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Boron (B) is an essential microelement for higher plants, and its deficiency is widespread
around the world and constrains the productivity of both agriculture and forestry. In the
last two decades, numerous studies on model or herbaceous plants have contributed
greatly to our understanding of the complex network of B-deficiency responses
and mechanisms for tolerance. In woody plants, however, fewer studies have been
conducted and they have not well been recently synthesized or related to the findings on
model species on B transporters. Trees have a larger body size, longer lifespan and more
B reserves than do herbaceous plants, indicating that woody species might undergo
long-term or mild B deficiency more commonly and that regulation of B reserves helps
trees cope with B deficiency. In addition, the highly heterozygous genetic background of
tree species suggests that they may have more complex mechanisms of response and
tolerance to B deficiency than do model plants. Boron-deficient trees usually exhibit two
key visible symptoms: depression of growing points (root tip, bud, flower, and young leaf)
and deformity of organs (root, shoot, leaf, and fruit). These symptoms may be ascribed
to B functioning in the cell wall and membrane, and particularly to damage to vascular
tissues and the suppression of both B and water transport. Boron deficiency also affects
metabolic processes such as decreased leaf photosynthesis, and increased lignin and
phenol content in trees. These negative effects will influence the quality and quantity of
wood, fruit and other agricultural products. Boron efficiency probably originates from a
combined effect of three processes: B uptake, B translocation and retranslocation, and
B utilization. Root morphology and mycorrhiza can affect the B uptake efficiency of trees.
During B translocation from the root to shoot, differences in B concentration between
root cell sap and xylem exudate, as well as water use efficiency, may play key roles in
tolerance to B deficiency. In addition, B retranslocation efficiency primarily depends on
the extent of xylem-to-phloem transfer and the variety and amount of cis-diol moieties
in the phloem. The B requirement for cell wall construction also contribute to the B
use efficiency in trees. The present review will provide an update on the physiological
and molecular responses and tolerance mechanisms to B deficiency in woody plants.
Emphasis is placed on the roles of B reserves that are more important for tolerance
to B deficiency in trees than in herbaceous plants and the possible physiological and
molecular mechanisms of differential B efficiency in trees. We propose that B may
be used to study the relationship between the cell wall and the membrane via the
B-bridge. Transgenic B-efficient tree cultivars have considerable potential for forestry
or fruit rootstock production on low B soils in the future.
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INTRODUCTION

Boron (B) is essential for the growth and development of higher
plants (Warington, 1923). In the past 90 years, numerous
significant advances have been made in understanding the
function of B in plants. The current understanding of the
biological function of B in plants is that it plays a structural
role in both the cell wall and plasma membrane. In the cell
wall, B forms borate esters with apiose residues of the pectic
domain rhamnogalacturonan II (RG-II; Kobayashi et al.,
1996). This B–RG-II complex is essential for cell wall structure
and function (O’Neill et al., 2004) because it contributes
significantly to the control of cell wall porosity (Fleischer
et al., 1999) and tensile strength (Ryden et al., 2003). A recent
study reported that glycosylinositol phosphorylceramides
(GIPCs), the major components of lipid rafts, participate in
the formation of the GIPC–B–RG-II complex, suggesting
the structural role of B in membranes (Voxeur and Fry,
2014).

Boron deficiency is a widespread problem in both agriculture
and forestry, particularly on sandy and alkaline soils (Bell and
Dell, 2008). Areas where low B soils are found include South
and Southeast Asia, Eastern Australia and New Zealand, Africa,
North and South America, and Northern Europe (reviewed by
Lehto et al., 2010). Low B causes significant losses of yield
or quality by influencing vegetative or reproductive growth in
forest trees (Stone et al., 1982; White and Krause, 2001; Lehto
et al., 2010), fruit trees (Raja et al., 2005; Kumar, 2011; Ganie
et al., 2013; Liu et al., 2013b) and woody plants (Broschat, 2005;
Tewari et al., 2010; Hajiboland et al., 2011a; Patnude and Nelson,
2012). However, compared to model or herbaceous plants, in
woody trees the understanding of B-deficiency responses and
tolerance mechanisms is limited. Recently, advances have been
made about the regulation of B transport both in herbaceous
and woody plants. For instance, B transport system and its
transporters were better understood (Miwa et al., 2013; Tanaka
et al., 2013; Chatterjee et al., 2014; Durbak et al., 2014;
Hanaoka et al., 2014); and studies of the signal transduction of
B starvation responses were initiated (González-Fontes et al.,
2013; Quiles-Pando et al., 2013; González-Fontes et al., 2014).
These new findings provide important insights for understanding
B deficiency in woody plants. Here, the recent achievements
regarding the response and tolerance mechanisms of B deficiency
in woody plants, as well as relevant findings in model or
herbaceous plants, are summarized, and perspectives are also
proposed.

PHYSIOLOGICAL RESPONSES TO B
DEFICIENCY IN WOODY PLANTS

Plant Growth and Visual Symptoms
Boron-deficient trees exhibit various visible symptoms in both
vegetative and reproductive organs. Boron deprivation initially
reduces the elongation of growing points due to restricted cell
wall deposition and then, in more extreme cases, induces the
necrosis of these tissues owing to cell death. This negative effect

directly reduces root growth, particularly the lateral roots (Mei
et al., 2011; Zhou et al., 2014). Boron deficiency also supresses
growth in the aerial parts, such as plant height and leaf area
(Möttönen et al., 2001; Wojcik et al., 2008). If B deficiency lasts
for many years, it results in the stunted appearance of trees. In
some forest trees, long-term B deficiency can reduce the quality
and utility of wood. Loblolly pine (Pinus taeda), for example,
can grow normally for the first 3 years and then experience
dieback under low B conditions (Vail et al., 1961). Similar
symptoms of dieback are also observed in other tree species
(Table 1). Deficient symptoms in leaves, including chlorosis,
necrosis or malformation, have been reported in many tree
and woody species (Table 1). When grape (Vitis vinifera) was
cultured under low B conditions, diffuse yellowing of the young
leaves, brownish areas of apical tendrils and cupping of the
third–fourth leaves from the shoot tips were observed in the
early stage (cultured for 1 month). With the increasing time,
the leaves became more cupped and chlorotic, and the tendrils
developed transverse cracks and necrosis (Scott and Schrader,
1947). Mulberry (Morus alba), whose leaves are used to feed
silkworm, changed to cup-shaped leaves with bent and cracked
veins under B limitation (Tewari et al., 2010). In addition,
reproductive growth, especially flowering, fruit set and yield, is
more sensitive to low B than is vegetative growth (Dell and
Huang, 1997). In grape, flower and fruit cluster necrosis, and
small “shot berries” that are round to pumpkin-shaped often
appear due to B starvation (Christensen et al., 2006). The papaya
(Carica papaya) fruit is often affected by B deficiency with
latex secretion and deformity (Wang and Ko, 1975). Usually,
milky latex secretion appears in the fruit surface at the early
stage, after which the milky latex becomes brown. Finally, the
fruit surface becomes rough and deformed (Wang and Ko,
1975).

