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Pea is an important food and feed crop and a valuable component of low-input farming

systems. Improving resistance to biotic and abiotic stresses is a major breeding target to

enhance yield potential and regularity. Genomic selection (GS) has lately emerged as a

promising technique to increase the accuracy and gain of marker-based selection. It uses

genome-wide molecular marker data to predict the breeding values of candidate lines

to selection. A collection of 339 genetic resource accessions (CRB339) was subjected

to high-density genotyping using the GenoPea 13.2K SNP Array. Genomic prediction

accuracy was evaluated for thousand seed weight (TSW), the number of seeds per

plant (NSeed), and the date of flowering (BegFlo). Mean cross-environment prediction

accuracies reached 0.83 for TSW, 0.68 for NSeed, and 0.65 for BegFlo. For each

trait, the statistical method, the marker density, and/or the training population size and

composition used for prediction were varied to investigate their effects on prediction

accuracy: the effect was large for the size and composition of the training population but

limited for the statistical method andmarker density. Maximizing the relatedness between

individuals in the training and test sets, through the CDmean-based method, significantly

improved prediction accuracies. A cross-population cross-validation experiment was

further conducted using the CRB339 collection as a training population set and nine

recombinant inbred lines populations as test set. Prediction quality was high with mean

Q2 of 0.44 for TSW and 0.59 for BegFlo. Results are discussed in the light of current

efforts to develop GS strategies in pea.

Keywords: pea (Pisum sativum L.), GenoPea 13.2K SNP Array, genomic selection, marker density, training set,

prediction accuracy

INTRODUCTION

New breeding challenges imposed by rapidly-expanding world population and global climate
change urge crop breeders to develop and utilize more efficient selection approaches. Several
breeding techniques exploiting high-density genotyping data have lately emerged in parallel with
advances in sequencing technologies. Genomic selection (GS) is a revolutionary approach where a
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breeder’s selection is made on the basis of genomic estimated
breeding values (GEBVs) obtained from genome-wide DNA
marker information (Meuwissen et al., 2001). GS also benefits
from novel statistical methods that are proposed for data
under large “p,” small “n” conditions and that so enable the
simultaneous estimation of all marker effects (Jannink et al.,
2010). Genotyping and phenotyping of a training population
allow developing a prediction model that is then used to predict
the performance of a genotyped, non-phenotyped test population
and select superior individuals. Studies conducted on plant
populations have provided evidence that GS can potentially
increase the accuracy of marker-based selection and outperform
phenotypic selection and conventional marker-assisted selection
in terms of gain per unit time and cost (Heffner et al., 2011).
Since the genetic gain is proportional to the prediction accuracy,
prediction accuracy improvement is a major issue when applying
GS. Prediction accuracy has been reported to depend on the
genetic architecture of the trait (Jannink et al., 2010; Burstin et al.,
2015), the number and the distribution of the genetic markers
(Heffner et al., 2011; Poland et al., 2012; Heslot et al., 2013), and
the size (Heffner et al., 2011; Jarquín et al., 2014) and composition
of the training population (Rincent et al., 2012; Charmet et al.,
2014).

Pea (Pisum sativum L.) is a cool-season legume crop grown
essentially for its protein-rich seeds (Burstin et al., 2011) and as a
valuable component of low-input farming systems. Pea selection
has brought important innovations for several agronomic traits
[see Tayeh et al. (2015), for review]. Improving resistance to
biotic and abiotic stresses is now a major target for breeders,
especially in the context of climate change. Genomic prediction
has been evaluated in pea using 367 genetic resource accessions
and 331 gene-based markers from an Illumina GoldenGate SNP
assay (Burstin et al., 2015). New pea genomic resources including
molecular markers, transcript sequences, and comprehensive
genetic maps have been developed recently (Bohra et al., 2014;
Tayeh et al., 2015). The GenoPea 13.2K SNP Array is the largest
genotyping platform currently available with 13204 gene-based
SNP markers (Tayeh et al., in press). It has been used to genotype
12 pea bi-parental mapping populations and subsequently
construct a high-density consensus map comprising 12802 SNP
markers and showing a cumulative length of 794.9 cM Haldane
and a mean inter-marker distance of 0.24 cM (Tayeh et al., in
press).

The present study aimed at re-evaluating genomic prediction
in the pea genetic resource collection previously described in
Burstin et al. (2015) using high-density genotyping information
derived from the GenoPea 13.2K SNP Array. The effects on
the genomic prediction accuracy of (i) the statistical prediction
method, (ii) the density of the genetic markers, and (iii) the size
of the training population and its composition were investigated.
This work is expected to accelerate the implementation of GS in
applied pea breeding programs.

