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Abiotic stress including nutrient deficiency and heavy metal toxicity severely affects plant
growth, development, and productivity. Genetic variations within and in between species
are one of the important factors in establishing interactions and responses of plants
with the environment. In the recent past, natural variations in Arabidopsis thaliana have
been used to understand plant development and response toward different stresses
at genetic level. Phosphorus deficiency negatively affects plant growth and metabolism
and modulates expression of the genes involved in Pi homeostasis. Arsenate, As(V), a
chemical analog of Pi, is taken up by the plants via phosphate transport system. Studies
suggest that during Pi deficiency, enhanced As(V) uptake leads to increased toxicity in
plants. Here, the natural variations in Arabidopsis have been utilized to study the As(V)
stress response under limiting Pi condition. The primary root length was compared to
identify differential response of three Arabidopsis accessions (Col-0, Sij-1, and Slavi-1)
under limiting Pi and As(V) stress. To study the molecular mechanisms responsible for
the differential response, comprehensive expression profiling of the genes involved in
uptake, detoxification, and regulatory mechanisms was carried out. Analysis suggests
genetic variation-dependent regulatory mechanisms may affect differential response of
Arabidopsis natural variants toward As(V) stress under limiting Pi condition. Therefore,
it is hypothesized that detailed analysis of the natural variations under multiple stress
conditions might help in the better understanding of the biological processes involved in
stress tolerance and adaptation.

Keywords: Arabidopsis, arsenic, gene expression, natural variations, phosphate, transcription factors

INTRODUCTION

Diverse spectrum of environmental stresses severely affects plant growth and development and
thus reduces productivity and yield. Several studies have reported that the genetic variations within
and in between the species play role in establishing interactions and responses of plants with the
environment. In recent years, natural variations in different plant species such as Arabidopsis,
maize, and rice have been used to understand the genetic impact on plant development and
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physiology (Alonso-Blanco et al., 2009; Li et al., 2012; Weigel,
2012; Yadav et al.,, 2013). Apart from the developmental studies,
natural variations have also been used to study the effect and
response of different accessions under stress conditions (Stein
and Waters, 2012). Advanced studies using genetically divergent
populations within the species have helped in the elucidation
of the genomic variations and their associations with various
traits and adaptability. However, among the other plant species
Arabidopsis thaliana has easily established itself as a tool for the
evolutionary and ecological studies due to its number of features
(Turck and Coupland, 2013) such as a small genome size and the
ease with, which it can be manipulated (Koornneef and Meinke,
2010). In addition, Arabidopsis natural variations have been used
to elucidate the molecular mechanisms and processes involved
in various stresses including salt (Wang et al., 2013), drought
(Bouchabke et al., 2008), temperature (Degenkolbe et al., 2012;
Barah et al., 2013), and flooding (Vashisht et al., 2011).

Natural and human-induced factors like industrialization;
mining, agricultural practices have resulted in the release of
detrimental pollutants including toxic heavy metals in the
environment. Toxic heavy metals cause drastic changes in the
growth, physiology, and metabolism of plants (Finnegan and
Chen, 2012). Heavy metals not only hamper plant growth and
productivity but also cause severe human health hazards due to
the food chain contamination. One such ubiquitous pollutant
is arsenic (As), which is widely distributed in the environment.
Arsenic occurs in two inorganic forms, arsenite [As(III)] and
arsenate [As(V)] of which As(V) can be readily reduced to
As(IIT) after entering into the plant cell. Both these inorganic
forms disrupt plant metabolism but through distinct mechanisms
(Finnegan and Chen, 2012). As(V) is chemically analogous to
inorganic phosphate (Pi) and therefore, is taken up by the plant
roots from soil via Pi transport system (Raghothama, 1999;
Catarecha et al., 2007; Wu et al., 2011; Castrillo et al., 2013).
Inside the plant cell, it replaces PO4~ from ATP, resulting in
the inhibition of ATP synthesis and phosphorylation due to
disturbance in the Pi metabolism (Tripathi et al., 2007; Zhao
et al., 2010). The other inorganic form, As(III), which is more
toxic, is a predominant species under anaerobic conditions,
and enters the root via nodulin 26-like intrinsic protein (NIP)
aquaporin channels (Meharg and Jardine, 2003; Bienert et al.,
2008; Ma et al., 2008). It perturbs protein functioning due to the
interaction with -SH group present in many proteins (Tripathi
et al., 2007; Finnegan and Chen, 2012). Thus, it is necessary to
study the biological processes involved in the uptake, transport,
and detoxification of such heavy metals so that effective strategies
can be developed for developing plants with tolerance as well as
low accumulation in plant parts (Song et al., 2010). In the past,
various studies have been initiated to understand the molecular
networks and processes involved in As stress response. Recently,
utilizing natural variations in Arabidopsis, several genes and
components involved in As stress tolerance and physiological
responses (Chao et al.,, 2014; Fu et al., 2014; Sdnchez-Bermejo
et al., 2014) have been identified.

