there
is no shortage of water, showed increased contents of PGR5
as a response to heat and light (Paredes and Quiles, 2013).
However, combination of heat, high light intensity and drought
stress induced decreased levels of PGR5 with simultaneous
upregulation of the NDH complex and plastid terminal oxidase

(PTOX), strongly indicating a role for NDH in chlororespiration
in R. meillandina under those conditions (Paredes and Quiles,
2013).

Similar to drought stress, also cold stress causes lowered
carbon fixation, which in turn results in an excessive amount of
reducing equivalents and thus imbalanced stromal redox state
(Figure 1). Cold stress in combination with light illumination
threatens particularly PSI (Sonoike and Terashima, 1994; Sonoike
et al., 1995; Tjus et al., 1998; Kudoh and Sonoike, 2002),
and similar to situation during fluctuating light, CEF plays an
important role in protection of PSI also under low-temperature-
caused stress. For example, treatment of spinach leaves with
low temperatures has been shown to enhance CEF (Kou et al.,
2013). In addition, a 3-day-treatment of maize plants with
lowered temperature induced upregulation of particularly the
PGR-mediated CEF (Savitch et al., 2011). In line with this, cold-
acclimated Arabidopsis plants showed upregulation of PGR5–
PGRL1-dependent CEF, while NDH complex abundancies rather
decreased upon cold acclimation (Ivanov et al., 2012). On the
other hand, rice mutants lacking the NDH complex showed a
growth defect as a response to lowered temperatures (Yamori
et al., 2011). Furthermore, the tobacco ndhb mutants exposed
to a combination of low temperature and low light intensity
showed disturbed regulation of electron transfer chain (ETC)
as compared to WT (Li et al., 2004). It seems likely that the
responses against cold stress in chilling-sensitive plants differ
from those of tolerant species, which again highlights the broad
variety in CEF responses in different species. Enhanced CEF has
also been suggested to be involved in drastic modulations of ETC
occurring in conifer needles during winter (Oquist and Huner,
2003), yet experimental evidence is still needed to verify these
hypothesis.

Root temperature has been shown to bear particular
significance for the temperature responses in terms of CEF
regulation. Visible damage and complete blockage of both
LEF and CEF occurred in rice when only stem, but not root
temperature was lowered (Suzuki et al., 2011). Furthermore, this
condition has been shown to upregulate both NDH complex
and the plastid terminal oxidase contents in a tropical plant
Spathiphyllum wallisii, whereas upregulation of the PGR5–
PGRL1 – dependent CEF as well as that of the PGR5 levels were
observed either when entire plant was chilled (Segura and Quiles,
2015), or when roots were chilled but stems heated (Soto et al.,
2014).

CEF Plays an Important Role under Early
Developmental Phases

Cyclic electron flow seems to play a crucial role under the
early developmental stages. A recent comprehensive study on
photosynthetic features of Arabidopsis seeds demonstrated that
the light which the embryo chloroplasts receive is enriched in
far red region of the spectrum, which preferentially excites PSI
(Allorent et al., 2015). Consequently, green seeds were found
to possess an increased CEF as compared to leaves, and the
seed germination rates positively correlated with CEF activity
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FIGURE 1 | Hypothetical model describing upregulation of cyclic
electron flow (CEF) under drought and cold stress. Drought stress
induces stomatal closure and subsequent limitation in CO2 levels, whereas
cold stress slows down the enzyme activity. Both conditions result in
downregulation of the Calvin-Benson-Bassham cycle. (A) A hypothetical
situation in which CEF would not function, and which would thus end up in
severe over-reduction of the ETC and stroma, and finally to photodamage.
(B) When the PGR5 and PGRL1 proteins receive electrons from ferredoxin
(Fd) and trigger lumen acidification, electron flow toward PSI becomes, thus
preventing ETC and stromal components from over-reduction and
photodamage. In addition, lumen acidification leads to induction of
non-photochemical quenching (NPQ; not drawn to the figure). (C) The NDH
complex receives electrons from Fd, thus functioning as a safety valve for the
excess of electrons. Furthermore, NDH likely functions as a proton pump,
which participates in lumen acidification. Note that under most natural
conditions, drought and cold likely induce upregulation of both CEF routes to
some degree, but the preferential route depends on plant species. The
illustrations describe only the hypothetical, not the actual position of the
proteins and protein complexes. CBB, Calvin-Benson-Bassham cycle; PSI,
photosystem; Fd, ferredoxin; e−, electron; H+, proton.

(Allorent et al., 2015). Notably, even though in C3-leaves the
proportion of the PGR5–PGRL1-dependent CEF is higher than
that of the NDH-dependent CEF, in seeds the latter one plays
a more prominent role (Allorent et al., 2015). The importance
of the NDH-dependent CEF route under early developmental
phases is in line with earlier reports showing that the NDH-
complex subunits are present and assembled as subcomplexes
already in etioplasts (Kanervo et al., 2008), and the final assembly
of the PSI-NDH supercomplex rapidly takes place upon exposure
of etioplasts into light (Kanervo et al., 2008; Peng et al., 2009).

The enhanced CEF under early developmental stages
highlights the proposed role of CEF in photoprotection of PSI.
We have previously shown that photoprotection of PSI by the
PGR5 protein under fluctuating light plays its most crucial
role upon early developmental stage (Suorsa et al., 2012, 2013).
Indeed, the synthesis of PSI is most active in young leaves, which
causes strong decline in the contents of the PSI assembly factors
upon leaf maturation (Krech et al., 2012; Liu et al., 2012). This
corroborates with the idea of PSI being vulnerable and thus in
the need of intensive protoprotection particularly under early
developmental states.

The role of CEF during the opposite phase of leaf
development, i.e., under senescence, still remains elusive.
Similar to early developmental phases, leaf senescence involves
oxidative stress. Early phases of the senescence are characterized
by upregulation of the antioxidant machinery, which allows
controlled remobilization and recycling of nutrients and
photoassimilates to other parts of the plants (Juvany et al.,
2013). Upon later senescence, declining antioxidant network
induces massive oxidative stress, which leads to damage and
ultimately to death. Intriguingly, it has been shown that
tobacco plants lacking the chloroplast-encoded NDH subunit
NdhF, and thus containing only residual amounts of the
NDH complex, exhibited delayed senescence under optimal
greenhouse conditions (Zapata et al., 2005, 2007). Furthermore,
the tobacco �ndhF mutants showed increased fitness, likely due
to delayed senescence (Zapata et al., 2007). However, the exact
molecular mechanism(s) behind the delayed senescence in the
tobacco �ndhF mutant remain to be characterized, neither it is
known whether the effect can be generalized to other long-lived
plants.

Concluding Remarks

During the past few years, knowledge on the protein subunits
and assembly factors involved in the two main routes for CEF
has been substantially increasing. The available information
about molecular mechanisms behind CEF is now enabling
more intense research focus being directed toward physiological
significance of CEF. There is already compelling evidence about
the significance of particularly the NDH-dependent CEF for the
energy metabolism in developing embryos. Both routes of CEF
also seem to respond to stresses induced by drought or coldness.
Furthermore, the PGR5 protein has been shown to have a crucial
role in acclimation to fluctuating light conditions. However,
results concerning CEF that have been acquired with one species
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cannot be necessarily generalized to cover all species. Thus, future
studies with a wide range of evolutionary divergent species are
still needed in order to obtain a more comprehensive view on
the impact of CEF on plant development and environmental
acclimation.
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