MATERIALS AND METHODS

A collection of 339 accessions (Supplementary Table 1),
hereafter referred to as the CRB339 collection, was defined from

the 372-accession pea genetic resource collection described in
Burstin et al. (2015) and used in this study. Closely-related
accessions were eliminated from the complete set so that the
final genomic relationship matrix can be solved. Genotypes
having no available phenotypic data, a marker missing rate
≥0.1, and/or an heterozygosity ≥0.05 were also discarded. The
CRB339 collection was genotyped with the newly-developed
custom Infinium BeadChip (Illumina, San Diego, CA) GenoPea
13.2K SNP Array as described in Tayeh et al. (in press).
Data were analyzed using the Genotyping Module v1.9.4
of Illumina’s GenomeStudio R© software version 2011.1 (http://
support.illumina.com/array/array_software/genomestudio.ilmn).
When necessary, GenoPlots were manually edited so that
three genotype clusters AA, AB, and BB could be obtained
(Supplementary Figure 1). A qualitative score describing the
clustering profile was given for each marker according to
Supplementary Figure 1. Only data from markers showing
high-quality GenoPlots (score 1; Supplementary Figure 1) and
having been reported of high mapping quality on individual and
consensus maps from bi-parental populations in Tayeh et al.
(in press) were considered (n = 9824 markers). The CRB339
collection was used to test the effect of the statistical method, the
marker density, and the training population size and composition
on genomic prediction accuracy. The full list of markers used
for genomic prediction is provided in Supplementary Table 3.
Missing data were submitted to a k-nearest neighbor imputation
(Troyanskaya et al., 2001) using a custom script. To visualize
their distribution on the pea genome, markers were plotted
on the consensus genetic map (Tayeh et al., in press) using the
plotGenMap function from the synbreed package (Wimmer
et al., 2012) of the R environment (R_Core_Team, 2015). Linkage
disequilibrium (LD) r2 values were measured using the pairwise
LD function from the same package and plotted against pairwise
genetic distances between markers according to the consensus
map (Tayeh et al., in press). The decay of r2 with distance
was fitted using Hill and Weir’s expectation of r2 between
adjacent sites (Hill and Weir, 1988), similar as in Marroni et al.
(2011). A set of 746 advanced recombinant inbred lines (RILs)
derived by single-seed descent from nine different bi-parental
crosses (Pop2-10; Supplementary Table 2) and also genotyped
with the GenoPea 13.2K SNP Array (Supplementary Table 3;
Tayeh et al., in press) was finally used as a test population in a
cross-population cross-validation experiment to evaluate the
prediction ability with the applied statistical methods and the
effect of the training population on the accuracy of genomic
predictions.

Phenotypic data for three traits, including the thousand-seed
weight (TSW), the number of seeds per plant (NSeed), and the
date of beginning of flowering (BegFlo; expressed as the sum of
daily temperatures above 0◦C between sowing and flowering of
the first node), were collected from field trials at Dijon-Epoisses
(47.23618N, 5.09796E) in 2003 and 2007 (see Burstin et al., 2015
for details) for the CRB339 population (Supplementary Table 1)
and in 2011 for the RIL populations (Supplementary Table 2).
The 2003 and 2007 field conditions were contrasted as regards to
plant density and to climate (Burstin et al., 2015). As described
in Burstin et al. (2015), the phenotypic scores from the two
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randomly-replicated block field trial of 2007 were analyzed by a
two-way ANOVA with a genotype and a block effect to obtain
mean phenotypic values for the considered accessions (proc
GLM, SAS Institute). One-block design trials with replicated
controls were performed in 2003 and 2011; the data for these 2
years were used to evaluate the cross-year and cross-population
goodness of fit of the models based on the phenotyping of 2007,
respectively.

Five different marker-based statistical prediction algorithms
were applied for genomic prediction of the phenotypic traits:
Kernel Partial Least Squares Regression (kPLSR), Least Absolute
Shrinkage and SelectionOperator (LASSO), Genomic Best Linear
Unbiased Prediction (GBLUP), BayesA, and BayesB using the
following R packages: pls (Mevik et al., 2012; kPLSR), glmnet
(Friedman et al., 2010; LASSO), rrBLUP (Endelman, 2011;
GBLUP), and synbreed (Wimmer et al., 2012; BayesA and
BayesB). A probability (π) of 0.95 was used for BayesB. The
number of latent variables k for kPLSR and the optimum value
for the tuning parameter t in LASSO were determined through
10-fold cross-validations as the values minimizing the Mean
Squared Error of Prediction (MSEP). Considering results from
Burstin et al. (2015) indicating that structure correction did not
improve the efficiency of phenotype prediction, no correction
for the population structure effect was made in this study before
applying the statistical methods.

