
HYPOTHESIS AND THEORY
published: 31 October 2015

doi: 10.3389/fpls.2015.00947

Edited by:
Girdhar Kumar Pandey,
University of Delhi, India

Reviewed by:
Nabil I. Elsheery,

Tanta University, Egypt
Hao Peng,

Washington State University, USA

*Correspondence:
Yashwanti Mudgil

ymudgil@gmail.com;
ymudgil@botany.du.ac.in

Specialty section:
This article was submitted to

Plant Physiology,
a section of the journal

Frontiers in Plant Science

Received: 15 August 2015
Accepted: 17 October 2015
Published: 31 October 2015

Citation:
Khatri N and Mudgil Y (2015)

Hypothesis: NDL proteins function
in stress responses by regulating

microtubule organization.
Front. Plant Sci. 6:947.

doi: 10.3389/fpls.2015.00947

Hypothesis: NDL proteins function
in stress responses by regulating
microtubule organization
Nisha Khatri and Yashwanti Mudgil*

Plant Molecular Biology Lab, Department of Botany, University of Delhi, New Delhi, India

N-MYC DOWNREGULATED-LIKE proteins (NDL), members of the alpha/beta hydrolase
superfamily were recently rediscovered as interactors of G-protein signaling in
Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still
elusive, in animals these proteins play protective role in hypoxia and expression is
induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal
counterpart N-MYC DOWNREGULATED GENE (NDRG) suggests similar functions in
animals and plants. It is well established that stress responses leads to the microtubule
depolymerization and reorganization which is crucial for stress tolerance. NDRG is a
microtubule-associated protein which mediates the microtubule organization in animals
by causing acetylation and increases the stability of α-tubulin. As NDL1 is highly
homologous to NDRG, involvement of NDL1 in the microtubule organization during plant
stress can also be expected. Discovery of interaction of NDL with protein kinesin light
chain- related 1, enodomembrane family protein 70, syntaxin-23, tubulin alpha-2 chain,
as a part of G protein interactome initiative encourages us to postulate microtubule
stabilizing functions for NDL family in plants. Our search for NDL interactors in G
protein interactome also predicts the role of NDL proteins in abiotic stress tolerance
management. Based on published report in animals and predicted interacting partners
for NDL in G protein interactome lead us to hypothesize involvement of NDL in the
microtubule organization during abiotic stress management in plants.

Keywords: N-MYC DOWNREGULATED GENE, N-MYC DOWNREGULATED-LIKE, phospholipase D, phosphatidic
acid, microtubule assembly, microtubule-associated protein, abiotic stress

INTRODUCTION

An average estimated yield loss by abiotic stress is more than 50% across the world, caused mainly
by salinity, drought and temperatures (Boyer, 1982). Matter of concern is that global population is
likely to reach 10 billion by 2050 (almost doubled) (Tilman et al., 2002). So the generation of stress
tolerant plants is the need of the hour (Smedema et al., 2000). Salinity is the most destructive and
complex stress, affects more than 45 million hectares of irrigated land worldwide, in INDIA about
8.6 million hectare area is affected by salinity (Pathak, 2000).

Right from the beginning of seed germination till crop yield, salt stress affects plant adversely via
ionic imbalance leading to toxicity, nutritional disorder, hampering metabolic processes, osmotic
stress leading to membrane disorganization, reduction of cell divisionand expansion, and oxidative
stress (Hasegawa et al., 2000; Duan et al., 2015; Khare et al., 2015).
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Although, the role of lipids in salt stress is not well understood,
it has been indicated that expression of several phospholipase-D
(PLD) genes is induced by salt stress (Katagiri et al., 2001; Hong
et al., 2010). Hydrolysis product of PLD, phosphatidic acid (PA)
is shown to bind and activate mitogen-activated protein kinase
6 (MPK6), which in turn phosphorylates salt overly sensitive
1 (SOS1) transporter in vitro (Figure 1; Yu et al., 2010). The
SOS1 gene encodes a plasma membrane Na+/H+ antiporter,
playing protective role in saline environment. These findings have
indicated a link between lipid signaling, MAPK cascades, and
salt stress tolerance in plants (Morris, 2010). Plant responses
to salt stress include osmolyte biosynthesis, water flux control,
and transport of ions for re-establishment of homeostasis and
microtubule depolymerization and reorganization (Wang and
Nick, 2001; Lü et al., 2007; Wang et al., 2007, 2010). Although all
of the events are equally important for cell survival, microtubule
depolymerization and reorganization are believed to be essential
for plant survival under abiotic stress.