Taken together, B deficiency symptoms in trees can be divided
into two main groups. One is the inhibition, even necrosis, of
growing points, such as the root tip, bud, flower, and young leaf.
Light microscopy observation showed that cell death occurred
in B-deficient Norway spruce (Picea abies) needle buds (Sutinen
et al., 2006, 2007), probably due to the B function in the cell
wall. The other type of symptom is the deformity of some
organs, such as the shoot, leaf, and fruit. Relevant anatomical
studies demonstrated that B deficiency could severely damage
the vascular tissues and induce hypertrophy at the tissue/cellular
level. A disorganized vascular tissue was induced by B deficiency
in coffee (Coffea arabica), and discontinuities of both xylem and
phloem vessels were observed in the B-deficient stem tip and
young leaf (Rosolem and Leite, 2007). Boron deficiency also
reduced the length of the xylem vessel in both the leaf and fruit
vascular bundles and reduced the diameter of the xylem vessel in
only the leaf vascular bundle in pumelo (Citrus grandis; Liu et al.,
2013b). A consistent observation reported is that B deficiency can
increase vascular cross sectional areas in Norway spruce needle
(Sutinen et al., 2006, 2007), pumelo leaf and fruit vascular tissues
(Liu et al., 2013b), and sweet orange (Citrus sinensis) leaf veins
(Yang et al., 2013). These results suggest that B deficiency can
increase the size but weaken the function of vascular tissue in
trees.
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TABLE 1 | Symptoms of B deficiency in trees.

Trees Species Symptom Reference

Pine Pinus radiata Necrotic symptoms at the growing points
Needle fusion

Ludbrook, 1940; Vail et al., 1961; Stone
et al., 1982Pinus taeda

Pinus patula

Pinus elliotti

Spruce Picea abies Needle loss and top dieback
Failure of budburst

White and Krause, 2001; Lehto et al.,
2010Picea mariana

Eucalyptus Eucalyptus grandis Tissue dieback Cooling and Jones, 1970

Leguminosae Dalbergia odorifera Leaf chlorosis
Top dieback

Lehto et al., 2010

Acacia mearnsii

Acacia mangium

Myrtaceae Eucalyptus urophylla Loss of apical dominance
Prostrate plant

Lehto et al., 2010

Eucalyptus globulus

Apple Malus pumila Internal or external lesions in the fruit
Dieback and rosette in the vegetative parts

Burrell, 1940

Grape Vitis vinifera Chlorosis leaf and cupped young leaf
Brownish areas developing in the apical tendrils
Necrotic leaf and diebacked young tendrils
Small “shot berries”
Flower and fruit cluster necrosis

Scott and Schrader, 1947; Christensen
et al., 2006

Papaya Carica papaya Deformed-fruit with “bumpy” skin surfaces Wang and Ko, 1975; Nishina, 1991

Mango Mangifera indica Apical growing point and buds died
Poor fruit set
Internal necrosis in fruit
Fruit cracking

Agarwala et al., 1988; Raja et al., 2005;
Kumar, 2011

Blueberry Vaccinium
corymbosum

Tip dieback Blevins et al., 1996

Almond Prunus dulcis Reduced pollen germination and tube growth Nyomora et al., 2000

Citrus Citrus sinensis Pucker leaf with corky split veins
Shoot tip necrosis
Inhibition of plant growth
Asymmetrical and deformed fruit

Han et al., 2008; Liu et al., 2013b; Yang
et al., 2013; Zhou et al., 2014Poncirus trifoliata

Citrus sinensis ×
Poncirus trifoliata

Citrus reticulata

Citrus reshni

Citrus junos

Citrus aurantium

Citrus grandis

Cocoa Cacao theobroma Low yields and reduced fruit
Malformed leaves, branches and fruits

Asomaning and Kwakwa, 1965;
Tollenaar, 1967; Ojeniyi et al., 1981

Mulberry Morus alba Cup-shaped leaves
Bent and cracked veins
Lenticel-like cracks in petiole and stem

Tewari et al., 2010

Avocado Persea americana Reduced pollen viability and fruit size Smith et al., 1997a,b

Tea Camellia sinensis Curling of leaf lamina
Poorly branched root

Hajiboland et al., 2011b

Palm Cocos nucifera Necrotic truncation in an inverted “V” shape
Multiple unopened spear leaves
Tiny crumpled leaves
Severe epinasty
Premature fruit drop

Jayasekara and Loganathan, 1988;
Broschat, 2005; Patnude and Nelson,
2012Phoenix roebelenii

Bismarckia nobilis

Adonidia merrillii

Roystonea regia

Syagrus romanzoffiana

Heterospathe elata

Cell Wall and Membrane
Boron plays a crucial role in cell wall structure (O’Neill et al.,
1996; Matoh, 1997; Brown et al., 2002; Goldbach and Wimmer,

2007). In B-deficient plants, the structures of the cell wall are
strongly altered at both the macroscopic and microscopic levels
(Loomis and Durst, 1992; Shorrocks, 1997). At the subcellular
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level, B starvation usually results in abnormally formed walls that
are often thick and brittle as a consequence of altered mechanical
properties and abnormal expansion (Brown et al., 2002). It has
been suggested that B may be necessary for cell-to-wall adhesion
and for the organization of the architectural integrity of the
cell (Lord and Mollet, 2002; Bassil et al., 2004). This is further
supported by an altered cell wall porosity and tensile strength
under B deficiency (Fleischer et al., 1999; Ryden et al., 2003). In
citrus and tea trees, B deprivation not only resulted in a heavily
thickened and folded cell walls in roots (Zhou et al., 2015) but
also increased the portion of the cell wall relative to the whole cell
(Hajiboland et al., 2013b; Liu et al., 2013a) and induced changes
in both the amount and assembly of its component polymers in
leaves (Liu et al., 2014a). In forest trees, B deficiency impaired
the primary cell wall, and interrupted the structural development
of organs and whole plants, resulting in adverse impacts on tree
formation, wood quality and cold tolerance (Lehto et al., 2010).