The training population size and the number of markers were
varied to investigate their effects on prediction accuracy via cross-
validation following 200 repetitions. Within each repetition, the
training population size was varied as follows: 240, 210, 180, 150,
120, 90, 60, 30, and 15 accessions. The same test set was used with
all training populations. The training sets were randomly selected
and the test population size was fixed at 99.

To assess the effect of marker density on the quality of
prediction, evenly-distributed SNP subsets of different sizes
were selected following the recommendation of Spindel et al.
(2015). The number of markers was varied in each repetition
as follows: 9824, 2945, 1473, 982, 737, 589, 491, 421, and 369;
9824 corresponds to the total number of SNP markers and
2945 corresponds to the number of markers representative of
single bins on the consensus map (Tayeh et al., in press). The
marker with the highest minor allele frequency (MAF) within
each bin was selected. Smaller marker subsets, viz. 1473–369,
were obtained out of the 2945-marker list: a single marker
was retained every 2, 3, 4, 5, 6, 7, or 8 successive bins,
respectively.

Predictions based on randomly-sampled training sets were
also compared with those obtained from optimized training
sets using the method proposed by Rincent et al. (2012).
Comparisons were made for all traits with different training set
sizes (240, 210, 180, 150, 120, 90, 60, 30, and 15 accessions)
following 50 repetitions. As described above, the same test
set (n = 99 accessions) was used for all training set
sizes within each repetition. Each optimized training set was
generated after 2000 iterations devoted to maximize the expected
reliability of predictions from an initial randomly-sampled
set. Accessions were replaced iteratively in the training set
ongoing improvement. For a training set size of 240, and as in

Rincent et al. (2012), the mean of the generalized coefficients
of determination of the contrast (CDs) between each accession
not included in the training set and the mean of the complete
CRB339 collection, referred to as CDmean, was calculated at
each iteration. The training set corresponding to the highest
CDmean across all iterations was finally retained. For smaller
training sets (210–15 accessions), CDs were calculated between
each accession not included neither in the training set nor in the
test set and the mean of the CRB339 collection. Variance ratios
(λ; Rincent et al., 2012) of 0.01 or 0.4 were tested to calculate
CDs as heritabilities for TSW, NSeed, and BegFlo from the 2007
field trial were 0.98, 0.71, and 0.99, respectively (Burstin et al.,
2015).

In order to evaluate the performance of the genomic
prediction, the following accuracy statistics were calculated for
each trait: (i) the phenotypic prediction accuracy, expressed as
the Pearson correlation between phenotypic data obtained for the
test set in years 2003 and 2007, and (ii) the genomic prediction
accuracy, expressed as the Pearson correlation between GEBVs
estimated for the test set and the observed phenotypic values.
Besides accuracies, three other parameters were calculated: the R2

and Q2 coefficients, evaluating the goodness of fit of the model
to data from the training and test sets, respectively, and the
MSEP (Burstin et al., 2015). The mean over all repetitions and
standard deviation were calculated for each parameter in each
experiment.

As predictions using training and test sets’ data from the
same year or the same population may bias the evaluation of the
model performance, and in order to meet realistic conditions,
genomic predictions were undertaken across years (2003 and
2007 or 2007 and 2011) and/or across populations. In this latter
case, the CRB339 collection was taken as a training set and
the 746-RIL population (Supplementary Table 2) as a test set.
Only SNP markers polymorphic in at least one RIL bi-parental
population were used in the cross-population experiment (n =

9700 out of 9824 markers; Supplementary Table 3). Prediction
models were trained with the five above-cited statistical methods
using, as training populations, all or subsets (250, 150, or 50
accessions) of the genetic resource collection. The sampling
of the training sets comprising 250, 150, or 50 accessions
was made using the CDmean-based method (λ = 0.01) with
modifications: only the contrast between each accession not
included in the training set and the complete CRB339 collection
was considered for the selection of the optimized training set; the
contrast with RIL populations was not taken into account by the
applied script.

RESULTS

The newly-developed GenoPea 13.2k SNP array (Tayeh et al.,
in press) was successfully used to genotype a collection
of 339 diverse pea accessions, the CRB339 collection
(Supplementary Table 1). Of the 9997 SNP markers reported
to be of high-quality across all 12 bi-parental RIL populations
in Tayeh et al. (in press), 9824 markers also exhibited high-
quality clustering (score 1; Supplementary Figure 1) when
used to genotype this collection (see Materials and Methods;

Frontiers in Plant Science | www.frontiersin.org 3 November 2015 | Volume 6 | Article 941

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Tayeh et al. Genomic Prediction in Pea