NDRG AS A
MICROTUBULE-ASSOCIATED PROTEIN
(MAP)

Microtubule organization is regulated by MAPs (Dixit and Cyr,
2004; Sedbrook, 2004). In animals, several MAPs have been
identified and characterized. Detailed analysis of human N-MYC
DOWNREGULATED GENE (NDRG) gene family showed that
the family comprises of four members (NDRG1-4), each sharing

57–60% amino acid sequence similarity (Qu et al., 2002). Among
these, only NDRG1 has been reported to be a MAP which
participates in the spindle checkpoint in animals (Kim et al.,
2004).

Microtubule dynamics is affected by an array of reversible
post-translational modifications including acetylation,
phosphorylation, and palmitoylation (Piperno et al., 1987;
Westermann and Weber, 2003; Zhang et al., 2003). Acetylated
tubulin is one of the major characteristics of stabilized
microtubule structure and may contribute to regulating
microtubule dynamics (Westermann and Weber, 2003; Parrotta
et al., 2014). Mammalian NDRG1 knockdown cell line have
decreased accumulation of acetylated -tubulin and disrupted
spindle fiber formation (Figure 1; Kim et al., 2004). Moreover,
growing body of evidences also show that NDRG1 recruits on
recycling endosomes in the Trans Golgi Network by binding to
phosphatidylinositol 4-phosphate and interacts with membrane
bound Rab4aGTPase (Kachhap et al., 2007). Kachhap et al.
(2007) used a prostate cancer cell line to show that NDRG1 is a
novel effector for the small GTPase, Rab4a, and is important in
recycling E-cadherin in proliferating cells.

STRUCTURAL SIMILARITIES BETWEEN
NDRG1 AND NDL1

In plants, NDL proteins were first reported in sunflower
(SF21) as stigma and transmitting tissue cell specific proteins
(Kräuter-Canham et al., 1997). Thereafter, studies on SF21

FIGURE 1 | Diagrammaticrepresentation of the signaling in abiotic stress and microtubule responses. (A) N-MYC DOWNREGULATED GENE (NDRG1)
knock-down human mammary epithelial cells (hNMECs) shows decrease in tubulin acetylation as compared to cells having wild type levels of NDRG1(Kim et al.,
2004). (B) Abiotic stress activates G-protein-coupled receptors (GPCRs; Yadav and Tuteja, 2011), phospholipase-Dα1 (PLDα1) interacts with activated Gα subunit
(Zhao and Wang, 2004); PLD hydrolyzes membrane lipids to generate phosphatidic acid (PA). PA binds to MAP65-1, resulting into microtubule bundling and
polymerization which helps in salt tolerance (Zhang et al., 2012) it also activates MPK6, which further phosphorylates SOS1 resulting into activation of SOS pathway
(Yu et al., 2010). PA may interact with NDL1, interactor of Gβγ dimer and possible downstream regulator of microtubules. ABA production during cold and drought
stress results into steeply oblique and disrupted microtubules, respectively, (Wang and Nick, 2001; Pollock and Pickett-Heaps, 2005). Solid lines depicts confirmed
interactions, dotted line depicts hypothesized interactions
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proteins identified it as a small gene family with putative
role as a signaling molecules in pollen-pistil interaction.
Across plant species, SF21 gene has been reported in dicots
(Lycopersicon esculentum, Arabidopsis thaliana) monocots
(Oryza sativa) (Lazarescu et al., 2006), gymnosperms as
well as in the moss, physcomitrella patens (Lazarescu et al.,
2010). Arabidopsis NDL gene family has three members
NDL1, NDL2, and NDL3. All family members contain
NDR domain, an alpha/beta hydrolase fold, a conserved
hydrophobic patch of 23 amino acids and a conserved Asp.
All these mentioned features strongly suggest that NDL
proteins belong to NDR protein family. NDL proteins in
A. thaliana are novel effectors of G-protein signaling playing
important role in root and shoot development (Mudgil
et al., 2009, 2013). G-protein core complex relay signal
intracellularly with the help of downstream effectors or
secondary messengers.

We previously observed that Mouse NDRG1 interacts
with Arabidopsis AGB1/AGG1 and AGB1/AGG2, suggesting
that this interaction is evolutionarily conserved (Mudgil
et al., 2009). Human NDRG1 is 93% similar to mouse
NDRG1 (Mudgil et al., 2009), so we can postulate similar
interaction of human NDRG1 with plant’s G protein
components. Also, NDL in Arabidopsis and NDRG1

of mouse were shown to interact with the C-terminal
domain of regulator of G-protein signaling (RGS1), a
candidate seven-transmembrane receptor in AGB1/NDL-
mediated signaling via yeast two-hybrid (Mudgil et al.,
2009).

N-MYC DOWNREGULATED GENE1 functions as a
MAP and acetylates microtubules in human. NDRG1
also act as novel effector for the small GTPase. In plants,
protein domains search revealed that all α tubulin family
subunits contain GTPase domain as the tubulin C terminal
domain so NDL might also interact with α tubulin in
plants.

