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In this study, we investigated the mechanisms by which bermudagrass withstands the

drought and submergence stresses through physiological, proteomic and metabolomic

approaches. The results showed that significant physiological changes were observed

after drought treatment, while only slight changes after submergence treatment, including

compatible solute contents, ROS levels and antioxidant enzyme activities. Proteomics

results showed that 81 proteins regulated by drought or submergence treatment were

identified by MALDI-TOF-MS. Among them, 76 proteins were modulated by drought

stress with 46 increased abundance and 30 decreased abundance. Forty-five showed

abundance changes after submergence treatment with 10 increased and 35 decreased.

Pathway enrichment analysis revealed that pathways of amino acid metabolism and

mitochondrial electron transport/ATP synthesis were only enriched by drought treatment,

while other pathways including photosynthesis, biodegradation of xenobiotics, oxidative

pentose phosphate, glycolysis and redox were commonly over-represented after both

drought and submergence treatments. Metabolomic analysis indicated that most of the

metabolites were up-regulated by drought stress, while 34 of 40 metabolites contents

exhibited down-regulation or no significant changes when exposed to submergence

stress, including sugars and sugar alcohols. These data indicated that drought stress

extensively promoted photosynthesis and redox metabolisms while submergence stress

caused declined metabolisms and dormancy in Cynodon dactylon. Taken together, the

quiescence strategy with retarded growth might allow bermudagrass to be adaptive to

long-term submerged environment, while activation of photosynthesis and redox, and

accumulation of compatible solutes and molecular chaperones increased bermudagrass

tolerance to drought stress.

Keywords: bermudagrass, drought stress tolerance, sumbergence stress, Proteomic analysis, reactive oxygen

species, carbohydrate metabolism

Abbreviations: 2-DE, two-dimensional gel electrophoresis;ABA, abscisic acid; CAT, catalase; DHAR, dehydroascorbate

reductase; DW, dry weight; EL, Electrolyte Leakage; FW, fresh weight; GA, gibberellic acid; GR, glutathione reductase; GST,

glutathione S-transferase; IEF, isoelectric focus; LWC, leaf water content; MDA, malondialdehyde; PC, plastocyanin; POD,

Peroxidase; PQ, plastoquinone; PRX, peroxiredoxin; PSI, photosystem I; PSII, photosystem II; ROS, reactive oxygen species;

RuBisCO, Ribulose-1,5-bisphosphate carboxylase/oxygenase; SDS-PAGE, SDS polyacrylamide gel electrophoresis.
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INTRODUCTION

Drought and flooding are major abiotic factors limiting plant
growth and development which happened from time to time
worldwide. Under drought stress condition, limited water supply
greatly decreases leaf water content and causes tissue dehydration
which is characterized by extensive changes at physiological,
biochemical, molecular, and cellular levels (Ashraf, 2010; Fleury
et al., 2010). Drought tolerance is a very complex trait depending
on severity of the drought, plant developmental stage as well
as the stress duration (Zhu, 2002). Drought stress induces the
accumulation of the plant hormone abscisic acid (ABA), which
leads to stomatal closure for maintaining water status in plant
cells under water-deficit conditions (Ren et al., 2010; Zhao et al.,
2013).

Flooding is another form of water stress that results from
excess water, which affects about 10% of the global land
area. Flooding, including waterlogging and submergence, can
negatively affect plant growth and crop production (Setter and
Waters, 2003). Waterlogging is defined as the saturation of the
soil with water around the roots, while submergence describes
the condition in which the whole plant is completely covered by
water (Liu and Jiang, 2015). Under submergence environment,
gases such as O2, CO2, and ethylene diffuse very slowly in
water and the cellular O2 level decreases and inhibits aerobic
respiration (Gibbs and Greenway, 2003; Fukao and Bailey-Serres,
2004). Despite knowledge of adaptive mechanisms to drought,
understanding of the mechanisms behind plant response to
submergence is very limited. Plants develop different strategies
in response to submergence. Recent studies showed that many
genes were involved in submergence responses (Gonzali et al.,
2005; Xu et al., 2006; Hattori et al., 2009). In rice, flood-tolerant
cultivars invoke a quiescence strategy that is controlled by
transcription factors SUB1. SUB1A is induced by ethylene under
submergence condition and negatively regulates expression of
SUB1C, leading to repressed carbohydrate metabolism and
retarded cell elongation. Flood-susceptible rice cultivars avoid
submergence via activation of SUB1C expression which is
promoted by gibberellic acid (GA) and is associated with rapid
degradation of carbohydrate reserves and enhanced elongation
of leaves and internodes (Bailey-Serres and Voesenek, 2008; Xu
et al., 2006).