In general, the responses of membranes to B deficiency are
faster than those of the cell wall (Goldbach et al., 2001; Brown
et al., 2002). For example, within minutes of B deprivation,
inhibition of plasma membrane-bound oxidoreductase activity
was frequently observed (Barr et al., 1993). In addition,
B-deficient plants often exhibit lower ion uptake rates in roots
but higher efflux of potassium and organic compounds in leaves
than B-sufficient plants (Pollard et al., 1977; Cakmak et al.,
1995; Goldbach and Wimmer, 2007). The membrane-bound
ATPase activity was reduced by B deficiency, but within 1 h after
resupplying B, the activity was restored to the same level as that
in B-sufficient bean (Phaseolus vulgaris) and maize (Zea mays)
roots (Pollard et al., 1977). These results suggest that B deficiency
might disturb the membrane transport process, the activity of
membrane-located proteins, and the integrity and functioning
of the plasma membrane (Brown et al., 2002; Goldbach and
Wimmer, 2007; Camacho-Cristóbal et al., 2008b).

There is increasing evidence that B may play structural roles
in the cell wall to cell membrane interface (O’Neill et al., 2001;
Brown et al., 2002; Goldbach and Wimmer, 2007; Voxeur and
Fry, 2014). Bassil et al. (2004) proposed that B may function
in transvacuolar cytoplasmic strands and cell-to-wall adhesion.
Recently, these predictions were partly confirmed by Voxeur and
Fry (2014). These authors found that B can bind both the RG-
II of the cell wall and the GIPCs of the cell membrane, thus
forming a GIPC–B–RG-II complex (Voxeur and Fry, 2014). As
a result, B serves as a bridge to connect the cell wall and the
plasma membrane, which opens a possible avenue to probe the
relationship between the cell wall and the membrane via the
B-bridge. The GIPC–B–RG-II complex may also explain, at least
partly, why both the cell wall and membrane are influenced by B
deficiency.

Metabolism
Early detectable changes in B-deficient plants are considered to
be reflected by the damage of the cell membrane (see Cell Wall
and Membrane) or the disturbances of hormonal metabolism
(Blevins and Lukaszewski, 1998; Martín-Rejano et al., 2011;
Abreu et al., 2014; Camacho-Cristóbal et al., 2015), but the
primary reaction remains unclear. However, the accumulation

of phenols has repeatedly been observed in B-deficient plants
(Cakmak and Römheld, 1997; Marschner, 2012). It is believed
that the accumulation of phenolic compounds is an indirect long-
term effect of B deficiency (Marschner, 2012). Boron starvation
first damages the integrity of the cell wall and membrane,
disrupting the phenol metabolism-related enzyme systems, such
as phenylalanine-ammonium lyase (PAL; Cakmak et al., 1995;
Brown et al., 2002), and thus results in the accumulation of
phenols and related alterations of lignin synthesis from phenol
alcohols (Pilbeam and Kirkby, 1983; Yang et al., 2013; Zhou
et al., 2015). In tea and olive trees, significant accumulation
of phenolic compounds has been detected in B-deficient leaves
(Liakopoulos et al., 2005; Hajiboland et al., 2013a). The excessive
accumulation of phenols probably leads to tissue necrosis. The
poorly lignified branches of woody trees due to B deficiency may
be unable to support the weight of leaves (Dell and Huang, 1997).
Additionally, changes in phenol and lignin may also affect plant
defense systems against herbivory and pathogens (Lehto et al.,
2010).

There is no evidence that B plays a direct role in
photosynthesis (Dell and Huang, 1997). However, B deficiency
limits root growth and results in a weak vascular tissue, which
may restrain water uptake and transport within the plant and
further alter leaf function (e.g., the reduction of stomata number
and abnormal shapes, reviewed by Wimmer and Eichert, 2013).
Moreover, a wealth of information is available to suggest that
B deficiency may indirectly affect photosynthesis by decreasing
the photosynthetic area and altering the leaf constituents (Dell
and Huang, 1997; Brown et al., 2002). As in herbaceous species
(Dell and Huang, 1997), B deficiency of leaves in trees reduces
the content of chlorophyll, CO2 assimilation and stomatal
conductance, as well as the activities of photosynthetic enzymes
and catalase, but enhances the production of reactive oxygen
species (ROS) and intercellular CO2 concentration, thereby
resulting in decreased photosynthetic capability (Han et al.,
2008; Wojcik et al., 2008; Tewari et al., 2010). Moreover, the
accumulation of soluble sugars in B-deficient leaves of trees may
also produce feedback inhibition to net photosynthesis (Han
et al., 2008; Ruuhola et al., 2011; Hajiboland et al., 2013b; Lu et al.,
2014).

B Reserves
Interestingly, in woody perennial trees, B reserves play a
significant role in response to B deficiency, particularly during the
spring growth flush (Tromp, 1983; Spiegel-Roy andGoldschmidt,
1996). Boron reserves, also known as B storage, are defined
as those B-containing substances that are not used directly
in functioning but are primarily stored in the apoplast and
cytoplasm of the tree until required (Tromp, 1983; Dannel et al.,
2002; Du et al., 2002; Lehto et al., 2010). In contrast to herbaceous
plants, trees are perennial and have a large body; therefore, trees
may store adequate B to cope with B deficiency at a later stage.
Generally, three B forms exist in plants: free B (B in the apoplast),
semi-bound B (B in the cytoplasm), and bound B (B in the cell
wall; Du et al., 2002). Previous studies have suggested that the
forms of B reserves may be limited to free B and semi-bound B
because bound B for cell wall construction is not retranslocated
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(Dannel et al., 2002; Matoh and Ochiai, 2005; Lehto et al., 2010;
Liu et al., 2011; Wang et al., 2014).