Phosphorous is an essential macronutrient and is critical
for the plant growth and development. Phosphorous deficiency
negatively affects plant growth and metabolism, and induces

the expression of genes involved in inorganic Pi acquisition
(Raghothama, 1999; Karthikeyan et al., 2002). In Arabidopsis,
the high affinity Pi transporters, PHOSPHATE TRANSPORTER
1;1 (PHT1;1) and PHOSPHATE TRANSPORTER 1;4 (PHT1;4),
have shown to play important role in As(V) uptake (Shin et al.,
2004). Various studies suggest that the Pi starvation responses are
under strict transcriptional control through various transcription
factors. These transcription factors have been shown to regulate
expression of PHTs and thus Pi uptake from the medium.
Apart from PHT1;1 and PHT1;4 modulation, As(V) exposure
also induces a notable transposon burst in the plants, which
is restricted by WRKY6, thus emphasizing the importance of
regulatory genes in Pi homeostasis under As(V) stress (Castrillo
etal., 2013).

The general detoxification mechanism for As comprises
reduced As uptake, extrusion out of the cells or sequestration
of As-PC (phytochelatins) complexes inside the vacuole (Shukla
etal., 2013; Shri et al., 2014). In recent years, studies have utilized
Arabidopsis natural variations to understand the differential effect
of Pi starvation on the accessions (Narang et al., 2000; Chevalier
et al,, 2003; Reymond et al., 2006) or their response toward
As stress (Chao et al., 2014; Fu et al.,, 2014; Sanchez-Bermejo
et al, 2014). In addition, studies suggest that Pi starvation
during As exposure plays important role in its uptake and
stress response (Remy et al, 2012). However, no study have
been carried out to understand As(V) stress under Pi starvation
using these natural variations. In the present study, the natural
variations in Arabidopsis have been utilized to study growth
response toward Pi availability and As(V) uptake at the molecular
level. Study suggests differential response of selected Arabidopsis
accessions (Col-0, Sij-1, and Slavi-1) in terms of root length under
different Pi and As(V) concentrations. To get an insight into
the extent of biodiversity and the identification of underlying
plausible mechanisms in providing differential stress response
in Arabidopsis natural variants, expression profiling of the genes
involved in Pi/As uptake, detoxification mechanism as well
as regulatory factors have been carried out. Analysis suggests
differential expression of a set of genes, which might lead to
differential response in Arabidopsis natural variations.

MATERIALS AND METHODS
Plant Material and Growth Conditions

The seeds of three Arabidopsis thaliana accessions Columbia-
0 (Col-0, CS60000), Sijak-1 (Sij-1, CS76379), and Slavianka-1
(Slavi-1, CS76419) were obtained from Arabidopsis Biological
Resource Center (https://abrc.osu.edu/). The seeds were surface
sterilized with 70% ethanol (v/v) for 1 min, 4% NaOCI (v/v) for
4 min, followed by washing with distilled water and were placed
on 0.5X Murashige and Skoog (MS) medium (Murashige and
Skoog, 1962) supplemented with 1.5 % (w/v) sucrose and 0.8 %
(w/v) agar. For the Pi sufficient condition, 1.25 mM KH,POy4
was added to the medium, while for the Pi deficient condition,
15 wM KH,POy4 was used. For the Pi deficient media, KH,POy4
was replaced with KCl. For As(V) treatment, 50 M Na,HAsO4
(Stock Solution 50 mM; Nay;HAsOy, ICN, USA) was added in the
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media and pH was adjusted to 5.5 using 0.1 M KOH or HCI. After
stratification at 4°C for 2 days, plates were transferred to a growth
chamber set at 16/8 h light-dark cycle, 250 pmol m~2 s~ light
intensity and 22°C temperature.

Evans Blue Staining

Evans blue is a non-permeating dye and is used to determine
the dead cells in plant samples. Arabidopsis accessions were
grown on Pi sufficient, Pi sufficient + As(V), Pi deficient and Pi
deficient 4+ As(V) medium for 10 days. Seedlings were incubated
in Evans blue solution [0.15% (w/v) Evans blue in water] for
1 h (Dubey et al,, 2014). After washing for 10 min with water,
seedlings were observed for the tissue damage under Stereoscope
Zoom binocular microscope (Leica SSAP0, Germany).

RNA Isolation, cDNA Preparation, and

Gene Expression Analysis

Total RNA from 10 days old seedlings was isolated using
Spectrum Plant Total RNA Kit (Sigma-Aldrich, USA) as
per manufacturers instructions. RNA was quantified using
NanoDrop spectrophotometer (NanoDrop, Wilmington, DE,
USA) and the quality was assessed using 1.2% agarose gel
electrophoresis. Genomic DNA contamination was removed
using RNase-free-DNase-I (Fermentas, Life Sciences, ON,
Canada). Approximately, 1 pug total RNA was reverse transcribed
using RevertAid First Strand ¢cDNA synthesis kit (Fermentas,
Life Sciences, ON, Canada) according to the manufacturer’s
instructions. Quantitative real time-PCR was performed using
SYBR Green Supermix (ABI Biosystems, USA) in an ABI 7500
instrument (ABI Biosystems, USA). Tubulin gene was used as
an internal control to estimate the relative transcript level of the
genes analyzed. The list of oligonucleotides used in the study is
provided in the Supplementary Table S1. The PCR was performed
in a final volume of 10 L containing 1 pL of each of the forward
and reverse primers (5 pM), 5 wL of the SYBR green master mix
and 1 nL of cDNA (1:10 dilution), and 2 WL of nuclease free
water. All PCR reactions were performed in the triplicate. The
PCR conditions were 50°C for 2 min, 95°C for 2 min for initial
denaturation followed by 40 cycles of 95°C for 15 s, and 60°C for
60 s. Data was analyzed using comparative Ct (2~4 <) method
(Schmittgen and Livak, 2008).