MICROTUBULES DYNAMICS-ROLE IN
ABIOTIC STRESS TOLERANCE

Microtubules are the polymers of heterodimeric protein
αβ-tubulin, which provides shape to cells and maintains
tracks for vesicle transport and segregation of chromosome.
Microtubule organization is regulated by microtubule-associated
proteins (MAPs; Dixit and Cyr, 2004; Sedbrook, 2004). A variety
of MAPs have been reported in higher plants. The MAP65
family and some of kinesin family are important in bundling and

TABLE 1 | N-MYC DOWNREGULATED GENE (NDRG1) and N-MYC DOWNREGULATED-LIKE (NDL1) shared interactors which are involved in common
pathways/ processes.

NDRG1 a NDL1 b Reference

Cyclin-dependent kinases Cyclin-dependent kinase 15 Cyclin-dependent kinase – G1
Cyclin-dependent kinase regulatory
subunit 2

a (Huttlin et al., 2015)
b (Klopffleisch et al., 2011)

Calcium-dependent
phospholipid binding proteins

Annexin A5 Annexin 1 a (Havugimana et al., 2012)
b (Klopffleisch et al., 2011)

Heat shock protein HSPA4
HSPA5
HSP90AA1

BOBBER 1 a (Tu et al., 2007;
Ambrosini et al., 2009)
b (Klopffleisch et al., 2011)

Eukaryotic translation initiation
factor

Eukaryotic translation initiation factor 2
Eukaryotic translation initiation factor 3
Eukaryotic translation initiation factor
4H
DEAD (Asp-Glu-Ala-Asp) box helicase 1
DEAD (Asp-Glu-Ala-Asp) box helicase 5
DEAD (Asp-Glu-Ala-Asp) box
polypeptide 39B

Eukaryotic initiation factor 4A-III
DEAD-box ATP-dependent RNA
helicase 2

a (Tu et al., 2007;
Kristensen et al., 2012)
b (Klopffleisch et al., 2011)

Protein phosphatases Protein phosphatase 2, regulatory
subunit B, alpha

protein phosphatase 2A subunit A2 a (Tu et al., 2007)
b (Klopffleisch et al., 2011)

Components of cytoskeleton
machinery

ACTG1, Actin, gamma 1
kinesin family member 5B

TUA2, Tubulin alpha-2 chain
KINESIN LIGHT CHAIN-RELATED 1

a (Tu et al., 2007)
b (Klopffleisch et al., 2011)

Glutathione reductases Glutathione reductase
HEL-75

HOT5, S-nitrosoglutathione reductase a (Kristensen et al., 2012)
b (Klopffleisch et al., 2011)

Fatty acid pathway Fatty acid synthase (FASN)
Acyl-CoA synthetase long-chain family
member 3 (ACSL-3)

Acyl-CoA thioesterase 7 (ACOT7)

KCS9 (3-KETOACYL-COA SYNTHASE
9); acyltransferase/ catalytic/
transferase, transferring acyl groups
other than amino-acyl groups
Lipoxygenase (LOX2)

a (Tu et al., 2007;
Kristensen et al., 2012)
b (Klopffleisch et al., 2011)

Salinity response ATPase, Na+/K+ transporting, alpha 1
polypeptide

SLT1 (sodium- and lithium-tolerant 1) a (Tu et al., 2007)
b (Klopffleisch et al., 2011)
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polymerization of the microtubules (Smertenko et al., 2004;
Van Damme et al., 2004; Mao et al., 2005; Hamada, 2007)
A. thaliana genome contains nine MAP65-related genes with
different functions (Hussey et al., 2002).

Calcium is a well-known second messenger which participates
in the stress signaling in plants (Knight, 2000; Xiong et al.,
2002; Chinnusamy et al., 2005). Cortical microtubules have
been suggested to regulate the calcium levels in the cells
by regulating the activity of calcium channels (Thion et al.,
1996; Himschoot et al., 2015). Treatment of microtubule-
destabilizing drug improved the survival and growth of
A. thaliana seedlings under salt stress while treatments with
microtubule-stabilizing drug caused salt stress hypersensitivity
(Wang et al., 2007). Moreover, reorientation of microtubules
was also observed in maize roots and tobacco BY-2 cells
upon short term exposure to salt stress (Blancaflor and
Hasenstein, 1995; Dhonukshe et al., 2003). In A. thaliana, long
term salt stress affected the cortical microtubule organization.
spr1 mutant, [SPIRAL1(SPR1), a plant-specific MT-localizing
protein] has right-handed helical root growth phenotype,
salt stress suppresses this phenotype (Shoji et al., 2006).
Directional cell expansion (anisotropic growth) is necessary
for plant morphogenesis which is achieved by well-organized
interphase, cortical microtubule and SPR1 is thought to
control anisotropic cell expansion through MT arrangements
(Nakajima et al., 2004, 2006). Mutation in critical amino
acids of tubulin gene family (mainly located at longitudinal
interface of the α and β tubulins), in lateral contact region
and in GTPase-activating region in α tubulin (Ishida et al.,
2007) disrupts the proper organization and hence functions
of microtubules (Hashimoto, 2013). Tubulin mutations affect
cortical microtubule arrays in interphase resulting into altered
directional growth. Mutation in TUA genes, α tubulin 6 and
α tubulin 4 results into right handed helical array of cortical
microtubules producing left handed helical growth phenotype,
lefty 1 and lefty 2, semi dominant skewing mutants (Thitamadee
et al., 2002). These results indicated that the proper organization
of microtubule is one of the critical factors for growth and
development.