Grass plants were exposed to either drought or flooding
conditions frequently. Several groups reported growth changes
of perennial grass under waterlogging condition. The results
showed that waterlogging reduced shoot and root dry weight
in cool-season grass species including creeping bentgrass
(Agrostis stolonifera) (Huang et al., 1998; Jiang and Wang,
2006) and Kentucky bluegrass (Poa pratensis) (Wang and Jiang,
2007). However, waterlogging stimulated plant growth in the
tolerant warm-season grass species such as knotgrass (Paspalum
paspaloides) and spiny mudgrass (Pseudoraphis spinescens), while
inhibited the growth in the intolerant seashore paspalum
(Paspalum vaginatum) and centipedegrass (Eremochloa
ophiuroides) (Zong et al., 2015). Comparative physiological
analysis showed that submergence caused greater damage
in perennial ryegrass (Lolium perenne) than waterlogging,

increased greater reductions in leaf chlorophyll and total
carotenoid concentrations (Liu and Jiang, 2015). The responses
of diverse perennial ryegrass accessions to submergence and
their recovery following de-submergence were also reported
by the same group. The results indicated that large phenotypic
variations in leaf color, plant height, and growth rate were
observed under submergence condition (Yu et al., 2012).

As one of the most important warm-season turfgrasses,
bermudagrass (Cynodon dactylon) exhibited high tolerance to
several abiotic stresses including drought and submergence.
Recently, we identified bermudagrass varieties that were differing
in drought tolerance. Comparative physiological analysis showed
that changes of water status, osmolyte accumulation and
antioxidant defense system might be contributed to the natural
variation of drought tolerance between bermudagrass varieties
(Lu et al., 2009; Shi et al., 2012). Net CO2 assimilation
and stomatal conductance to water vapor were inhibited by
drought stress (Carmo-Silva et al., 2008a). However, activity
of the enzymes involved in the assimilation of CO2 did
not show significant change by drought treatment in three
C4 grasses of different subtypes (Carmo-Silva et al., 2008b).
Proteomic profiling identified 39 and 54 proteins that were
regulated by drought stress in different bermudagrass cultivars,
respectively (Zhao et al., 2011; Shi et al., 2014). Exogenous
application of small molecules increased drought stress tolerance
of C. dactylon. Totally 36 and 76 proteins were induced by
polyamine and melatonin, respectively, in C. dactylon based
on proteomics approach (Shi et al., 2013, 2015b). Additionally,
the macroarray and RNA sequencing analyses identified stress-
responsive candidate genes fromC. dactylon (Kim et al., 2009; Shi
et al., 2015a). Overexpression of a C. dactylon stress-responsive
nuclear factor Y gene (Cdt-NF-YC1) in rice resulted in increased
tolerance to drought and salt as well as increased sensitivity to
ABA (Chen et al., 2015).

As indicated above, responses of C. dactylon to drought
condition have been well characterized by several groups.
However, limited information is available for the responses of C.
dactylon to submergence condition. Field survey data in the water
level fluctuation zone of the Three Gorges Reservoir in China
demonstrated that most original vegetation disappeared due to
winter flooding for up to 6 months, while perennials including C.
dactylon could tolerant deep and long-term flooding condition
(Ye et al., 2013; Wang et al., 2014). Physiological analysis showed
that submergence increased antioxidant enzyme activities, but
decreased total soluble carbohydrate and starch contents (Tan
et al., 2010). However, the detailed proteomic and metabolomic
changes in C. dactylon in response to sumbergence are largely
unknown. Moreover, studies to directly compare contrasting
responses after drought and submergence in C. dactylon were
lacking and the underlying mechanisms remained elusive. Here
comparative proteomics and metabolomics approaches were
applied to investigate the mechanisms by which bermudagrass
withstands the drought and submergence stresses. The results
showed that drought stress extensively promoted photosynthesis
and redoxmetabolisms while submergence stress caused declined
metabolisms and dormancy in C. dactylon. Therefore, growth of
C. dactylon was severely inhibited by drought, but completely
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by submergence, indicating different strategies resulted in
contrasting growth adaption in C. dactylon in response to
drought and submergence stresses.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The bermudagrass seeds Yukon were kindly provided by
American Seed Research of Oregon Company. After 3 days of
stratification at 4◦C in the dark, the seeds were sown in the
flowerpot filled with soil in the greenhouse andwere grown under
long-day lighting conditions (16 h light/8 h dark), with about
65% relative humidity at 25 ± 2◦C and light irradiance of about
150µmol quanta m−2s−1 per day. The plants were irrigated with
nutrient solution twice every week.