Nucleotide Sequence Analysis

To analyze variations in nucleotide and deduced amino acid
sequences in ACR2 gene (At5g03455) in different accessions,
full-length cDNA was amplified using oligonucleotides spanning
complete open reading frame (Supplementary Table S1).
Amplicons were sequenced from both the ends using 96 capillary
automated sequencing systems (ABI 3730 DNA Analyzer, UK).

Arsenic Estimation

Ten days old seedlings of Arabidopsis accessions; Col-0, Sij-1, and
Slavi-1 were thoroughly washed with distilled water and air dried
for 4-5 days followed by overnight drying in an oven at 80°C.
Dried samples (~100 mg) were digested in HNO3 and H,0; (3:1
v/v) at 80°C on a hot plate till the samples were converted into

fine residue. The residue from digested samples was dissolved in
5 ml distilled water and filtered using filter paper (Whatman™
125 mm). The samples were used for the total As determination
through an Inductively Coupled Plasma Mass Spectrometer (ICP-
MS, Agilent 7500 USA) as per the standard protocol (Dubey et al.,
2014). The standard reference metals (E-Merck, Germany) were
used for the calibration and quality assurance for each analytical
batch.

Statistical Analysis

Each experiment was carried out under completely randomized
design with three replicates repeated at least thrice. The data were
analyzed by Student’s unpaired t-test, and the treatment mean
values were compared at P < 0.05-0.001.

RESULTS AND DISCUSSION

Natural Variation in Response to Pi and
As(V) Exposure

Phosphate deficiency causes a profound effect on the root
morphology of the plants (Chevalier et al., 2003). Various studies
have reported natural variations among Arabidopsis accessions in
response to Pi deficiency (Narang et al., 2000; Chevalier et al.,
2003; Reymond et al., 2006). Recently, natural variations for
As(V) stress response has also been shown in different plant
species including Arabidopsis (Chao et al., 2014; Fu et al., 2014;
Sédnchez-Bermejo et al., 2014) and rice (Rai et al., 2010; Wu et al,,
2011; Sharma et al., 2015). However, no information is available
for the response of these natural variants toward combined
stress of Pi deficiency and As(V). Therefore, to understand the
effect of genetic variations on plant growth and development,
different accessions were analyzed for their response toward
As(V) stress. Among different accessions Col-0, Sij-1, and Slavi-1
were identified as tolerant, moderate and sensitive, respectively,
toward As(V) stress. In order to understand the interaction
between As(V) and Pi uptake, these accessions were grown
on optimum Pi concentration (Control; Pi-sufficient; 1.25 mM)
and low Pi concentration (Pi-deficient; 15 wM). No significant
change in the primary root length was observed in the three
ecotypes under limiting Pi as compared to optimum Pi condition
(Figures 1A,B).

Since it is well known that As(V) is an analog of Pi and
it competes with the Pi uptake system (Raghothama, 1999;
Catarecha et al., 2007; Wu et al,, 2011), the root morphology
was compared in the three accessions under Pi-sufficient medium
supplemented with As(V) (50 pM). No significant effect on
the root length was observed in the three accessions grown
on Pi sufficient medium under As(V) stress (Figures 1A,B).
However, continuous growth of Arabidopsis natural variants on
the medium containing As(V) and Pi limiting condition caused a
significant decrease in the root length. This suggests differential
interaction and competition between Pi and As(V) uptake
in these selected Arabidopsis natural variants (Figures 1A,B).
Differential reduction in the root length was observed in
the three accessions. Lesser reduction in the root length was
observed in Col-0 (60%) as compared to Sij-1 and Slavi-1(>80%),
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(Figures 1A,B) suggesting better tolerance and adaptation of Col-
0 under combined stress of limiting Pi and As(V). Hence, it was
inferred that Col-0 is more tolerant toward Pi deficient 4+ As(V)
stress in comparison to other natural variants.

Natural Variation in As(V) Induced Tissue

Damage

As(V) induces the production of reactive oxygen species (ROS)
inside the plant cell leading to lipid peroxidation and damage
to proteins and nucleic acids (Halliwell, 2006; Moller et al.,
2007). The induced oxidative stress during As(V) stress is
combated by antioxidant enzymes in concert with non-enzymatic
antioxidants such as Non-Protein Thiols (NPTs) and glutathione
(GSH; Shri et al., 2009; Rai et al., 2010). It has been reported
that the increased production of ROS results into cellular
damage and ultimately cell death (Breusegem and Dat, 2006).
Therefore, As(V) induced cellular damage was analyzed in
the accessions using Evans Blue staining. It was observed
that in comparison to control (sufficient Pi) condition, under
Pi sufficient + As(V) and Pi deficient + As(V) conditions,
Sij-1 and Slavi-1 were severely affected by As(V) stress as
compared to Col-0 (Figure 2A). The cellular damage was
indicated by deeply stained tissues in these natural variants.
This is in corroboration with the phenotypic analysis, which
showed that the impact of As(V) stress was more pronounced
in Sij-1 and Slavi-1 as compared to Col-0 (Figures 1A,B).
Also, our study is in corroboration with the studies carried