Supplementary Tables 1, 3). The percentage of missing data
was 0.28% and 483 (4.83%) markers had a MAF below 5%
(Supplementary Table 3). Of the total 9824 markers, 9723
were placed on the consensus map from Tayeh et al. (in
press; Supplementary Table 3). As shown in Figure 1, these
markers cover the seven pea LGs with 984 (LG I) up to
1768 (LG III) markers per LG and a mean density per cM
ranging between 10.56 (LG I) and 13.06 (LG III) markers.
Figure 2 illustrates the genetic relationships among the
accessions composing the CRB339 collection as revealed by
the GenoPea 13.2k SNP array. A clustering according to
passport data (Figure 2 and Supplementary Table 1) was
generally noted and few accessions were isolated. A principal
coordinates analysis was also implemented to evaluate the
genetic diversity in the collection under scrutiny: 26.3% of
the genetic variance was explained by the two first principal
components (Supplementary Figure 2). For all LGs, LD in the
CRB339 collection rapidly declined with increasing genetic
distances (Supplementary Figure 3); LD decayed below r2 = 0.2
at less than (or around) 0.5 cM.

A wide range of phenotypic variation was observed for TSW,
NSeed, and BegFlo: in 2007, TSW, NSeed, and BegFlo ranged
between 35.6 and 472.5 g, 11.4 and 268.6 seeds, and 540 and
1301 degrees × days, respectively. Broad-sense heritabilities
were estimated at 0.98 (TSW), 0.71 (NSeed), and 0.99
(BegFlo; Burstin et al., 2015). The highest within-year within-
population mean genomic prediction accuracies, according to
the applied statistical methods (see Materials and Methods) and
following 200 cross-validations with 240-accession randomly-
selected training sets, reached 0.86 for TSW, 0.73 for NSeed,
and 0.79 for BegFlo (Table 1 and Supplementary Table 4).
Except for TSW, genomic prediction accuracies were equal or
higher than phenotypic prediction accuracies calculated as the

mean of the Pearson correlation between phenotypic values
from 2003 to 2007 (See Materials and Methods; Table 1).
The predictive performances of the kPLSR, GBLUP, BayesA,
and BayesB methods were almost equivalent whereas LASSO
performed less well (Table 1). No significant difference in
accuracy could be noted whether markers with low MAF were
considered to train the prediction model or not (Supplementary

Table 4).
The quality of the prediction models (Q2) decreased with the

reduction of the size of the training sets from 240 to 15 accessions
(Figure 3A and Supplementary Table 4). MaximumQ2 with 240
and 15-accession training populations were 0.74 and 0.44 for
TSW, 0.52 and 0.18 for NSeed, and 0.61 and 0.23 for BegFlo,
respectively. kPLSR and GBLUP were the best methods especially
with smaller training set sizes.

Decreasing the number of markers from 9824 to 2945
by retaining only a single marker per unique map position
(see Materials and Methods) did not degrade the genomic
prediction accuracies for any of the three traits (Figure 3B and
Supplementary Table 5).Q2 slightly decreased when the number
of markers was further reduced but less dramatically than in
the case of training set size variation (Figure 3). Considering
the best statistical method in each case, Q2 decay was 11.8% for
TSW (BayesA), 17.3% for NSeed (kPLSR), and 9.3% for BegFlo
(BayesA) when the marker number decreased from 9824 to 369.
The best prediction models at low marker density were kPLSR,
GBLUP, and BayesA.

The effect of the composition of the training set on the
prediction quality was tested using training sets sampled
either randomly or using an optimization protocol based on
CDmean (Rincent et al., 2012). Different training set sizes
were also considered (see Materials and Methods). The choice
of the training set based on CDmean permitted a significant

FIGURE 1 | Distribution of the SNP markers used to genotype the CRB339 collection on the pea consensus genetic map. Information on the genetic

positions of 9723 SNP markers are available and presented (see Tayeh et al., in press; and Supplementary Table 3).
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FIGURE 2 | Genetic dissimilarity amongst the 339 pea accessions composing the genetic resource collection. Two-dimensional networks were

constructed using the R package, network (Butts, 2008). Each accession is represented by a dot. Pairs of accessions with a genomic relationship coefficient >0.2 are

linked. Major classes for the use type (A), the population type (B), the sowing type (C), and the geographic origin (D) are color-coded. Uncolored dots correspond to

accessions that were not assigned to any of the classes.

improvement in prediction accuracy and so,Q2 (Supplementary

Table 6 and Supplementary Figure 4). For instance, a mean
Q2 of 0.84 was obtained for BegFlo using optimized training
sets of 240 accessions whereas mean Q2 did not exceed 0.6 with
randomly-sampled training sets of the same size (Figure 4 and
Supplementary Table 6). Higher prediction quality was notable
whatever the training set size was and particularly in the case of
training sets of reduced sizes (Figure 4, Supplementary Figure 4

and Supplementary Table 6). No difference could be observed
when using a variance ratio λ of either 0.01 or 0.4 to calculate
CD according to the method proposed by Rincent et al. (2012;
Supplementary Table 6 and Supplementary Table 7).