In addition, abscisic acid (ABA), which is produced in
response to salt stress, also affects the organization of cortical
microtubules (Sakiyama and Shibaoka, 1990; Shibaoka, 1994).
In drought stress accumulation of ABA is one of the most
pronounced ways to cope up with water deficit stress. ABA
leads to stomata closure thereby decrease the water loss
and also enhances water uptake by root (Boudsocq and
Laurière, 2005). Dehydration triggers plasmolysis of cells and
it consequently destroys microtubule (Pollock and Pickett-
Heaps, 2005), ABA also disrupts cortical microtubules in guard
cells, but not in epidermal cells (Jiang et al., 1996). During
cold stress in wheat (Chinese winter wheat) ABA produced
steeply oblique microtubule bundles (Figure 1; Wang and Nick,
2001).

Phospholipase D is involved in the rearrangement of cortical
microtubules (Dhonukshe et al., 2003). In A. thaliana pldα1
salt-sensitive mutant cortical microtubule showed massive
depolymerization patterns (Bargmann et al., 2009; Yu et al., 2010)

compared to wild type control. However, upon salt removal from
the growth medium organization was recovered in wild-type
plants but not in pldα1 plants indicating involvement of PLDα1
in reorganizing microtubules after depolymerization induced by
salt stress (Zhang et al., 2012).

Phosphatidic acid, the end product of PLDα reaction, is a key
regulator of microtubule polymerization; exogenous application
of PA lead to recovery in salt-disrupted microtubule arrays in
pldα1 mutant (Zhang et al., 2012). PA regulates microtubule
bundling and polymerization together with MAP65-1 and their
interaction is important for salt tolerance. PA could not bind
or bundle microtubules and rescue microtubule disruption
caused by salt in the map65-1 mutant, suggesting that MAP65-
1 is necessary for PA-mediated stabilization of microtubules
(Zhang et al., 2012). There are two contradictory reports
regarding interaction of tubulin and PA. In the first report, a
mass spectrometry based approach was used to identify the
PA binding proteins which showed that TUA2 is PA binding
protein (Testerink et al., 2004). However, in the second report,
it was found that neither PLDα1 nor PA species bound to
either α- nor β- tubulins. MAP65-1, a microtubule associated
protein, was shown to bind to PA but not to other phospholipids
like diacylglycerol, phosphatidylserine, phosphatidylinositol,
phosphatidylethanolamine, or Phosphatidylcholines. These
results indicate that PA requires other MAP to interact with
microtubules (Zhang et al., 2012), further experimentation to
confirm involvement/role of other MAPs is awaited.

Our analysis of existing information on NDL1 interactome
shows interaction with Annexin 1 (ANNAT1) which has role
in drought stress (Konopka-Postupolska et al., 2009), sodium
and lithium-tolerant 1 (SLT1) which is involved in salt stress
(Matsumoto et al., 2001) whereas lesion stimulating disease
1(LSD1) regulates cell death trigged by cold stress (Huang et al.,
2010), O-Acetylserine (THIOL) Lyase (OAS-TL) Isoform A1
(OASA1) shows increased cadmium tolerance (Domínguez-Solís
et al., 2001) and Arabidopsis Ribosomal Protein S27 (ARS27A)
is involved in genotoxic stress (Revenkova et al., 1999). Also,
comparative analysis shows overlap of NDRG1 and NDL1
interactors involved in similar pathways (Table 1).

Our proposed hypothesis that NDL might be playing
role in stress mediated processes by regulating microtubule
organization (Figure 1) can be easily tested by checking
NDL1 effect on microtubules bundling and polymerization
in vitro using purified NDL1 and tubulin proteins. Already
available ndl loss of function mutants can be used for
checking and comparing status of acetylated tubulin in the
absence and presence of NDL. Effects of various stress
responses on tubulin pattern in relation to NDL levels
can be further studied by analyzing GFP-tagged α tubulin
(35S: GFP-TUA2) patterns in NDL up and downregulated
backgrounds.
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