Experimental Design of Stress Treatments
To compare the differences of bermudagrass responses to
drought and submergence, 21-day-old seedlings were subjected
to control condition and stress conditions. For drought
treatment, water was withheld for 21 d. For submergence
treatment, plants were fully submerged in larger plastic
containers (60×40× 27 cm) for 21 d. The survival rate of stressed
bermudagrass was recorded at 7 d after re-watering (for drought
treatment) or de-submergence (for submergence treatment). The
leaf samples were collected at 0, 7, 14, 21 days after control
and stress treatments for physiological indexes analyses. The leaf
samples at 14 days subjected to control and stress conditions
were harvested for proteomic and metabolomic assays based
on measured electrolyte leakage data (Figure S1). For each
independent experiment, every plant sample was extracted from

at least 30 bermudagrass plants. All the experiments in this study
were repeated three times.

Determination of Leaf Water Content
(LWC) and Electrolyte Leakage (EL)
For the relative LWC analysis, the leaf samples were harvested
from at least 30 independent lines of different treatments at
different time points (0, 7, 14, and 21 days). The fresh weight
(FW) was weighed immediately after collection, and the dry
weight (DW) was quantified after incubation for 16 h at 80◦C,
and the LWC (%) was measured as (FW-DW)/FW × 100 (Shi
et al., 2012, 2014).

ELwas determined from detached leaves, which were collected
from at least 30 plants each treatment (about 0.2 g), The detached
leaves were placed in 50ml tubes containing 15mL deionized
water. After gently shake at room temperature for 6 h at 150 rpm,
the initial conductivity was determined. The fully releasing
conductivity was measured after boiling at 121◦C for 20min
using previous samples. The conductivity was measured using
a conductivity meter (Leici-DDS-307A, Shanghai, China). The
percentage of electrolyte leakage was determined as the ratio of
the initial conductivity to fully releasing conductivity as described
previously (Shi et al., 2012, 2014).

Quantification of Sucrose and Soluble Total
Sugars
The sucrose and soluble total sugars were measured using the
method as previously described by Shi et al. (2012). The sucrose
content and soluble total sugar content of samples weremeasured
at 480 nm of absorbance and calculated by using the standard
curve with known concentration of sucrose and glucose.

FIGURE 1 | Comparison of physiological responses to drought and submergence in bermudagrass. Shoot length (A), Relative LWC (B), EL (C) of

bermudagrass under control and stressed condition at designated time intervals. (D) Survival rate of bermudagrass after 21 days of control and stress treatments. The

data represent the means of three independent experiment ± SE, and data followed by different letters are significantly different from each other at P < 0.05 according

to Duncan’s method.
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Measurement of Malondialdehyde (MDA)
and Proline Contents
The MDA content in control and stressed plant samples was
extracted using thiobarbituric acid (TBA) regent and boiled
at 100◦C for 20min as previously described by Yang et al.
(2010). After cooling to room temperature and centrifugation
at 15,000 g for 10min, the supernatant was quantified at 450,
532, and 600 nm of absorbance with a spectrometer. The MDA
concentration can be estimated through the following formula
(µmol l−1)= 6.45(A532 - A600) – 0.56A450.

Proline content was measured by a spectrometric method
using known concentration of L-proline to form standard curve.
Briefly, 0.25 g leaf samples were grinded to power and then
extracted in 3% (w/v) sulfosalicylic acid for 10min at 100◦C,
then 2ml ninhydrin reagent and 2ml glacial acetic acid were
added to the 2ml extraction solution. The mixed solution was
boiled at 100◦C for 40min. After cooling to room temperature,
the proline level of sample was measured absorbance at 520 nm
and calculated according to the standard curve as described
previously (Shi et al., 2012).

Determination of ROS Accumulation and
Antioxidant Enzyme Activities
The protein concentration was quantified using the Bradford
method (Bradford, 1976). For H2O2 content analysis,
supernatant of the plant extracts and 0.1% (w/v) titanium
sulfate regent [in 20% (v/v) H2SO4] were mixed at 1/1 (v/v) to
precipitate the peroxide—titanium complex. The absorbance of
solution was quantified at 410 nm. For the O•

2 - content assay, a
plant O•

2 - ELISA Kit (Dingguo, Beijing, China) was used. The
absorbance was quantified at 405 nm.

The catalase (CAT, EC chsdateIsROCDateFalseIsLunarDateFa
lseDay30Month12Year18991.11.1.6), glutathione reductase (GR,
EC 1.6.4.2) and peroxidase (POD, EC 1.11.1.7) activities were
determined using CAT Assay Kit (Beyotime, Shanghai, China),
GR Assay Kit (Beyotime, Shanghai, China) and Plant POD
Assay Kit (Nanjing Jiancheng Bioengineering Institute, Nanjing,
China), respectively, as described previously (Shi et al., 2012).