Cross-predictions using models trained on the CRB339
collection to predict the performances of 746 RILs arising
from nine crosses, all having both parental lines included
in the genetic resource collection (Supplementary Table 1

and Supplementary Table 2) were also undertaken. Genotypic
information were obtained from 9700 common high-quality SNP
markers (Supplementary Table 3). Furthermore, phenotypic
data for the CRB339 collection and the RILs were scored
at the same location but in different years: 2007 and 2011,

respectively. NSeed could not be successfully cross-predicted
(Supplementary Table 8). For TSW and BegFlo, when the
complete CRB339 collection was included in the training
set, maximum mean Q2 of 0.44 for TSW with BayesA and
0.59 for BegFlo with BayesB were obtained (Figure 5 and
Supplementary Table 8). In case of TSW, Q2 greatly to slightly
increased or decreased with the reduction of the training set size
from 339 to 50 accessions, depending on the statistical algorithm
(Figure 5A). For BegFlo, Q2 decreased with all algorithms;
Q2 decay was 45.2% with GBLUP and reached 84.7% with
BayesB (Figure 5B). kPLSR and BayesA were consistently the
best methods for TSW and BegFlo prediction (Figure 5 and
Supplementary Table 8).

DISCUSSION

GS is currently revolutionizing plant breeding with a promise
for significant gain per unit time and cost in crop improvement
programs (Heffner et al., 2010, 2011) and is experiencing an
intense scientific research activity. Genomic prediction studies
in plant species including wheat (Heffner et al., 2011; Poland
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TABLE 1 | Prediction accuracy of TSW, NSeed, and BegFlo within the CRB339 collection.

Phenotypic prediction Genomic prediction accuracy 2007_2007 Genomic prediction accuracy 2007_2003

accuracy
kPLSR LASSO GBLUP BayesA BayesB kPLSR LASSO GBLUP BayesA BayesB

TSW Mean 0.93 0.86 0.82 0.86 0.86 0.86 0.83 0.79 0.82 0.83 0.83

stdev 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03

NSeed Mean 0.69 0.73 0.66 0.73 0.73 0.72 0.67 0.64 0.67 0.68 0.67

stdev 0.06 0.04 0.05 0.04 0.04 0.04 0.05 0.06 0.06 0.05 0.05

BegFlo Mean 0.79 0.78 0.76 0.78 0.78 0.79 0.64 0.63 0.64 0.64 0.65

stdev 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.06 0.05 0.05 0.05

Mean and standard deviation (stdev), across 200 repetitions, of the phenotypic prediction accuracy and of within- and across-year genomic prediction accuracies are provided for each

trait.

et al., 2012; Heslot et al., 2013; Charmet et al., 2014), barley
(Lorenz et al., 2012), maize (Rincent et al., 2012; Massman
et al., 2013), rye (Wang et al., 2014), rice (Iwata et al., 2015;
Spindel et al., 2015), sugarcane (Gouy et al., 2013), loblolly pine
(Resende et al., 2012b), eucalyptus (Resende et al., 2012a), pea
(Burstin et al., 2015), and soybean (Jarquín et al., 2014) have
been published in the past 5 years. But, for most of these species,
especially pea, efforts are still needed to provide a full insight into
the prospects of GS for polygenic traits of agronomic interest
and the factors that determine its success. In a previous paper,
the genomic predictability of pea TSW, NSeed, and BegFlo was
inspected with a limited number of SNP markers and have
shown encouraging accuracies (Burstin et al., 2015). One of
the objectives of the present work was to assess the genomic
prediction accuracy of the same traits when effects of up to 9824
SNP markers can be estimated. As in Burstin et al. (2015), TSW
was better predicted than BegFlo and NSeed. When the GEBVs
from 2007 were correlated to phenotypes from 2003, to avoid any
inflation effect related to genotype-by-year interactions (Burstin
et al., 2015), genomic prediction accuracies were high for all traits
and reached 0.83 for TSW, 0.68 for NSeed, and 0.65 for BegFlo
(Table 1). Within- and cross-environment prediction accuracies
(Table 1 and Supplementary Table 4) were sufficiently high to
merit considering the implementation of GS in pea breeding
programs, especially given the availability of a high-density SNP
genotyping platform such as the GenoPea 13.2K SNP Array
(Tayeh et al., in press), decreasing genotyping costs, and static
or increasing phenotyping costs (Jannink et al., 2010). According
to the literature, the genomic prediction depends on many
factors that affect more or less importantly the final accuracy.
Besides the heritability and the architecture of the trait, the
training population size, the relatedness between individuals
from the training and test populations, the LD decay rate,
the genotyping platform, the genetic marker density, and the
statistical prediction method are all influencing factors. The
impact of some of these on the genomic prediction in pea was
evaluated in this study and results are discussed below.