out on the rice root, where differential staining pattern was
observed for different heavy metals, which is an indicator of
varying degree of toxicity caused by heavy metals upon their
accumulation (Dubey et al., 2014). Thus, Evans blue staining
suggests that the toxicity and cell death due to As(V) exposure
varies substantially among Arabidopsis accessions. Therefore,
it can be inferred that Arabidopsis natural variants possess
distinct molecular mechanisms for the acquisition of Pi as
well as to sustain growth and development under As(V) stress
conditions.

Natural Variation in Arsenic

Accumulation in Arabidopsis

Investigation of the molecular function of the genes responsible
for As uptake, accumulation and metabolism is prerequisite to
minimize As stress in plants (Kumar et al., 2015). Studies have
reported that rice accessions differ in their As accumulation
potential and are categorized as high and low As accumulating
germplasms (Rai et al., 2010; Sharma et al., 2015). Therefore,
to investigate the effect of Pi deficiency on As(V) uptake
and accumulation, Col-0, Sij-1, and Slavi-1 were grown on Pi
sufficient and deficient medium supplemented with As(V). It
was observed that As accumulation potential was equivalent
in all the accessions under both Pi sufficient and deficient
conditions. However, under Pi deficient + As(V) condition,
accessions accumulate many folds higher As compared to
Pi sufficient + As(V) condition due to enhanced As uptake

Control

A As(V) (50 pM)

Pi(15 M) Pi(15 pM) +As(V) (50 pM)

Col-0 Col-0

Sij-1

Slavi-1 Sij-1  Slavi-1

Col-0 Sij-1 Slavi-1

Col-0  Sij-1 Slavi-1

Primary root length (cm)
-

[Cok0
W Sij-1
[ Slavi-l

Control

As(V) (50 uM)

PiI5pM)  Pi(15 uM)
+

As(V) (50 uM)

FIGURE 1 | Effect of limiting phosphate (Pi) and As(V) on the growth of Arabidopsis accessions. Seeds were grown on 0.5X MS medium and the root
length was evaluated after 10 days of growth. (A) Phenotype of Arabidopsis accessions on 0.5X Murashige and Skoog (MS) media (control), As(V) (50 uM), Pi

(15 wM; Pi limitation), and Pi (15 M) supplemented with As(V) (50 wM). Scale bar = 1cm. (B) Primary Root length of the three accessions grown under different
treatments. Data are mean + SD calculated from three biological replicates per treatment. Experiments repeated thrice with similar results. *** indicate values that
differ significantly from control at P < 0.001, according to student’s unpaired t-test.

Frontiers in Plant Science | www.frontiersin.org 4 October 2015 | Volume 6 | Article 898


http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

Shukla et al.

Arsenate/phosphate interaction in Arabidopsis

Arsenic content (ng/g DW)

FIGURE 2 | Cell viability/death during limiting Pi and As(V) stress using Evan’s blue staining and metal accumulation by Arabidopsis accessions.

(A) Seeds of Arabidopsis accessions were grown for 10 days on medium containing sufficient Pi (1.25 mM) (control), As(V) (50 nM), deficient Pi (15 wM) and deficient
Pi (15 uM) supplemented with As(V) (50 wM). The seedlings were incubated with Evan’s blue and observed under Stereoscope Zoom binocular microscope (Leica
S8APO, Germany) Scale bar = 1 mm. (B) The seeds were grown on Pi sufficient medium containing As(V) (50 wM) and deficient Pi medium (15 M) supplemented
with As(V) (50 wM) for 10 days and arsenic content was estimated using ICP-MS. Data are mean + SD calculated from three biological replicates per treatment.***

A Pi(15pm)

+
_Control  As(V) (S0 M) Pi(15pM) As(V) (50 um)
Col-0
JRE Wi

.'? /
Y’

Sij-1 { J/

|
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1
indicate values that differ significantly from control at P < 0.001, according to student’s unpaired t-test.

250

[ Cok0
W Sij-1

200 { @ Slavi-1

150

100

Pi
As(V)

1.25mM
50 uM

15uM
50uM

(Figure 2B). Similar observation with enhanced As uptake
under Pi deficiency has been observed in Arabidopsis and
rice (Catarecha et al., 2007; Dubey et al, 2014). Thus, it
can be inferred that with decreasing Pi concentration As
accumulation increases, however, accumulation potential does
not differ significantly between different natural variants in
these accessions. This suggests that differential As(V) response
in these natural variants might be dependent on detoxification
mechanism involving transport, accumulation or regulatory
mechanisms.