Apart from the stage of growth (e.g., flowering and fruiting)
and field management (e.g., leaf pruning; Goh et al., 2007),
the amount of stored B in the plant is one of the most
important factors that influence the B requirement of woody
plants. Effective B application for trees is frequently observed,
even though there is apparently sufficient B in leaves and no
B-deficient symptoms evident (Hanson, 1991; Nyomora et al.,
1999; Perica et al., 2001b; Sánchez and Righetti, 2005; Wells
et al., 2008; Moura et al., 2013). Furthermore, the B-fertilized
Norway spruce seedlings can maintain a foliar B concentration
greater than the deficiency limit for 2–13 years, with larger trees
having longer-lasting effects (Kilpeläinen et al., 2013; Riikonen
et al., 2013). In addition, temporary B deficiency may occur in
trees due to insufficient B reserves for redistribution within the
plant, or limited B retranslocation in phloem, or to particular
environmental conditions (e.g., low soil water and vapor pressure
deficit; Bell, 2000). Hence, B application to enhance B storage in
perennial organs, may result in increased B retranslocation, and
thus improve the fruit set, yield, and wood quality of trees.

The effects of B application in woody plants are influenced
by fertilization methods (Nyomora et al., 1999; Boaretto et al.,
2011) and for foliar applications by leaf surface characteristics
(Perica et al., 2001b; Will et al., 2012). Unlike annual plants,
trees are perennial and commonly suffer from long-term B
deficiency. For long-term B-deficient trees, the leaf structure may
be more severely influenced than the root anatomy (see Plant
Growth and Visual Symptoms), despite the faster response to
B deficiency in roots than in shoots (Dell and Huang, 1997).
This is because the root will not transport B to the shoot
until its own essential requirements are met, as indicated by
the fact that B retranslocation increases with an increase in
B stored in the reserve tissues (the terms “B translocation”
and “B retranslocation” used here refer to the processes of B
transport in the xylem and phloem respectively, see details in
Section B Translocation and Retranslocation; Boaretto et al.,
2008; Lehto et al., 2010). In a limited-B-retranlocation species,
the recovery of labeled B fertilizer in fruits was higher from
soil application (21%) than for foliar application (7%; Boaretto
et al., 2011). Interestingly, similar results were reported in a
high-B-retranlocation species (Wojcik et al., 2008). Therefore,
when applying B to B-deficient trees, application via the root
system is more effective than foliar application, regardless of B
retranslocation in plant species.

It has been suggested that stored B in older plant parts can
be retranslocated to new tissues via the phloem during periods
of rapid growth, and the extent of B retranslocation depends
primarily on the B status and sugar alcohols in trees (Lehto
et al., 2010). In sweet orange, 20–35% of the B content in new
parts was retranslocated from plant B reserves (Boaretto et al.,
2008). However, it should be noted that the proportion of B
retranslocated varies more substantially among plant species
than that of other essential plants nutrients (Brown and Shelp,
1997). For example, only 3.2% of newly acquired B by leaves was
retranslocated in orange trees (Boaretto et al., 2011), whereas
more than 70–80% of newly acquired B by leaves could be

exported to young tissues in apple (Malus domestics), pear
(Pyrus communis), prune (Prunus domestics), and sweet cherry
(Prunus avium; Picchioni et al., 1995). Using the B concentration
gradient along the shoot axis, and foliar 10B labeling, it has
been demonstrated that 26 out of 31 deciduous tree species
retranslocated B, while 10 out of 19 evergreen tree species did
not retranslocated B in the phloem (Brown and Hu, 1998; Lehto
et al., 2004b; Konsaeng et al., 2005). Furthermore, Aphalo et al.
(2002) pointed out that the capacity for B retranslocation in
conifer forests may be related to natural selection to avoid B
stress in leaves with a long lifespan. These results indicate that
the extent of B retranslocation may be greater in deciduous trees
than in evergreen trees, probably due to the form and location of
B reserves for each group of tree species during natural selection.
The evolutionary advantage of B retranslocation is significant.
Deciduous trees must retranslocate B from annual tissues to
perennial tissues in a timely manner during the fall because the
retranslocated B (also known as B reserve) plays a critical role in
the growth of new organs in the subsequent spring. In contrast,
evergreen trees do not experience defoliation and thus have less
necessity to retranslocate B to new organs than do deciduous
trees. This suggests that trees possess different adaptive strategies
to B deficiency depending on climatic conditions.

MOLECULAR RESPONSES TO B
DEFICIENCY IN WOODY PLANTS

B Transporters
In recent years, increasing numbers of papers on the molecular
identification of B transporters in plants have been reported.
More importantly, many B transporters are B-deficiency induced
and their functions will become essential under low B conditions.
To date, two types of B transporters have been identified: BORs,
which perform a B export role in plant cells, and major intrinsic
proteins (MIPs), including some boric acid channels (Miwa
and Fujiwara, 2010; Reid, 2014). Both types of B transporters
contribute to B uptake by roots (Takano et al., 2006; Durbak et al.,
2014; Hanaoka et al., 2014), xylem loading and B distribution
(Takano et al., 2001; Nakagawa et al., 2007; Tanaka et al., 2008)
and B utilization within the plant under B-limited conditions
(Miwa et al., 2013).