The Statistical Prediction Method
Independently of the training population size or the marker
number, and except for LASSO, the prediction accuracy within

the CRB339 collection was not or only modestly influenced
by the choice of the statistical method (Figure 3). A similar
conclusion was reached in previous studies in different plant
species (Heffner et al., 2011; Lorenz et al., 2012; Resende et al.,
2012b; Gouy et al., 2013; Charmet et al., 2014; Jarquín et al., 2014)
while using multiple models for comparison. LASSO performed
differently than other methods: it has generally shown an inferior
performance for all traits and conditions (Figure 3). The inferior
performance of LASSO was also underlined in Burstin et al.
(2015). This suggests that either the utilization of the LASSO
requires optimization to ensure a better selection of its variables
(and so of the most relevant SNPs) or that the method is not
adequate for the studied traits possibly being not controlled by
major genes. kPLSR was not widely used in genomic prediction
so far; it was only applied to predict the grain shape in rice (Iwata
et al., 2015) according to the authors of the corresponding study.
As in Iwata et al. (2015), this method yielded the largestQ2 values
in most cases and appeared as a method of choice for future
applications in pea. Contrary to within-population predictions,
the effect of the statistical methods on the prediction accuracy
was more pronounced in cross-population predictions, especially
in case of TSW (Figure 5). Again, kPLSR, with BayesA, yielded
the highest accuracies across all training set sizes.

The Genotyping Platform and Marker
Density
The prediction quality, expressed as Q2, attained 0.74 for TSW,
0.52 for NSeed, and 0.60 for BegFlo with BayesA and thus
exceeded values obtained with the genetic resource collection in
Burstin et al. (2015) where less marker density was used: the
number of markers was increased from 331 SNP markers in
Burstin et al. (2015) to 9824 SNPs in this study. Q2 values for
TSW, NSeed, and BegFlo were 21.3, 92.6, and 33.3% higher in
this study, respectively, using BayesA (Supplementary Table 5)
and were still 6.6, 55.6, and 20% higher when the number of
markers was reduced to 369 (Supplementary Table 5) which is
equivalent to the number from Burstin et al. (2015). This suggests
that the gain in accuracy observed for all three traits using either
all (n = 9824) or just a subset (n = 369) of the SNP markers
from the GenoPea 13.2K SNP Array was mainly due to the
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FIGURE 3 | Effect of the calibration set size (A) and marker density (B) on the prediction quality of TSW, Nseed, and BegFlo of the CRB339 collection.

Nine different tests per parameter were conducted. For each trait and each parameter, means and standard deviations of Q2 resulting from five statistical methods

(see color codes) were used to construct the corresponding plot.

even distribution of markers across LGs (Figure 1). Similarly,
higher accuracies were obtained with markers derived from the
genotyping-by-sequencing platform compared to markers from
the Diversity Array Technology platform in two sets of wheat
breeding lines (Poland et al., 2012; Heslot et al., 2013). These
were not simply due to higher marker density. Even with a
comparable number of markers, the genotyping-by-sequencing
platform led to a significant gain in accuracy for three out of
the eight total traits predicted in Poland et al. (2012) and Heslot
et al. (2013). Results from the present study demonstrated that:
(i) the GenoPea 13.2K SNP Array is a valuable source of markers
for GS programs; (ii) using the full number of markers (9824)
do not bring any noise related to marker position/redundancy
as conserving only one marker per bin position yielded similar
or slightly lesser accuracies (Figure 3B); and (iii) despite the
high LD decay rate over the pea LGs (Supplementary Figure 3),
a limited number of evenly-distributed markers permit to
predict important traits such as TSW, NSeed, and BegFlo
with remarkable accuracies, maybe due to the structure of the
collection. A limited impact of reducing the number of markers
on prediction accuracy was also observed in wheat; only 10%
accuracy loss was noted when reducing the number of markers

from 1158 to 192 (Heffner et al., 2011). Likewise, on average,
reducing marker number, respectively, from 73147 to 7142 and
from 1023 to 384 did not reduce accuracy in a six-row barley
breeding germplasm (Lorenz et al., 2012) and in a collection of
advanced inbred rice breeding lines (Spindel et al., 2015).