Differential Expression of Genes Related
to Transport System

Phosphate enters into the plant cell via a set of Pi transporters
both under Pi sufficient and deficient conditions (Shin et al,,
2004). PHT1;1 and PHT1;4 are high affinity Pi transporters,
which expresses in the root epidermis and root hair and have
maximum transcript abundance among all the nine putative
members of phosphate transporter (PHT) family (Shin et al.,
2004; Lapis-Gaza et al., 2014). In Arabidopsis, among different
members of Pi transporters, PHT1;1 and PHT1;4 are known to
play an important role in As(V) uptake (Shin et al., 2004). To
understand the genetic variations with respect to expression of
PHTs, the transcript abundance of these two Pi transporters was
analyzed in the seedlings of Col-0, Sij-1, and Slavi-1. Differential

expression pattern of PHT1;1 was observed in all the accessions
with enhanced expression of PHT1;1 under Pi deficiency in
comparison to control (Pi sufficient condition; Figure 3). Under
limiting Pi, PHT1;1 expression was highest in Col-0 followed by
Sij-1 and Slavi-1 (Figure 3). The expression pattern of PHT1;1
in the presence of As(V) decreased significantly as compared
to limiting Pi condition in the natural variants. This decrease
in the expression of PHT1;1 was similar in Col-0 and Sij-1
(~50%); however, lesser change in expression was observed in
Slavi-1 (~25%). Similar to PHT1;1, the expression of PHT1;4
was higher under Pi deficiency in comparison to control in all
the Arabidopsis natural variants. Conversely, the expression of
PHT1;4 was lower in Col-0 in comparison to other accessions in
both Pi deficient and Pi deficient + As(V) conditions (Figure 3).
This suggests differential regulation of these PHTs during limiting
Pi and in the presence of As(V). As it is already known that
regulatory factors responsible for the expression of both these
PHTs during Pi deficient conditions are different (Devaiah et al,,
2007a,b; Nilsson et al, 2007; Duan et al, 2008; Karthikeyan
et al., 2009; Castrillo et al., 2013; Wang et al., 2014), it seems
that differential regulation by transcription factors might be
responsible for the natural variation in Arabidopsis in response
to nutrient deficiency and As(V) stress.

Further, in Arabidopsis, Phosphate transporter 1 (PHO1) has
been identified to be involved in the loading of inorganic Pi
into the xylem of roots (Hamburger et al., 2002). PHO1 mainly
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FIGURE 3 | Expression analysis of genes involved in Pi and As(V)
uptake under sufficient Pi (1.25 mM) (control), deficient Pi (15 wM), and
deficient Pi (15 wM) supplemented with As(V) (50 M) using real time
PCR. Error bars represent £SD from three technical replicates of 30 seedlings
each.

expresses in the root cells and helps in the maintenance of Pi
homeostasis (Hamburger et al., 2002). PHO1 homolog, PHO1;H3
is up regulated under Zn-deficiency and negatively regulates
Pi loading into the xylem of root tissues (Kisko et al., 2014).
Since PHO1L;H3 is known to have a major role in crosstalk
between heavy metal Zn and Pi under Zn deficiency conditions
(Khan et al., 2014), it was analyzed that whether the expression
pattern of PHOI;H3 was also modulated under Pi-deficient
and Pi-deficient + As(V) stress in Arabidopsis natural variants.
Differential expression of PHO1;H3 was observed in Col-0 and
Slavi-1, whereas no modulation in the expression was observed in
Sij-1 under both Pi-deficient and Pi-deficient + As(V) conditions
(Figure 3). Under Pi deficiency, increased PHO1;H3 expression

in Slavi-1 suggests less Pi mobilization in comparison to Col-
0 and Sij-1 as it is a negative regulator of Pi movement
via xylem. The decreased expression of PHOL;H3 in Slavi-1
under Pi deficient + As(V) condition results into increased Pi
movement, which might lead to enhanced As(V) translocation
causing hampered growth and sensitivity. Under Pi deficiency,
no modulation in the PHOL;H3 expression was observed in
Col-0 suggesting better Pi mobilization toward the shoot via
xylem, whereas, enhanced expression of PHO1;H3 was observed
in Col-0 under Pi deficient + As(V) condition (Figure 3)
further suggests restricted Pi movement and so as that of As(V).
Intriguingly, in spite of severe growth retardation, no significant
modulation in the expression of PHO1;H3 was observed in Sij-
1. Therefore, the differential expression pattern of PHTs and
PHOI;H3 under Pi deficient and Pi deficient + As(V) conditions
suggests that although these transporters are involved in Pi
acquisition from soil and its homeostasis, their expression may
be differentially regulated in Arabidopsis accessions.

Transcription Factors and Natural

Variations under Low Pi and As(V)

Previous reports have accounted the role of transcription
factors in regulating Pi starvation responses in plants (Wu
et al, 2003; Misson et al, 2005). Therefore, we analyzed
the expression pattern of WRKY and other Pi and As(V)
responsive transcription factors in Arabidopsis accessions under
Pi deficiency and Pi deficient + As(V) conditions.