Protein Extraction and 2-DE
Total protein was extracted according to the previously described
method with slight modifications (Chan et al., 2007). Briefly, 1 g
frozen powder from plant leave were homogenized extensively
with 5ml of pre-cooled homogenization buffer [20mM Tris-
HCl (pH 7.5), 1.05M sucrose, 10mM EGTA, 1mM DTT, 1mM
PMSF and 1% (v/v) Triton X-100] on ice, and centrifuged
at 10,000 g for 30min at 4◦C. The supernatant was then
mixed with equal volume of Tris-HCl (pH 7.8) buffered phenol.
After centrifugation at 10,000 g for 30min at 4◦C, the above
phenol phase was mixed with five volumes of ice-cold saturated
ammonium acetate in methanol overnight at −20◦C. The total
proteins were collected through centrifugation was stored at
−80◦C or dissolved in the lysis buffer [7M urea, 2Mmithiourea,
4% (w/v) of 3-[(3-cholamidopropyl)-dimethylammo-nio]-1-
propane sulfonate (CHAPS), 65mM DTT and 0.2% (w/v) of
carrier ampholyte (pH3.5–10)]. After dissolving extensively and

centrifugation, the protein supernatant was quantified through
the Bradford’s method (Bradford, 1976).

The 2-DE was performed as described by Shi et al. (2013) with
minor modification. Briefly, 1mg of total proteins was applied
onto an immobilized pH gradient (IPG) strip (17 cm, pH 4–7,
Bio-Rad, USA) and rehydrated extensively at room temperature
overnight. The next day, the rehydrated strips were transferred to
isoelectric focus (IEF) in the Protein IEF system (Bio-Rad, USA).
The conditions of IEF and SDS-PAGE were the same as described
by Shi et al. (2012).

Gel Image Analysis and Protein Spot
Identification by MALDI-TOF-MS
The 2-D gels were stained in Coomassie brilliant blue R250
staining buffer for 4 h and distained overnight. After scanning
with an EPSON PERFECTION V700 PHOTO scanner (Epson),
the protein spot images of 2-D gel were analyzed using PDQuest

FIGURE 2 | Osmolytes accumulation of bermudagrass after drought

and submergence treatments. Changes of proline content (A), soluble

sugars (B), and sucrose content (C) of bermudagrass during control and

stressed conditions at indicated days. The results shown are means ± SE

(n = 4), and the results followed by different letters are significantly different

from each other at P < 0.05 according to Duncan’s method.
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2-DE Analysis Software (BIO-RAD, USA). Protein spots with
more than 2-fold abundance change were used for trypsin
digestion and MALDI-TOF-MS analysis with AXIMA-CFR plus
(Shimadzu Biotech, Kyoto, Japan) as reported by Shi et al. (2013).
MASCOT software (Mascot Wizard chsdateIsROCDateFalseIs
LunarDateFalseDay30Month12Year18991.2.0, Matrix Science
Ltd., http://www.matrixscience.com) was used to analyze the
MS data. Since bermudagrass is an un-sequenced species, the
homologous proteins were blasted against sequenced plant
species. In the searching process against NCBInr and Swiss-Port

protein sequence databases, peptide masses were assumed to be
monoisotopic, and 100 ppm was used as mass accuracy, and one
missing cleavage site was the maximum, and modifications were
also considered. The minimum score of 43 and the minimum
sequence coverage of 6% in MOWSE analysis were used to keep
the confidence of the identification results.

Quantification of Metabolites
The metabolites extraction and derivatization were performed
as described by Lisec et al. (2006) and Sanchez-Villarreal et al.

FIGURE 3 | Proteins changed by drought and submergence. (A) A sketch map to show proteome patterns of bermudagrass in responses to drought and

submergence. The protein spots induced at least two folds by drought and submergence were marked with arrows. Proteins were separated in the first dimension on

the IPG strip (pH 4–7), and in the second dimension on 12.5% SDS-PAGE. (B) Total number of proteins changed by drought and submergence. (C) Venn diagram

showing the number and of proteins that overlapped among three types of drought and submergence. (D) Hierarchical cluster analysis of proteins modulated by

drought and submergence treatments. Resulting tree figure was displayed using the software package and Java Treeview. The detailed protein information was listed

in Table S1.
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(2013). The metabolites were then determined using GC-TOF-
MS (Agilent 7890A/5975C, CA, USA) according to the procedure
of Lisec et al. (2006). For GC-TOF-MS, 1mL of derivatizated
extract was injected into a DB-5MS capillary (30m × 0.25mm
× 0.25mm, Agilent J&W GC Column, USA). The metabolites
were identified based on retention time index specific masses, via
comparing with reference spectra inmass spectral libraries (NIST
2005, Wiley 7.0). After metabolite identification, quantification
of metabolites was performed based on the pre-added ribitol in
the process of metabolite extraction that was used as an internal
standard.