The Training Population Size and
Composition
Reducing the training set size up to 15 accessions resulted
in a dramatic decrease in the prediction accuracy of all three
traits in this study (Figure 3A and Supplementary Table 4). Q2

decreased of 0.06–0.08 for TSW (7.9–12.6%), 0.07–0.11 for NSeed
(12.9–26%), and 0.07–0.09 for BegFlo (11.2–16.3%) when the
population size was reduced two-fold from 240 to 120 accessions.
Q2 decays were at least 39.7 (TSW, GBLUP), 65.2 (NSeed,
kPLSR), and 61% (BegFlo, kPLSR) when comparing results from
experiments using 240 and 15-accession training sets. Similar
observations were previously made in dairy cattle (VanRaden
et al., 2009) or other plant (Heffner et al., 2011) GS experiments
indicating that the reduction of the training population size
negatively affect the estimation of marker effects and significantly
deteriorate the prediction quality. Optimizing the sampling of
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FIGURE 4 | Improvement of the prediction quality of TSW, NSeed, and BegFlo within the CRB339 collection with training sets sampled using the

CDmean-based method. For each trait, mean Q2 obtained with the kPLSR method for nine different training set (train) sizes are shown. Two methods to select the

training sets were applied: random sampling and CDmean-based sampling (Rincent et al., 2012). Fifty repetitions were made in each case. Data from this figure were

obtained using a variance ratio of 0.01 to calculate CD in the CDmean-based method.

FIGURE 5 | Illustration of the quality of genomic predictions of TSW (A) and BegFlo (B) of RILs from nine populations based on models trained on 339,

250, 150, or 50 accessions from the CRB339 collection. Five statistical methods were applied and genotypic information from 9700 SNP markers were

considered. Mean Q2 and standard deviations used to construct this figure were obtained based on cross-validations with 50 repetitions.

the training population through the CDmean-based method
proposed by Rincent et al. (2012) significantly improved the
prediction accuracy for all traits and with all training set
sizes (Figure 4 and Supplementary Figure 4). This method
guarantees the selection of the less-related individuals in the
training set while considering the whole network of kinship thus
maximizing the relatedness between individuals in the training
and test sets (Rincent et al., 2012). Taken altogether, these results
indicated that the training set sampling based on CDmean is an
important step to include in future GS schemes and also pointed
out the fact that large training populations would be necessary
to guarantee maximum accuracies. With SNP-rich genotyping
tools becoming available, such as the GenoPea 13.2K SNP Array,
creating a public database where all users of these resources could

deposit genotyping data may be very useful for future genomic
prediction efforts by the pea community. Limitation, however,
would come from phenotyping. International projects devoted to
large-scale phenotyping experiments should enhance publically
accessible data. With such tools available, custom training sets
would be easily selected by each partner to retrain the model
appropriate for his population candidate to selection. Such
efforts should be coupled with initiatives to develop statistical
methods that take into account the genotype-by-environment
interactions.

Accuracy in Cross-population Prediction
When applied, GS will be used to predict the phenotypes of
new breeding lines rather than perform cross-validations on
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individuals from the same panels from which the training
sets were sampled. It was therefore of interest to assess the
potential of the models trained on the CRB339 collection to
predict the phenotypes of advanced RILs especially as parents
of all nine RIL populations were included in the genetic
resource collection. Similar cross-validation experiments are
described in the literature with contradictory results. While
cross-validation between sugarcane panels from Reunion and
Guadeloupe yielded promising correlations ranging from 0.13
to 0.55 (depending on the trait; Gouy et al., 2013), models
trained on one wheat population did not predict phenotypes
in a different population or if so, low accuracies were noted
(Charmet et al., 2014). Close-to-zero prediction accuracies were
obtained when a model developed for eucalyptus CENIBRA
population was used to predict growth and wood quality trait
phenotypes in FIBRIA population or vice versa (Resende et al.,
2012a). Average Q2 values obtained by cross-population cross-
validation for TSW and BegFlo in this study were relatively
high. Considering the training set of maximum size (n = 339
accessions), maximum mean Q2 was 0.44 for TSW (BayesA)
and 0.59 for BegFlo (BayesB). However, it was -0.16 for
Nseed (LASSO). This is consistent with high heritability and
less genotype-by-environment interaction reported for TSW
and BegFlo than for NSeed (Burstin et al., 2015). Moreover,
exceptional environmental conditions affecting yield-related
traits may have occurred in 2011. Correlations of estimated
GEBVs with phenotypic data from other environments should
be next examined in an attempt to shed light on this issue.

In conclusion, prediction results were very promising for
future implementations of GS in pea breeding programs provided
that the training populations will be chosen carefully and that
the relatedness between training and test sets will be optimized.
The GenoPea 13.2K SNP Array (Tayeh et al., in press) appeared
to provide enough high-quality markers for genomic prediction.
Genomic predictions were evaluated on an individual trait basis
in this study, while a breeder’s goal is to improve an overall
performance (net merit), and so a combination of economically-
and agriculturally-important traits. It will thus be interesting to
define economic indices combining the most important pea traits
and assay cross-population cross-prediction based on the net
merit. More traits, populations, and environments are also to be
considered in the future.
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Supplementary Table 1 | List of the 339 pea accessions composing the

genetic resource collection used in this study. See Burstin et al. (2015) for

additional information. Data regarding the parents of RIL populations are shaded

in blue.