Modulation in the Expression of WRKY Transcription
Factors

WRKY6 is an As(V)-responsive transcription factor, which
negatively regulates PHT1;1 expression (Castrillo et al., 2013) and
has role in defense against other stresses (Robatzek and Somssich,
2002). Expression analysis suggests differential expression pattern
of WRKY6 in the Arabidopsis accessions; with a maximum
expression in Col-0 (fivefold) followed by Sij-1 (>3-fold) and
Slavi-1 (>2-fold), under Pi-deficient + As(V) condition in
comparison to Pi deficient condition (Figure 4A). As WRKY6 is
known to repress the expression of PHT1;1, in the presence of
As(V) as described by Castrillo et al. (2013), this can be easily
correlated with the increased WRKY6 expression (Figure 4A)
and decreased PHT1;1 expression (Figure 3) in all the accessions
under Pi deficient + As(V) stress. Earlier report by Catarecha
et al. (2007) has shown that expression of PHT1;1 is significantly
down regulated under As(V) stress and this is in correlation with
our data that activation of WRKY6 in response to As(V) stress
might reduce the expression of PHT1;1 and thus As(V) toxicity
(Figures 3 and 4A).

WRKY45 is known to be induced under Pi starvation,
and recently, WRKY45 was reported to positively regulate
the expression of PHT1;1 but not PHT1;4 (Wang et al,
2014). Interestingly, the expression of WRKY45 was not
significantly induced upon Pi deficiency in all the three accessions
(Figure 4A), but the expression of PHT1;1 significantly increased
in Col-0 (~20-fold), Sij-1 (~15-fold) and Slavi-1 (~10-fold),
(Figure 3). Our analysis showed that WRKY45 expression is
also induced under Pi-deficient + As(V) condition (Figure 4A)
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but this induction did not modulate the expression of PHTI;1
(Figure 3). This suggests a different regulatory mechanism of
PHT1;1 regulation under Pi-deficient + As(V) condition, which
might be mediated by transcription factors other than WRKY45.

In a recent study, WRKY75 was demonstrated to regulate
Pi homeostasis by controlling both the Pi acquisition and
modulation in the root architecture (Devaiah et al., 2007a).
It was observed that the expression of WRKY75 is induced
under Pi-deficiency (Figure 4A) which might have resulted
into strong induction of PHT1;1 expression under the same
condition (Figure 3). Enhanced expression of WRKY75 was
also observed in all the accessions in Pi deficient + As(V)
stress with a maximum increase in Col-0 (fivefold) followed
by Sij-1 (4.4-fold) and Slavi-1 (twofold) as compared to that
in Pi deficient condition (Figure 4A). But this induction in
WRKY?75 expression had no effect on modulating the expression
of PHT1;1 under Pi deficient + As(V) stress condition, similar
to that of WRKY45 (Figures 3 and 4A). Altogether, the analysis
suggests that WRKY45 and WRKY75 positively regulate the
expression of PHT1;1, which might lead to increased expression

of PHT1;1 under Pi-deficiency, in spite of the similar metal
accumulation potential of the accessions (Figure 2B). The
increased expression in Col-0 in comparison to Sij-1 and Slavi-
1 suggested better Pi acquisition potential of Col-0 from the
external medium.

The expression analysis under Pi-deficient + As(V) stress
revealed that while the expression of WRKY45 and WRKY75
was induced in the presence of As(V), the expression of PHT1;1
decreased (Figures 3 and 4A). This down regulation in PHT1;1
expression might be due to WRKY®6, which plays important role
in rescue mechanism of plants to avoid As toxicity (Castrillo
et al., 2013). In spite of the down regulation of PHT1;1 under
Pi-deficient + As(V) condition and similar metal accumulation
potential as that of Col-0, the accessions Sij-1 and Slavi-1 were
severely affected by As(V) toxicity, the probable reason could be
the functional redundancy of PHT transporters. Expression of
most of these transporters are regulated by different transcription
factors, therefore, although PHTI1;1 is sufficiently repressed
putatively by WRKY6; these accessions still suffered severe
toxicity.
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Modulation in Expression of ZAT6 Transcription
Factor

Expression analysis has revealed that significant enhanced
expression of ZAT6 is observed only in Col-0 under Pi
deficient + As(V) condition as compared to that in Pi deficient
condition (Figure 4B). Previous study by Devaiah et al
(2007b) suggested that ZAT6 negatively regulates the expression
of PHTIL;1, therefore, we analyzed the correlation between
ZAT6 expression and PHTI1;1 repression under Pi deficient
and Pi deficient + As(V) condition in Arabidopsis natural
variants (Figure 4B). Results demonstrated that ZAT6 expression
is not significantly modulated, however; PHT1;1 expression
was differentially enhanced under Pi-deficient condition as
compared to control (Figures 3 and 4B). It was observed
that PHT1;1 expression decreased in all the accessions under
Pi deficient + As(V) condition (Figure 3) but no significant
change in ZAT6 expression was observed under same condition
(Figure 4B) except in Col-0. Differential modulation in ZAT6
expression in natural variants and specific enhancement in Col-
0 might be regulating PHT1;1 as well as metal stress response.
However, the exact role of ZAT6 in As(V) stress response needs
to be functionally validated.