Arabidopsis thaliana BOR1, the first identified B exporter,
plays a key role in xylem loading and B distribution within shoots
(Takano et al., 2005). AtBOR1 is expressed in the columella,
lateral root cap, epidermis, and endodermis in the root tip, and
in the epidermis and endodermis in the elongation zone (Takano
et al., 2010). AtBOR1 mRNA accumulation was not strongly
expressed, while BOR1-GFP fusion protein accumulation was
elevated under a limited B supply (Takano et al., 2005). AtBOR2
is an efflux-type B transporter that is localized to the plasma
membrane and has been proposed to facilitate the effective cross
linking of RG-II by B in the cell wall and root cell elongation.
This protein is strongly expressed in the lateral root caps and
epidermis of the elongation zones of roots and is essential
for root cell elongation under low B conditions (Miwa et al.,
2013). OsBOR1, one of four AtBOR1-like proteins in rice (Oryza
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sative), is a plasma-membrane-localized efflux transporter of B
and is required for the normal growth of rice plants under B
limitation (Nakagawa et al., 2007). OsBOR4, another AtBOR1-
like protein in rice, is both highly and specifically expressed in
pollen. With the same transporter type and subcellular location
as those of OsBOR1, OsBOR4 is essential for normal pollen
germination and/or tube elongation in reproductive processes
(Tanaka et al., 2013). ZmRTE (ROTTEN EAR), an ortholog of
AtBOR1 in maize, is also a B efflux transporter and required
for inflorescence development and fertility under B-limited
conditions (Chatterjee et al., 2014). In addition to these basic
studies inmodel plants, homologs ofAtBOR1 exist in tree species.
Both VvBOR1 (Pérez-Castro et al., 2012) and Citrus macrophylla
BOR1 (Cañon et al., 2013) are plasma-membrane-localized efflux
B transporters. VvBOR1 is mainly expressed in the root but
also in other tissues. The relative expression of this gene in
root is 1.9 times higher than that in flowers. Boron-deficient
grape vines display symptoms of shot berries (Christensen et al.,
2006; Pérez-Castro et al., 2012). However, at the fruit setting
stage, the transcript accumulation of VvBOR1 in shot berries is
significantly less than that in normal berries (Pérez-Castro et al.,
2012).VvBOR1 transcripts increase at anthesis and then gradually
decrease until late development stages during berry development.
CmBOR1 is expressed in the leaves, stem and flowers and shows
the greatest level in the roots. A significantly increased expression
of CmBOR1 is observed in shoots under B-deficiency conditions
(Cañon et al., 2013).

The MIP superfamily in plants can be subdivided into five
evolutionarily distinct sub-families, including nodulin-26-like
intrinsic proteins (NIPs), plasma membrane intrinsic proteins
(PIPs), small basic intrinsic proteins (SIPs), tonoplast intrinsic
proteins (TIPs) and uncharacterized X intrinsic proteins (XIPs)
(Ishibashi et al., 2011). Some MIP members are boric acid
channels facilitating B influx into cells. In Arabidopsis, both
NIP5;1 and NIP6;1 are localized in the plasma membrane, but
their B transport functions are different: NIP5;1 is involved
in the initial uptake process in root cells (Takano et al.,
2006), while NIP6;1 may function in xylem-phloem B transfer
into young growing tissues (Tanaka et al., 2008). Genetic
research on OsNIP3;1 (Hanaoka et al., 2014) and ZmNIP3;1
(also called TASSEL-LESS1 protein, TLS1; Durbak et al., 2014)
demonstrated that they function as boric acid channels and are
required for vegetative and reproductive development. Three
PIP members, ZmPIP1 (Dordas and Brown, 2001), Hordeum
vulgare PIP1;3 and HvPIP1;4 (Fitzpatrick and Reid, 2009),
increase the sensitivity of single cells to B, but their functions
in whole plants are unclear. In citrus, an AtNIP5-like gene of
trifoliate orange (Poncirus trifoliata), CiNIP5, is expressed mainly
in the roots of citrus seedlings, and its transcripts increase
significantly under B deficiency (An et al., 2012; Zhou et al.,
2015).

Of the previously mentioned studies on B transporters,
the majority involve model plants, whereas few were on tree
species. In fact, the mechanism of B uptake, transport and
distribution in woody plants is more complicated than current
knowledge on model plants. For example, mycorrhiza exist in
most herbaceous and woody plants and play an assistant role

in the plant B uptake process (Lehto et al., 2004b; Ruuhola
and Lehto, 2014). Unfortunately, no work has been reported
on the existence of B transporters in mycorrhiza. Such studies
would form a useful adjunct to research on B transporters in
plants. However, the conserved function of B transporters is
observed across model and woody species. VvBOR1, for example,
restores the phenotype of Arabidopsis bor1-3 mutants under B
deprivation (Pérez-Castro et al., 2012). Based on this consistency,
the above new findings in model herbaceous plants could also
provide a better understanding of the B deficiency response in
woody plants. Moreover, to better understand the B transport
system, studies are needed to identify and characterize potential
B transporters in different tissue of trees, especially under
B-deficiency conditions.

Cell Wall Related Genes
As described in Section “Cell Wall and Membrane,” B deficiency
causes abnormally formed cell walls that are often thick and
brittle (Brown et al., 2002). Generally, the cell wall thickening
process requires two elements: polysaccharides (e.g., cellulose
and xylans) and aromatic components (e.g., lignins; Goujon
et al., 2003). It is therefore likely that B deficiency may affect
the expression patterns of cell-wall-related genes: decreasing
production of molecules that are related to cell wall elements
synthesis and inhibiting molecules that are related to cell wall
extensibility modification. When Arabidopsis roots are under
short-term B deficiency, decreased transcript counts of cell
wall modification-related genes are observed by transcriptomic
analysis (Camacho-Cristóbal et al., 2008a). In Citrus species,
B deficiency suppressed the expression of cell-wall-modifying
enzyme genes in the roots (Zhou et al., 2015) but increased
the expression of lignin biosynthesis pathway genes in both
the roots (Zhou et al., 2015) and leaf veins (Yang et al.,
2013). These results suggest that B deficiency affects the
expression of cell-wall-related genes in both herbaceous and
woody plants.