Supplementary Table 2 | Description of the 9 bi-parental RIL populations

representing the test set used in the cross-population cross-validation

experiment.

Supplementary Table 3 | Full list of SNP markers used in genomic

prediction. The complete set of markers for the CRB339 collection comprised all

9,824 SNP markers. Markers used in the cross-population cross-prediction

experiment between the genetic resource collection and RIL populations are in

bold. The polymorphic RIL population(s) for each marker is(are) indicated. Full

marker description is available in Tayeh et al. (in press).

Supplementary Table 4 | Impact of the size of the training population on

the performance of kPLSR, LASSO, GBLUP, BayesA, and BayesB to

predict TSW, NSeed, and BegFlo in the CRB339 collection. The predictive

performances of the statistical methods were assessed under two conditions: A,

including all 9,824 SNP markers, and B, excluding markers with MAF below 5%.

Two hundred repetitions were applied to assess the quality of the trained models

in each case and mean values for the different prediction evaluation parameters

are indicated. Standard deviations (stdev) are provided.

Supplementary Table 5 | Impact of the genetic marker density on the

performance of kPLSR, LASSO, GBLUP, BayesA, and BayesB to predict

TSW, NSeed, and BegFlo in the CRB339 collection. Two hundred repetitions

were applied to assess the quality of the trained models in each case and mean

values for the different prediction evaluation parameters are indicated. Standard

deviations (stdev) are provided.

Supplementary Table 6 | Comparison of the predictive performances of

kPLSR, LASSO, GBLUP, BayesA, and BayesB with training sets sampled

either randomly or based on CDmean. Nine different training set (train) sizes

were considered. All three phenotypic traits, viz. TSW, NSeed, and BegFlo, were

predicted following 50 repetitions within the CRB339 collection. A variance ratio of

0.01, corresponding to a heritability nearing 1, was used for the CDmean-based

method. Mean and standard deviation values for the different prediction evaluation

parameters are provided.

Supplementary Table 7 | Comparison of the predictive performances of

kPLSR, LASSO, GBLUP, BayesA, and BayesB with training sets sampled

either randomly or based on CDmean. Nine different training set (train) sizes

were considered. All three phenotypic traits, viz. TSW, NSeed, and BegFlo, were

predicted following 50 repetitions within the CRB339 collection. A variance ratio of

0.4, corresponding to a heritability of ca. 0.71, was used for the CDmean-based

method. Mean and standard deviation values for the different prediction evaluation

parameters are provided.

Supplementary Table 8 | Quality of cross-population prediction of TSW,

NSeed, and BegFlo. The CRB339 collection and RIL populations were used as

training and test sets, respectively. Mean Q2 and standard deviation (stdev),

across 50 repetitions, are provided for each trait, statistical prediction method,

and training set size.

Supplementary Figure 1 | Examples of GenoPlots observed after

genotyping a large pea genetic resource collection, including the CRB339

collection, using the GenoPea 13.2K SNP Array. Each genotype sample is

represented by a dot. Genotypes are called using their signal intensity (Norm R)

and allele frequency (Norm Theta) relative to canonical cluster positions. Color

codes in the graphics refer to: red, AA (homozygous); purple, AB (heterozygous);

and blue, BB (homozygous) genotypes. The number at the top right of each

GenoPlot indicates the score given for all SNPs showing similar number and

position of clusters.
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Supplementary Figure 2 | Principal coordinates analysis on the distance

matrix of the CRB339 collection illustrating dissimilarity amongst

accessions. Major classes for the use type (A), the population type (B), the

sowing type (C), and the geographic origin (D) are color-coded.

Supplementary Figure 3 | Linkage disequilibrium in the CRB339 collection.

Each plot represents a single LG where pairwise r2 values (Y-axis) and genetic

distances in cM Haldane between all markers (X-axis) were plotted. Regression

lines in red are based on Hill and Weir (1988). The plots displayed in small

windows are zoom views of LD decay for maximum inter-marker distance of

10 cM. Red vertical lines were drawn at 0.5 cM.

Supplementary Figure 4 | Improvement of the prediction quality of TSW

(A), Nseed (B), and BegFlo (C) in the CRB339 collection with training sets

sampled using the CDmean-based method. Results shown were obtained

with the kPLSR method. Different training set sizes (train) were used: 240, 210,

180, 150, 120, 90, 60, 30, and 15 accessions. Boxplots illustrate the distribution

of the Q2 values from 50 repetitions; mean values are indicated in red above each

boxplot.
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