Cluster Analyses
Hierarchical cluster analysis was performed using CLUSTER
program (http://bonsai.hgc.jp/~mdehoon/software/cluster/)
(de Hoon et al., 2004). The resulting tree figures were
displayed using the software package and Java Treeview
(http://jtreeview.sourceforge.net/). The pathway graph of
carbon metabolism was obtained from KEGG (http://
www.genome.jp/kegg/pathway.html). The proteins with

TABLE 1 | Pathway enrichment analysis of proteins modulated by drought

and submergence treatments in bermudagrass.

MapMAN

pathways

Drought Submergence

NFa P-value NFa P-value

Photosynthesis 67.42 0.0000 70.92 0.0000

Biodegradation

of xenobiotics

32.00 0.0018 52.17 0.0007

Oxidative

pentose

phosphate

28.90 0.0021 47.12 0.0008

Glycolysis 28.35 0.0000 18.49 0.0051

Redox 14.93 0.0000 13.91 0.0002

N-metabolism 17.23 0.0450 0.00 0.9650

TCA/org

transformation

17.01 0.0007 9.24 0.0970

Amino acid

metabolism

6.89 0.0025 2.80 0.2510

Mitochondrial

electron

transport/ATP

synthesis

5.93 0.0400 4.83 0.1690

Nucleotide

metabolism

2.48 0.2700 0.00 0.7810

Stress 1.09 0.2260 1.18 0.2690

Protein 0.64 0.0650 0.60 0.1020

RNA 0.58 0.0960 0.71 0.1900

Misc 0.56 0.1810 1.37 0.2000

Cell 0.53 0.2910 0.00 0.3160

Transport 0.43 0.2320 0.00 0.2420

Not assigned 0.07 0.0000 0.18 0.0000

aNF, normalized frequency of each functional category in genome.

Black background means NF ≥ 10 and P ≤ 0.05 and gray background means NF ≥ 2

while P ≥ 0.05.

different abundance changes were classified using the
Classification SuperViewer Tool (http://bar.utoronto.ca/
ntools/cgi-bin/ntools_classification_superviewer.cgi) (Provart
and Zhu, 2003) and functional categories of every protein
were assigned using MapMan (http://mapman.mpimp-golm.
mpg.de/general/ora/ora.html) (Thimm et al., 2004). Normalized
frequency (NF) of each functional category was assayed as sample
frequency of each category in this experiment/background
frequency of each category in genome.

Statistical Analysis
All the experiments in this study were conducted three times,
and the data shown are the means ± SEs, while the mean is
the average of three replicates. For each independent experiment,
every plant sample was extracted from at least 30 bermudagrass
plants. Different letters above the columns in every figure indicate
significant differences at P < 0.05 (according to Duncan’s
method).

RESULTS

Drought Severely while Submergence
Completely Inhibited Growth of
Bermudagrass
Bermudagrass seedlings under control condition grew well with
the shoot length from 2.1 cm at 0 d to 13.5 cm at 21 d
after treatment. Drought severely and submergence completely
inhibited seedling growth. The shoot length only reached 6.8 cm
at 21 d under drought condition, while remained 2.6 cm after
submergence treatment, which was only 19% of control seedlings
(Figure 1A). Relative leaf water content decreased significantly
after 14 and 21 d of drought treatment, but no differences
were observed under submergence condition (Figure 1B). Both
drought and submergence treatments significantly increased
electrolyte leakage, resulting in increased cell membrane
damages. At 21 after treatments, less than 16% seedlings survived
under drought condition, while 38.6% seedlings survived
under submergence condition. These results indicated that
both drought and submergence treatments caused severe cell
membrane damages and greatly inhibited bermudagrass growth.

Contrasting Effect of Drought and
Submergence on Compatible Solute
Accumulation
Compatible solutes including soluble sugar and proline protect
macromolecule structure and at the same time increase the
osmotic pressure of the cytoplasm and thereby counteract
water loss from cells. Compatible solutes also play key roles
during plant redox metabolism (Couee et al., 2006). Under
drought condition, proline content increased significantly when
compared to the control, but no significant differences were
observed in seedlings after submerged (Figure 2A). Interestingly,
drought stress treatment significantly increased soluble sugar
and sucrose contents in bermudagrass, while submergence
caused declined accumulation of soluble sugar and sucrose
(Figures 2B,C). These results showed that bermudagrass might
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FIGURE 4 | Characterization of proteins involved in carbon fixation. Proteins modulated by drought and submergence treatments were involved in carbon

fixation in photosynthetic organisms. Specific color code next to each spot represents the log2fold changes of drought/control and submergence/control.

develop contrasting strategies to accumulate compatible solute
under drought and submergence conditions.