Modulation in Expression of PHR1 Transcription
Factor

Studies on phrl mutants and overexpressing lines emphasized
that PHOSPHATE STARVATION RESPONSE 1 (PHR1) is a
central regulator of Pi starvation responses (Nilsson et al., 2007;
Bustos et al., 2010). It play important role in plant development
under different stress conditions (Rubio et al., 2001; Rouached
et al., 2011; Nilsson et al,, 2012) and also participates in long
distance Pi signaling in plants (Bari et al., 2006; Lin and Chiou,
2008). It regulates Pi homeostasis by binding to P1BS motifs
present in the promoter region of the genes, which are regulated
(Rubio et al., 2001; Franco-Zorrilla et al., 2004; Stefanovic et al.,
2007). Thus, we analyzed its expression under Pi deficiency and
Pi deficient + As(V) condition. Result suggests that expression of
PHR1 did not significantly modulate in response to Pi deficiency
and Pi deficiency + As(V) condition in any of the accessions,
which was in accord with the other studies (Figure 4B), (Rubio
et al, 2001). It seems that post-translational modifications
of PHR1 as demonstrated earlier (Miura et al., 2005) might
be responsible for the differential Pi and As(V) response in
Arabidopsis natural variants.

Modulation in the Expression of SPX Transcription
Factor

It has been reported that Pi deficiency induces the expression
of AtSPX3 (Shi et al, 2014) which plays important role in
restoring Pi balance following Pi starvation (Duan et al., 2008).
Therefore, the expression pattern of AtSPX3 was investigated in
natural variations in response to different treatments including
Pi sufficient, Pi deficient and Pi deficient + As(V) stress
conditions. In response to Pi deficiency, enhanced expression
of AtSPX3 was observed in Slavi-1 (300-fold) and Sij-1 (>100-
fold) in comparison to Col-0 (~100-fold) as compared to control
condition (Figure 4B). Previous studies suggest that AtSPX3

is induced by PHRI1 and exerts negative feedback control over
AtSPX1, which is involved in the regulation of various genes
encoding regulatory enzymes such as RNS1 (Pi remobilization),
PAP2 (anthocyanin biosynthesis), IPS1; At4 (Pi allocation),
PHTI1;4 and PHTL;5 (Pi transport) to circumvent Pi induced
hypersensitive responses during prolonged Pi starvation (Duan
et al., 2008). Our result also demonstrated that in Col-0 the
expression of PHT1;4 was lower as compared to Sij-1 and Slavi-1
(Figure 3) which reflect that these accessions might require more
Pi through PHT1;4 under Pi deficient condition. The expression
of AtSPX3 was also evaluated under Pi-deficient + As(V) stress.
Interestingly, significantly enhanced expression was observed in
Sij-1 (>900-fold), Col-0 (>600-fold) and Slavi-1 (>300-fold) as
compared to Pi deficient condition. The observed expression
pattern during Pi deficiency was altered with the supplementation
of As(V) and least expression was observed in Slavi-1 whilst
Sij-1 showed highest expression (Figure 4B). Similar expression
pattern was observed for PHT1;4 under Pi-deficient + As(V)
stress as compared to Pi deficient condition (Figure 3) suggesting
that though SPX3 exerts a negative regulation over PHT1;4 under
Pi starvation, its repression is altered in the presence of As(V)
which might result in the enhanced expression of PHT1;4 in Sij-
1 and Slavi-1 causing increased toxicity in these accessions in
comparison to Col-0.

Natural Variation in the Expression of

Genes Involved in Detoxification System
In order to combat As stress, plant should possess an efficient
detoxification system (Tripathi etal., 2012; Kumar et al., 2013a,b).
It is well documented that As(V) after entering into the plant cell
via high affinity Pi transporters is converted to As(III) by arsenate
reductase, which is another inorganic and more toxic form of
As (Dhankher et al., 2006; Chao et al., 2014; Sanchez-Bermejo
et al, 2014). Recently, natural variation in As(V) tolerance
identified a quantitative trait locus encoding arsenate reductase
(ACR2; Sanchez-Bermejo et al, 2014). In a different study,
GWA mapping identified the same locus involved in controlling
variation in As accumulation in plants termed as High Arsenic
Content 1 (HAC1), which is an arsenate reductase required to
reduce As(V) to As(III) (Chao et al., 2014). However, in our
study, modulation in the expression of ACR2 was not observed
in the three accessions (Supplementary Figure S1). In addition,
the nucleotide sequencing of ACR2 in the three accessions
was carried out, which showed no difference in the nucleotide
sequence and thus in the protein encoded by ACR2 in Col-0,
Sij-1, and Slavi-1 (Supplementary Figure S2). As(V) tolerance is
usually linked with the slow As(V) uptake (Meharg and Macnair,
1991, 1992), and increase As accumulation (Catarecha et al.,
2007; Castrillo et al., 2013). As a detoxification mechanism, As(V)
is reduced to As(III), which is subsequently sequestered inside
the vacuole as phytochelatins (PCs)-metal complex through
tonoplast localized AtABCC1 and AtABCC2 transporters (Briat,
2010; Song et al., 2010).