Signaling Transduction
Signal transduction in B-deficient plants is becoming an
increasingly interesting topic. Three hypotheses for the B
deprivation signaling pathway that transmits the signal from
the cell wall to the cytoplasm and nucleus are summarized in
a recent review (González-Fontes et al., 2014): (i) the alteration
in cell wall structure promotes signal transduction; (ii) the
accumulation of ROS induces Ca2+ signaling and cell death;
and (iii) a low intracellular B level activates transcription factors
and target genes. The authors have proposed a major role of
Ca2+ and Ca2+-related proteins in this pathway (González-
Fontes et al., 2014). Subsequently, crucial evidence supporting
a membrane structure role of B was provided (Voxeur and
Fry, 2014). Biological membranes contain not only lipids
and proteins but also particular domains (rafts). These rafts
are enriched in sterol and sphingolipids and are depleted in
unsaturated phospholipids (Mongrand et al., 2010). In recent
years, the possible role of plant rafts as signal transduction
platforms has been frequently proposed and well summarized
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(see more information in Mongrand et al., 2010, and Simon-
Plas et al., 2011). Moreover, as major components of membrane
rafts, GIPCs participate in the formation of a GIPC–B–RG-
II complex (Voxeur and Fry, 2014). Here, we propose a
hypothesis, based on the negative effect on growing root cells
and on the faster responses of membranes than those of the
cell wall to B deficiency, and on a B deprivation signaling
pathway. The hypothesis is as follows: a lack of the GIPC–
B–RG-II complex for cell wall and membrane construction
in root meristem and elongation cells might trigger the
signaling pathway via the activation of a potential membrane
protein or protein complex, and then the induced cytoplasmic
Ca2+ signal pathway activates the downstream transcription
events. Although little genetic or molecular evidence supports
this hypothesis, phosphoproteomic analysis and single protein
function research in both herbaceous and woody plant species
will shed light on this topic.

MECHANISMS FOR TOLERANCE TO B
DEFICIENCY IN WOODY PLANTS

Boron efficiency as used here refers to the extent of variation
in response to low B among genotypes within one species
and among plant species (Rerkasem and Jamjod, 1997). Boron-
efficient genotypes are those that are able to grow well in soils
in which other genotypes are adversely affected by B deficiency,
and the opposite is the case for B-inefficient genotypes (Graham,
1984; Rerkasem and Jamjod, 1997). As in herbaceous plants
(Bellaloui and Brown, 1998; Stangoulis et al., 2001; Nachiangmai
et al., 2004; Rerkasem and Jamjod, 2004; Zhang et al., 2014),
differential B efficiencies have also been observed in a variety
of trees (Rerkasem and Jamjod, 1997; Lehto et al., 2004b; Xiao
et al., 2007; Mattiello et al., 2009; Sheng et al., 2009a,b). It
is widely accepted that the wide range of B efficiency among
genotypes is associated with B uptake rate (B uptake efficiency),
B translocation and retranslocation (B transport efficiency), and
B utilization within the plants (B use efficiency; Marschner,
2012).

B Uptake
At adequate to high B supply, B uptake occurs via passive
diffusion across the lipid bilayer, whereas at low B supply, B in
the external medium is initially taken up into the root symplasm
through a passive facilitated transport process (Dannel et al.,
2002; Miwa and Fujiwara, 2010). There are genotype-related
differences in B uptake efficiency among trees. For example,
under B-deficiency conditions, the sweet orange scion grafted
on Carrizo citrange (Citrus sinensis × Poncirus trifoliata) had
a higher newly acquired B concentration in leaves than those
grafted on trifoliate orange, suggesting that the rootstock Carrizo
citrange has a greater B uptake efficiency than trifoliate orange
(Liu et al., 2012). Boron uptake efficiency of trees has been
suggested to be associated with root morphology (Mei et al.,
2011) and mycorrhizas (Lehto et al., 2004b; Ruuhola and Lehto,
2014). Under low B conditions, B-efficient tree cultivars usually
show less depression of root length and number (Mei et al.,

2011) and thereby exhibit a higher B absorption rate (Wojcik
et al., 2003; Han et al., 2012) compared to B-inefficient cultivars.
Mycorrhizas, which often exist in symbiosis with trees, may
also play an important role in B uptake efficiency. In silver
birch (Betula pendula), B uptake rate was higher in Laccaria-
inoculated than Laccaria-non-inoculated seedlings (Ruuhola and
Lehto, 2014). At the molecular level, the AtNIP5;1 gene is a
boric acid channel that is involved in the initial uptake process
in root cells (Takano et al., 2006). The overexpressed lines
for this gene have greater root elongation under B-limited
conditions (Kato et al., 2009). These results suggest that greater
accumulation of transcripts of the boric acid channel gene
could increase tolerance to B starvation by enhancing the initial
uptake process. This suggestion is further supported by the
fact that the CiNIP5 transcript level in the roots of B-efficient
Carrizo citrange increased continuously to 7.7 times at 48 h
after B-deficiency treatment compared to the initial level, whereas
that of B-inefficient fragrant citrus (Citrus junos) increased only
to 4.4 times at 24 h and then decreased (An et al., 2012).
A similar observation was also recently described in that the
level of NIP5;1 mRNA in roots after 12 h of B deficiency
was up-regulated 5.2 times for B-efficient Carrizo citrange, but
only 3.8 times for B-inefficient trifoliate orange (Zhou et al.,
2015).