Protein Level Changes after Drought and
Submergence Treatments
To identify proteins simultaneously involved in drought and
submergence stress responses in bermudagrass, proteomic
analyses based on 2-DE were performed using 14 d stressed
samples which showed about 50% EL (Figure 1C). Through
proteomics approach, totally 81 proteins regulated by drought
or submergence treatment were identified by MALDI-TOF-MS
(Figure 3A). Among them, 76 proteins were regulated by
drought stress with 46 increased abundance and 30 decreased
abundance. Forty-five showed abundance changes after
submergence treatment with 10 increased and 35 decreased
(Figure 3B). The MS results were matched against NCBInr
and Swiss-Port protein sequence databases using MASCOT
software, and the best matched protein with high confidence
score was selected as the final result of each protein spot
(Table S1). Although, Viridiplantae (Green Plants) was chosen
as taxonomy during Mascot database search, most putatively
identified proteins were matched to those in Poaceae like Oryza
sativa, Triticum urartu, Zea mays, and Setaria italica, which are
very close to bermudagrass based on gene sequence alignment
analysis.

Overlapping and cluster analyses showed that 9 and 15
proteins were commonly up- and down-regulated by both
treatments, respectively (Figures 3C,D). Abundance of 52 and 21
proteins was specifically modulated by drought and submergence
stress treatments, respectively (Figures 3C,D). Moreover, we
previously identified 27 proteins which showed increased
abundances in Yukon after drought treatment. Among them, at
least 8 proteins were also significantly up-regulated by drought
in this study, including Chitinase, SOD, and heat shock proteins
(Table S3).

Photosynthesis and Redox Related
Pathways were Enriched after Drought and
Submergence Treatment
Pathway enrichment analysis was then performed. Because
of limited reference genome information for bermudagrass,
the homologous proteins were blasted against sequenced
plant species and functional categories were also assigned
using MapMan. The information of homologous protein
and functional category of each protein was shown in
Table 1 and Table S1. The MapMan pathway enrichment
analysis revealed that pathways of amino acid metabolism
and mitochondrial electron transport/ATP synthesis were only
enriched by drought treatment (Table 1), however, several
other pathways including photosynthesis, biodegradation of
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FIGURE 5 | Changes of ROS level and antioxidant enzyme activities after drought and submergence treatments. Changes of H2O2 content (A), O•−
2

content (B), and MDA level (C) of bermudagrass at indicated timepoints. Changes of CAT (D), GR (E), and POD (F) activities under stress conditions at designated

time intervals. The relative activities were quantified as fold change in comparison with bermudagrass under control condition. The data represent the means of three

independent experiment ± SE, and data followed by different letters are significantly different from each other at P < 0.05 according to Duncan’s method.

xenobiotics, oxidative pentose phosphate, glycolysis, and redox
were commonly over-represented after both drought and
submergence treatments. Further, analysis showed that 14
proteins changed by drought and submergence were involved
in carbon fixation in photosynthetic organisms (Figure 4).
These results indicated that drought and submergence stresses
commonly affected photosynthesis and redox related pathways
in bermudagrass.

Redox and ROS Metabolism Related
Proteins were Extensively Changed after
Drought and Submergence Treatments
Since pathways related to redox were largely enriched after
drought and submergence treatments, we then checked detailed
fold changes of proteins involved in redox and ROS pathways.
The results showed that 31 proteins playing key roles during
photosynthesis, including RuBisCO activase, Cytochrome b6-f
complex, and oxygen-evolving enhancer (Table 2), were mainly
induced by drought, but inhibited by submergence treatment.
Several redox metabolism related proteins, like peroxidase, and
superoxide dismutase showed increased intensities by drought,
but decreased intensities by submergence. Dehydrogenase
was commonly inhibited by both drought and submergence
(Table 2). Chaperonin and heat shock proteins were induced by
drought and inhibited by submergence (Table 2). These results
showed that redox and ROS related proteins were extensively
changed under drought and submergence conditions.

Modulation of ROS Metabolism in
Bermudagrass after Drought and
Submergence Treatments
To further investigate ROS homeostasis caused by drought and
submergence stresses, the detailed content changes of reactive

oxygen species were determined. After drought treatment,
both H2O2 and O−

2 contents increased after 14 d stress
treatment. However, under submergence condition, H2O2

content decreased andO−
2 content showed no significant changes

(Figures 5A,B). MDA is one of the most frequently used
indicators of lipid peroxidation, and MDA content reflects the
degree of membrane lipid peroxidation. Drought treatment
significantly increased MDA content while submergence slightly
increased MDA content (Figure 5C). Antioxidant enzymes
activities, including CAT, GR, and POD, were then analyzed
to reveal changes of enzymatic defense systems. Both drought
and submergence treatments increased CAT, GR, and POD
activities (Figures 5D–F). These results indicated that drought
and submergence treatments modulated antioxidant enzyme
activities and caused contrasting ROS content changes in
bermudagrass.