In order to have an insight into the modulation in the
expression of these transporters and the genetic variations
occurring in response to As stress and Pi deficiency, the
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expression pattern was analyzed in all the three selected
accessions grown under different experimental conditions.
Significant up-regulation of the genes encoding AtABCC1 and
AtABCC2 were observed in Sij-1 and Slavi-1 in comparison
to Col-0 under Pi deficient + As(V) stress as compared to Pi
sufficient condition (Figure 5A). This suggests that Sij-1 and
Slavi-1 may accumulate more As, resulting increased sensitivity
toward As stress. However, metal accumulation in Col-0, Sij-1,
and Slavi-1 under Pi sufficient + As(V) stress demonstrated no
significant variation in As accumulation in all the accessions.
Increased level of As accumulation was observed in Col-0
(~sevenfold) in comparison to Slavi-1 and Sij-1 (~fivefold)
under Pi deficient + As(V) as compared to Pi sufficient + As(V)
stress (Figure 2B). Therefore, the analysis suggested that As
accumulation increased under Pi starvation in three accessions
at varying level. Among the three accessions, increased tolerance
of Col-0 under Pi deficient + As(V) stress and also enhanced As
accumulation suggests the presence of a different mechanism of
detoxification conferring tolerance in Col-0 as compared to other
accessions.

To understand better tolerance and adaptability of Col-0
with respect to other accessions, expression pattern of the three
members of Lambda class glutathione S-transferse (GST) gene

family was analyzed in natural variants exposed to different
growth conditions. GSTs are a superfamily of enzymes that
have a role in detoxification of xenobiotics (Dixon et al., 2002;
Theodoulou et al., 2003). Recently, the role of rice Lambda class
of GSTs was explored in heavy metal stress tolerance (Kumar
et al,, 2013a,b). The Lambda class of AtGSTs comprises of three
members and out of the these members, differential expression
pattern of only one member (AtGSTL1) was observed in all the
accessions under Pi deficient 4+ As(V) stress. Interestingly, a most
remarkable increase in the expression of AtGSTL1 was observed
in Col-0 (>80-fold) followed by Sij-1 (>10-fold), and Slavi-
1 (>5-fold), (Figure 5B). This suggests strong detoxification
machinery of Col-0 in comparison to Sij-1 and Slavi-1 and one
of the possible reasons for providing tolerance to Col-0 against
stress conditions in comparison to other natural variants.
Through expression analysis of genes in Arabidopsis
accessions in response to low Pi and low Pi + As(V), we
propose a model, which depicts the putative sequence of
events occurring under these conditions (Figure 6). In low Pi
condition, WRKY45, ZAT6, and WRKY75 positively induces
the expression of PHT1;1 to acquire Pi from the medium.
The expression of PHTI1;4 is regulated by PHRI, which
is a central regulator of Pi starvation response. During Pi
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starvation, PHR1 is needed for inducing the expression of
SPX1 and SPX3. SPX1 positively modulates the expression of
PHT1;4 whereas SPX3 exerts a negative feedback regulation
over SPX1, which is prerequisite to avoid hypersensitive
response during prolonged Pi starvation. After being taken
up by the Pi transporters, Pi is mobilized to shoot via PHR1
induced PHOIL;H1 whereas PHOI1;H3 negatively regulate
Pi movement. Under low Pi + As(V) stress, As(V) and Pi
competes to enter inside the plant via PHT transporters.
WRKY6, an As(V) responsive transcription factor, negatively
regulate the expression of PHTI;1, restricting As(V) and Pi
movement. PHR1 strongly induces the expression of SPX1
and SPX3 but the negative regulation of SPX3 over SPX1 is
diminished resulting in increased expression of PHT1;4 and
As(V) movement inside the plant. Further, As(V) is reduced
to As(III) by ACR2, which is further detoxified by GSTL1 or
gets sequestered inside the vacuole via ABCC1 and ABCC2
transporters (Figure 6).

CONCLUSION

Plants evolve and adapt to plethora of environmental stresses
and leads to intraspecific variations. Despite the considerable
variation, little is known about the genetic basis of Arabidopsis
response to nutrient deficiency and heavy metal stress. Our

study demonstrate natural variation in Arabidopsis under Pi
deficiency and Pi deficient + As(V) stress. Result suggest
substantial contrast in the accessions (Col-0, Sij-1, and Slavi-1)
toward low Pi and As(V) stress. The phenotypic data and the
expression profiling of the genes involved in Pi/As(V) uptake,
Pi mobilization, As detoxification and the members of different
transcription factors gene family was evaluated. Out of the three
accessions studied, Col-0 showed least reduction in the primary
root length in comparison to other natural variants under Pi
deficient 4+ As(V) stress. In spite of the difference in the response
to As(V) stress, no significant change in the capacity of metal
accumulation was observed in the accessions. Expression analysis
suggested a significant differential expression of PHT1;1 and
PHT1;4 in three accessions, which might be the possible reason
of tolerance of Col-0 toward As(V) stress in comparison to other
accessions. In addition, the increased expression of AtGSTLI and
decreased expression of AtABCC1 and AtABCC2 in Col-0 as
compared to Sij-1 and Slavi-1 might be responsible for better
detoxification system to combat As(V) stress under Pi deficient
condition. In addition, modulated expression of regulatory genes
such as WRKY6 and SPX3 in different natural variants might
be involved in different response of accessions to As(V) stress
under Pi deficient condition. Further, the detailed analysis under
combined stress conditions utilizing natural variations will help
in understanding the biological processes involved in heavy metal
uptake, transport and detoxification.
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