B Translocation and Retranslocation
At adequate to toxic B supply, a substantial retention of B in
the root symplasm occurs at xylem loading; at low B supply,
the B retained in the symplasm can be loaded into the xylem
by an active transport system (Dannel et al., 2002). Once loaded
into the xylem, B can be translocated from the root to shoot by
transpiration under high B conditions, but by active transport
processes at low B supply (Raven, 1980; Shelp et al., 1995; Eichert
and Goldbach, 2010; Miwa and Fujiwara, 2010), both of which
are influenced by water use efficiency (Wimmer and Eichert,
2013). In general, B translocation efficiency is evaluated by the
ratio between B concentration in the root cell sap and xylem
exudate using a stable isotope 10B tracer. Under B-deficiency
conditions, B-efficient genotypes usually have relatively higher B
concentrations in xylem exudates than B-inefficient genotypes,
probably due to the greater ability to translocate B from the
root to the shoot. For example, at low B supply, the B-efficient
tomato (Solanum lycopersicum) cultivar ‘Rutgers’ had a higher
B concentration in xylem exudate than the B-inefficient cultivar
‘T3238’, but a similar B concentration was found in the root cell
sap of both genotypes (Brown and Jones, 1971). Furthermore,
‘Rutgers’ was more efficient than ‘T3238’ in translocating 10B
from the root to the shoot (Bellaloui and Brown, 1998). For
grafted trees, in addition to functioning in B uptake by roots,
the rootstock may also play a role in B translocation from the
root to the scion (Papadakis et al., 2003; Wojcik et al., 2003;
Boaretto et al., 2008; Sheng et al., 2009b; Wang et al., 2014).
Under B-deficiency conditions, the ratio of B concentration
in the scion stem to the rootstock stem increased as the
B efficiency of citrus combinations increased (Wang et al.,
2014). This implies, at least in part, that B-efficient grafted
combinations possess a greater ability to translocate B from
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the rootstock (root) to the scion (shoot). The B translocation
efficiency in trees is likely related to water use efficiency in
rootstocks and scions, and to connectivity in the grafting region,
presumably due to the B transport in xylem associated with
aquaporins (Wimmer and Eichert, 2013). Compared to the
B-inefficient citrus rootstock trifoliate orange, the B-inefficient
genotype Carrizo citrange is a vigorous rootstock that usually
has a higher vessel diameter and hydraulic conductance (Saeed
et al., 2010; Mei et al., 2011; Zhou et al., 2014). However,
whether B translocation efficiency is associated with xylem
vessel characteristics and water use efficiency still needs to be
explored. At the molecular level, BOR1 proteins have been
identified as B efflux transporters that are involved in B xylem
translocation in the roots of Arabidopsis (Takano et al., 2001),
rice (Nakagawa et al., 2007) and maize (Chatterjee et al.,
2014). The strong expression of AtBOR1 improved growth in
both Arabidopsis (Miwa et al., 2006) and tomato (Uraguchi
et al., 2014) under B-deficiency conditions. These results suggest
that the greater accumulation of B efflux transporter could
increase tolerance to B starvation through an enhanced B
xylem translocation process. This is further supported by grape
VvBOR1 overexpression restoring the wild-type phenotype in an
Arabidopsis bor1-3 mutant (Pérez-Castro et al., 2012) and citrus
CmBOR1 overexpression increasing the tolerance to B deficiency
in Arabidopsis (Cañon et al., 2013). Moreover, we recently found
that ten aquaporin genes of roots were up-regulated in B-efficient
Carrizo citrange, but only two of them were up-regulated in
B-inefficient trifoliate orange at 24 h after B-deficiency treatment
(Zhou et al., 2015). This result supports the proposal that the
B-dependent regulation of aquaporins could affect the water
status of the whole plant (Wimmer and Eichert, 2013). The
plant aquaporin family functions in membrane channels and can
facilitate the transport of water and other low molecular weight
substances in the xylem (Ishibashi et al., 2011). Therefore, under
B-deficiency conditions, Carrizo citrange may have a greater
ability to absorb B and water and to transport them via the
xylem to the shoot than trifoliate orange, thus tolerating B
deficiency.

In contrast to the xylem, B retranslocation in the phloem
can be achieved by two pathways: (i) xylem-to-phloem transfer
along the stem, and (ii) retranslocation from the leaves (source)
to the flowers or fruits (sink). Xylem-to-phloem transfer along
the stem is particularly important for the B nutrition of plants
during reproductive stage, due to the higher B demand and the
lower transpiration rate of reproductive tissues than vegetative
organs (Shelp et al., 1998; Huang et al., 2001). Moreover, B
efficiency varies with plant growth period. For example, the
wheat cultivar ‘Fang 60’ was B-efficient during reproductive
growth, but vegetatively B-inefficient; the cultivar ‘SW41’ had
the opposite trend of B efficiency compared with ‘Fang 60’
(Rerkasem and Jamjod, 1997). These results suggest that B
efficiency of the plants at reproductive stage may be associated
with the capacity for xylem-to-phloem transfer along the stem.
The other pathway is the B retranslocation from the leaves
to the flowers or fruits. After arriving at the source leaves, B
can be retranslocated into the sinks (e.g., flowers, fruits) via
the phloem by forming complexes with hydroxyl groups (the

main pathway of B retranslocation; Brown and Shelp, 1997);
otherwise, B will leak back into the xylem due to its high
membrane permeability (Oertli and Richardson, 1970). Boron
retranslocation is more marked at low B supply than at adequate
or high B supply (Liakopoulos et al., 2009). Significant 10B
retranslocation was found in the new stem and needles of
Scots pine and Norway spruce seedlings after applying 10B
to old needles, presumably as a consequence of B forming
complexes with pinitol or inositol (Lehto et al., 2004a). In the
olive tree leaf, mannitol may be involved in the promotion
of B retranslocation under B limitation (Liakopoulos et al.,
2009). Therefore, B retranslocation in the phloem is probably
associated with the type and abundance of hydroxyl-bearing
moieties, such as sugar alcohols (Perica et al., 2001a; Liakopoulos
et al., 2009; Liu et al., 2014b). At the molecular level, B
retranslocation may be associated with five B transporters
(AtBOR6,AtBOR7,OsBOR4,VvBOR1, andAtNIP6;1) due to their
expression in nodal regions of shoots or flowers (Tanaka et al.,
2008; Fujiwara et al., 2010; Pérez-Castro et al., 2012; Tanaka
et al., 2013). However, only AtNIP6;1 and OsBOR4 have been
functionally identified (Tanaka et al., 2008, 2013). AtNIP6;1 is
highly expressed in nodal regions of shoots, particularly the
phloem. The nip6;1 mutants exhibit reduced expansion and
low B concentrations of young rosette leaves under B-limited
conditions (Tanaka et al., 2008). OsBOR4 is specifically expressed
in pollen, and bor4 mutants show fertilization defect as a
consequence of the reduced pollen tube elongation (Tanaka
et al., 2013). These results suggest that AtNIP6;1 and OsBOR4
may function in B distribution into growing leaves or flowers.
In addition, AtNIP6;1 may be responsible for xylem-to-phloem
transfer of B due to its predominant expression in the phloem
of the nodes. Moreover, B retranslocation has further been
partly revealed by the transgenic lines of sorbitol-related gene,
S6PDH. This gene controls the activity of sorbitol-6-phosphate
dehydrogenase, a key enzyme for sorbitol biosynthesis (Bellaloui
et al., 2003). The overexpression of S6PDH could improve the
retranslocation of B in plants by increasing sorbitol biosynthesis
and thus enhance the tolerance to B deficiency in tobacco
(Nicotiana tabacum; Brown et al., 1999) and rice (Bellaloui et al.,
2003).