Modulation of Metabolites in
Bermudagrass after Drought and
Submergence Treatments
Since several proteins involved in carbon fixation were changed
after stress treatments (Figure 4), primary metabolite contents
were then determined through chromatography time-of-flight
mass spectrometry (GC-TOF-MS). In total, 40 metabolites were
measured, including 15 amino acids, 14 sugars, 5 organic acid,
2 sugar alcohols, 2 fatty acid and 2 others (Figures 6A, 4B;
Table S2). After drought and submergence treatments, contents
of most amino acid increased, including theronine, serine, and
proline. However, contents of most sugars, organic acid, sugar
alcohols, and fatty acid increased by drought, but decreased by
submergence. Among 40 metabolites, 22 metabolites involved
in carbon and amino acid metabolic pathways (Figure 6B) were
commonly modulated by drought and submergence stresses,
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FIGURE 6 | Effects of drought and salt stresses on metabolites in bermudagrass. (A) Hierarchical cluster analysis of 40 compounds affected by drought and

submergence stresses. The resulting tree figure was obtaining using the Java Treeview and the CLUSTER software package. (B) Assignment of the 19 metabolites

studied to pathways. A total of 19 metabolites were indicated in boxes with rose red colors, and the concentrations of these metabolites were shown in Table S2.

further confirming the carbon and amino acid metabolisms were
extensively changed in response to abiotic stresses.

DISCUSSION

Plants periodically exposed to drought and submergence
stresses in field condition which greatly inhibited plant
growth, development and production. Abiotic stresses trigger
complex signaling transduction pathways which may lead to
an imbalance between antioxidant defenses and the amount
of ROS, resulting in oxidative stress (Pastori and Foyer,
2002; Xiong et al., 2002). ROS are harmful by-products
of normal cellular metabolism in aerobic organisms (Apel
and Hirt, 2004; Miller et al., 2010) and can directly attack
membrane lipids, resulting in lipid peroxidation and oxidation

of proteins and nucleic acids (Kranner et al., 2010; Alhdad
et al., 2013). In addition to the toxicity of ROS, ROS are
necessary for inter- and intracellular signaling and considered
to be signaling molecules that regulate plant growth and
development, adaptation to abiotic and biotic stress factors
(Apel and Hirt, 2004; Mittler et al., 2004). To scavenge
ROS, plants have evolved an efficient enzymatic and non-
enzymatic antioxidative system to protect themselves against
oxidative damage and fine modulation of low levels of ROS
for signal transduction. Enzymatic antioxidants in plant include
SOD, CAT, POD, GR, DHAR, GST, and PRX (Miller et al.,
2010; Meyer et al., 2012; Noctor et al., 2014). Non-enzymatic
antioxidants including glutathione (GSH), ascorbic acid (AsA),
carotenoids, tocopherols, and flavonoids are also crucial for
ROS homeostasis in plant (Gill and Tuteja, 2010). In this
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study, enzyme activities of POD, CAT, and GR increased
after drought and submergence treatments (Figure 5), while
protein abundances of SOD, POD, and PRX were enhanced
by drought but inhibited by submergence (Table 2). However,
H2O2, O2•

− and MDA contents increased only after drought
treatment (Figure 5), and no significant changes were found for
submerged bermudagrass (Figure 5). These results showed that
bermudagrass under drought condition suffered from oxidative
stress while submerged plants did not.

Besides traditional enzymatic and non-enzymatic
antioxidants, increasing evidences indicated that soluble
sugars have a dual role with respect to ROS (Couee et al., 2006;
Keunen et al., 2013). Soluble sugars were directly linked with
the production rates of ROS by regulation ROS producing
metabolic pathways, such as mitochondrial respiration or
photosynthesis. Conversely, they also feed NADPH-producing
metabolism such as the oxidative pentose-phosphate pathway to
involved in antioxidative processes (Couee et al., 2006). Drought
stress caused significant increases of soluble sugars and sucrose
(Figure 2). Proteomic analysis also revealed that 14 proteins
involved in photosynthesis and carbon fixation were highly
induced under drought condition (Figure 4; Table 2). These
data was confirmed by metabolomic results which showed that
sugars, organic acid, sugar alcohols, and fatty acid increased
after drought treatment (Figure 6). However, only slight changes
were observed after submergence treatment. Proline, acting as
osmoprotectors, protects protein structures from stress caused
damages. Proline also functions as a ROS scavenger, especially for
hydroxyl radical (Smirnoff and Cumbes, 1989). Higher proline
content in plants has been shown to be associated with increased
tolerance to oxidative stress (Arbona et al., 2008). In this study,
drought stress increased proline content in bermudagrass while
submergence had no significant effect on proline accumulation
(Figures 2, 6). Taken together, the decreases or insignificant
changes of 85% metabolites in submerged bermudagrass may be
probably related to its physiological dormancy encountered deep
submergence stress (Gibbs and Greenway, 2003; Bailey-Serres
and Voesenek, 2008).