In trees, differences in B retranslocation efficiency may exist
among genotypes within one species. Mattiello et al. (2009)
found that in B-deficient eucalypt, the ratio of 10B: 11B in
10B-applied leaves decreased from 3.225 at day 1–1.492 at
day 17 in clone 129 (Eucalyptus grandis × E. urophylla),
whereas that ratio only decreased from 2.759–1.900 in clone 68
(E. grandis × E. urophylla). Accordingly, the ratio in other leaves
remained stable at 0.245–0.254 in clone 68, whereas in clone 129,
the ratio increased from 0.245 to 0.425. This result suggests that
clone 129 is better able to retranslocate B to other parts after
foliar application under B-deficiency conditions. Similarly, we
observed that two orange scion cultivars with the same rootstock
showed a different growth performance under B-deficiency
conditions, likely due to the differences in B retranslocation
efficiency (Sheng et al., 2009a). Although it is widely accepted
that different degrees of B retranslocation among species are
related to the level of polyols in the phloem (Brown and
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Shelp, 1997), little research on the B-polyol relationship among
genotypes within a species has been conducted. Further studies
are needed to examine the relationship between B retranslocation
and polyols among genotypes within one species. Here, four
approaches are recommended to assess the B retranslocation
efficiency: (i) to evaluate B retranslocation by applying the
stable isotope 10B in aerial plant parts (Brown et al., 1992;
Lehto et al., 2004a; Leite et al., 2007); (ii) to identify the
types of hydroxyl groups in leaf tissue and the phloem sap
(Liakopoulos et al., 2009); (iii) to isolate and characterize the
B-polyol complexes from leaf tissue and phloem sap (Hu et al.,
1997; Penn et al., 1997; Stangoulis et al., 2010); and (iv) to
compare B retranslocation between polyol-related trangenic
mutant and wild type (Brown et al., 1999; Bellaloui et al.,
2003).

B Utilization
After long-distance transport, B enters into the targeted tissue,
where it is required for the construction of the cell wall (O’Neill
et al., 2001) and membranes (Voxeur and Fry, 2014) as well
as for the metabolism of the cytoplasm (Brown et al., 2002).
This process is known as B utilization. Boron use efficiency is
related not only to the pectin content and composition of the
cell wall (Hu et al., 1996; Kakegawa et al., 2005; Pan et al.,
2012; Liu et al., 2013a), but also the cell membrane composition
(Dordas and Brown, 2000). In general, B-efficient tree cultivars
have a lower concentration of cell wall B at B-adequate supply
but similar or greater concentration of cell wall B at B-limited
supply, as compared to B-inefficient cultivars (Liu et al., 2013a;
Wang et al., 2014). That is, B-efficient cultivars may possess
a higher proportion of non-cell wall B which is available for
cytoplasmic metabolism under B-adequate conditions, but a
greater proportion of cell wall B which is required for the
structure of cell wall under B-limited conditions (Hu et al.,
1996; Pan et al., 2012). Moreover, the pectin composition of
B-efficient cultivars differs from that of B-inefficient cultivars. For
example, B-efficient Carrizo citrange had a higher concentration
of CDTA-soluble pectin than B-inefficient trifoliate orange under
B-limited conditions (Liu et al., 2013a). Boron use efficiency
may also be associated with the cell membrane composition.
The Arabidopsis chs1-1 mutant, which has a lower proportion
of sterols than the wild type, showed a 30% higher B uptake,
whereas the act1-1 mutant, which has an increased percentage
of longer fatty acids, exhibited a 35% lower B uptake than
the wild type (Dordas and Brown, 2000). At the molecular
level, Miwa et al. (2013) demonstrated that the proportion of
cross-linked RG-II in Arabidopsis bor2-1 and bor2-2 mutants
(∼42.5 and ∼45.7%) was significantly lower than that of both
wild type (∼54.0%) and bor1-3 mutant (∼52.8%) plants under
B limitation. These results may suggest that B transport by
the AtBOR2 protein from the symplast to the apoplast may
be required for the effective cross linking of RG-II in the
cell wall under B deficiency. Transgenic lines with enhanced
expression of BOR2 showed improved root growth and better
fertility under low B conditions, suggesting the potential utility
of BOR2 expression in agricultural applications (Takada et al.,
2014).

Future Prospects
In summary, at a physiological level, B efficiency in trees is
mainly attributed to four mechanisms: (i) the ability to absorb
B from the soil/medium, which depends on root morphology
and mycorrhiza; (ii) B translocation from root to shoot as
indicated by the composition of root cell sap and xylem exudate
and likely influenced by xylem vessel characteristics and water
use efficiency; (iii) B retranslocation through xylem-to-phloem
transfer and formation of complexes with hydroxyl groups in
phloem; and (iv) the B requirement in cell wall construction and
cell membrane composition. At amolecular level, the tolerance to
B deficiency can be improved by the higher or stronger expression
of NIPs, BORs, and S6PDH to facilitate B uptake, B translocation
and retranslocation, as well as B utilization processes. These
molecular results indicate that genetically modified trees with
B-deficiency-tolerance-related genes may be useful in forestry
or other tree industries in the future. Furthermore, the bor1
bor2 double mutants exhibited more severe growth defects
under B-limited conditions than bor1 or bor2 single mutants
in Arabidopsis (Miwa et al., 2013), indicating that B-deficiency-
tolerance-related genes are probably dosage-dependent. That
is, the differences in B efficiency probably originate from a
combined effect of the four mechanisms mentioned above.
However, previous studies were mainly limited to one single
mechanism of B efficiency. Consequently, more systematic study
is needed on the B deficiency tolerance mechanisms in trees,
including uptake, translocation, retranslocation, and utilization,
spanning investigations from the physiological to the molecular
level.

CONCLUDING REMARKS

Boron deficiency is frequently observed in woody plants. An
adequate B supply for cultivated trees can be of great economic
importance, contributing significantly to the yield and quality
of fruit and forest trees. From a practical view point, there is a
need to focus research on the significance of B reserves, which
is especially important in trees, for which there may be no
early warning symptoms of B deficiency. Species or genotypes
with different B efficiency have provided ideal experimental
material to elucidate some puzzling aspects of the mechanisms
for tolerance to B deficiency. Recently, great progress has been
achieved in uncovering the molecular mechanisms of B efficiency
in herbaceous plants, which makes possible further exploration
of the mechanisms of B deficiency tolerance in woody plants.
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