Photosynthesis has a high capacity for production of ROS.
The primary event of photosynthesis is light-driven electron
transfer–a redox reaction. During photosynthesis, electrons
produced from water are transferred from the reaction center
of photosystem II (PSII) to the cytochrome b6f (Cyt b6f )
complex by the mobile electron carrier plastoquinone (PQ).
Electrons from the cytochrome b6f complex are then transferred
to photosystem I (PSI) by plastocyanin (PC). Under adverse
environmental condition, electrons of PSI can also be transferred
to oxygen, which results in the generation of ROS (Pfannschmidt
et al., 2001; Pfannschmidt, 2003). Three proteins identified as
Cyt b6f were inhibited by both drought and submergence in
bermudagrass (Table 2), indicating that transfer of electrons
from PS II to PS I became impaired. In addition, ATP synthase
and ATPase showed more than 8-fold increases only by drought
treatment in bermudagrass (Table 2). These results indicated
that both drought and submergence affected photosynthesis,
however, drought promoted while submergence declined ATP
biosynthesis. Moreover, 7 RuBisCO related proteins showed

FIGURE 7 | Model depicts drought and submergence caused

contrasting changes in bermudagrass. Bermudagrass developed drought

stress tolerance through activation of physiological, proteomic, and

metabolomic pathways, resulting in accumulation of compatible solutes and

molecular chaperones. However, bermudagrass may invoke a quiescence

strategy with repressed carbohydrate metabolism and retarded cell elongation.

Therefore, drought severely inhibited while submergence completely inhibited

bermudagrass growth.

2.3–25.6 folds intensity change in bermudagrass after drought
treatment (Table 2). RuBisCO is involved in the first key step
of carbon fixation during calvin cycle. These data verified that
photosynthesis was promoted by drought, but inhibited after
submergence.

Several amino acids such as leucine, isoleucine, methionine
were significantly increased after submergence treatment,
but decreased after drought stress (Figure 6). For example,
the content of methionine using for ethylene synthesis was
significantly induced by submergence stress, but decreased by
drought stress. The ethylene accumulation is very important
for plants to cope with submergence stress (Hattori et al.,
2009; Niroula et al., 2012). In addition, some carbohydrates
such as glucose, sucrose, sorbose, melibiose, and fructose were
significantly down-modulated by submergence. Therefore,
the bermudagrass could develop specific mechanism such
as restriction of carbohydrate consumption and ethylene
accumulation to cope with submergence stress during
physiological dormancy period. Therefore, under submergence
condition, bermudagrass may invoke a quiescence strategy with
repressed carbohydrate metabolism and retarded cell elongation.
This hypothesis was confirmed by completely inhibited growth
after submerged (Figure 1).
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It has been reported that waterlogging reduced biomass in
cool-season creeping bentgrass (Huang et al., 1998; Jiang and
Wang, 2006) and Kentucky bluegrass (Wang and Jiang, 2007),
as well as in warm-season seashore paspalum and centipedegrass
(Zong et al., 2015). However, waterlogging stimulated plant
growth in other warm-season grass species such as knotgrass and
spiny mudgrass (Zong et al., 2015). According to the field survey
results in the Three Gorges Reservoir in China, bermudagrass
can tolerate deep and prolonged submergence stress for half
a year (Tan et al., 2010). Through, physiological analysis, we
observed many parameters showed significant changes after
drought treatment, while only slight changes after submergence
treatment, including osmolytes accumulation and ROS level
and antioxidant enzyme activities (Figures 2, 5). Proteomics
results showed that abundance of only 10 proteins increased
by submergence, while 46 proteins by drought (Figure 3).
Metabolomic analysis indicated that most of the metabolites
were up-regulated by drought stress, while 34 of 40 metabolites
contents exhibited down-regulation or no significant changes
when exposed to submergence stress (Figure 6). These data
were consistent with results observed by Tan et al. (2010) that
submergence decreased total soluble carbohydrate and starch
contents in bermudagrass. As reported previously (Shi et al.,
2014), 27 proteins were induced by drought in Yukon leaf and
8 of them were identified to be drought stress inducible in
this study, including, chitinase, SOD, and heat shock proteins
(Table S3). All these data indicated that ROS and stress related
proteins played important role during bermudagrass stress
response.

In conclusion, bermudagrass might slow down metabolisms
such as carbonhydrate degradation and energy supply
under submergence stress, resulting in completely inhibited
growth (Figures 1, 7). The quiescence strategy with retarded
growth might allow bermudagrass to be adaptive to long-term
submerged environment. However, bermudagrass developed
drought stress tolerance through activation of photosynthesis
and redox, leading to accumulation of compatible solutes and
molecular chaperones (Figure 7).
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