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Many environmental factors affect carbon isotope discrimination in plants, yet the
predominant factor influencing this process is generally assumed to be the key growth-
limiting factor. However, to our knowledge this hypothesis has not been confirmed.
We therefore determined the carbon isotope composition ( 13δ C) of plants growing
in two cold and humid mountain regions where temperature is considered to be
the key growth-limiting factor. Mean annual temperature (MAT) showed a significant
impact on variation in carbon isotope discrimination value (�) irrespective of study
area or plant functional type with either partial correlation or regression analysis, but
the correlation between � and soil water content (SWC) was usually not significant.
In multiple stepwise regression analysis, MAT was either the first or the only variable
selected into the prediction model of � against MAT and SWC, indicating that the effect
of temperature on carbon isotope discrimination was predominant. The results therefore
provide evidence that the key growth-limiting factor is also crucial for plant carbon
isotope discrimination. Changes in leaf morphology, water viscosity and carboxylation
efficiency with temperature may be responsible for the observed positive correlation
between � and temperature.

Keywords: alpine plants, carbon isotope discrimination, temperature, water availability, key growth-limiting factor

INTRODUCTION

Carbon isotope discrimination in plants reflects a range of physiological responses including
stomatal conductance, assimilation rate, altered C:N allocation to carboxylation, and leaf structure
(Seibt et al., 2008). Water-use efficiency (WUE), which controls the balance between water use
and carbon assimilation within plants, is linked to plant carbon isotope discrimination through
the substomatal cavities (Farquhar and Richards, 1984). This relationship has thus resulted in
numerous studies on plant isotope discrimination in physiological ecology and the global carbon
cycle (e.g., Duquesnay et al., 1998; Wang and Feng, 2012; Cernusak et al., 2013).

As is well acknowledged, plant carbon isotope discrimination may be affected by many
environmental factors such as temperature, moisture, altitude, latitude, longitude, solar radiation,
air pressure, and atmospheric CO2 concentration. The fundamental mechanism of how these
factors affect plant carbon isotope discrimination is that they can control directly or indirectly the
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ratio of the intercellular CO2 concentration (ci) to the ambient
CO2 concentration (ca). Previous studies have reported that
precipitation has a positive and altitude a negative influence on
plant carbon isotope discrimination value (�), but the effect of
temperature varied (e.g., Körner et al., 1988, 1991; Morecroft and
Woodward, 1996; Wang et al., 2008, 2013; Diefendorf et al., 2010;
Kohn, 2010). Temperature and water availability are considered
to be two of the fundamental influential factors. This is based on
the observation that variations in altitude, longitude, and latitude
can lead to changes in temperature and/or precipitation. Their
effects on plant carbon isotope discrimination will therefore be
expressed mainly in the effects of temperature and precipitation.
Solar radiation and air pressure also vary with altitude, yet
their role in the altitudinal trends in plant carbon isotope
discrimination are believed to be rather small compared to
temperature and/or precipitation (Körner et al., 1988, 1991;
Sparks and Ehleringer, 1997; Wang et al., 2008), with the
exceptions of Kelly and Woodward (1995) and Zhu et al. (2010)
who demonstrated that decreasing � with increasing altitude
was primarily attributable to decreasing air pressure rather than
air temperature. Their conclusion, however, may not always be
reliable because the study areas with different elevations that were
used to compare air pressure and temperature effects in their
study also experience different precipitation inputs. Although
the authors claimed no water stress in these study areas, the
contribution of precipitation to � cannot be ruled out since
Diefendorf et al. (2010) found that plant � still shows an
increasing trend with precipitation when rainfall amount is more
than 1000 mm. Marshall and Linder (2013) showed that mineral
nutrition may also have a strong effect on plant carbon isotope
discrimination. However, Yao et al. (2011) did not observe any

change in the � of a number of species in response to application
of N.

Since carbon isotope discrimination in plants is closely related
to plant performance and the key growth-limiting factors play
a significant role in plant performance, it has been suggested
that the key growth-limiting factor is also the predominant
factor affecting plant carbon isotope discrimination (Winter
et al., 1982; McCarroll and Loader, 2004). However, as far as
we know, this hypothesis has not been confirmed because it is
difficult to find a site or region where we know with confidence
which environmental factor is the key growth-limiting factor
influencing the local plants.

In the present study we investigated plant carbon isotope
composition (δ13C) in two cold and humid montane regions,
Mount Gongga and Mount Segrila, both of which are located
on the Qinghai-Tibet Plateau (Figure 1). As precipitation is
abundant in both regions, water availability can be ruled out
as a limiting factor, thereby leaving temperature to be the
predominant control for growth of local plants. Our objective was
to assesswhether or not temperature can exert a dominant impact
on carbon isotope discrimination of plants growing in cold and
humid montane regions.

MATERIALS AND METHODS

Study Area
Mount Gongga is located in the southeast of the Qinghai-Tibet
Plateau in Sichuan Province, southwest China (29◦20′–30◦00′
N, 101◦30′–102◦10′ E) with considerable differences in terrain
and climate between its east and west slopes. The altitude of the

FIGURE 1 | Locations and satellite maps of the studied mountain areas in Qinghai-Tibetan Plateau, China.
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east slope ranges from 1100 m (Dadu River valley) to 7600 m
above sea level. A continuous vertical vegetation spectrum occurs
on this slope, consisting of subtropical evergreen broadleaved
vegetation (1100–2200 m, including semi-arid valley with shrubs
and grasses below 1500 m, and evergreen broadleaved forests
and deciduous broad-leaved forests), temperate coniferous
and broad-leaved mixed forests (2200–2800 m), frigid dark
coniferous forests (2800–3600 m), alpine subfrigid shrub and
meadow vegetation (3600–4200 m), alpine frigid meadow
vegetation (4200–4600 m), alpine frigid sparse grass and desert
zone (4600–4800 m), and higher altitude alpine ice-and-snow
zone (above 4900 m) in sequence. The vertical distribution of
soil on the east slope of Mount Gongga is tightly associated
with vegetation distribution, and a continuous soil sequence
can be observed from 1100 to 4900 m. This consists of yellow-
red soil (luvisols; <1500 m), yellow-brown soil (luvisols; 1500–
1800 m), brown soil (luvisols; 1800–2200 m), dark-brown soil
(luvisols; 2200–2800 m), dark-brown forest soil (luvisols; 2800–
3600 m), black mattic soil (cambisols; 3600–4200 m), mattic
soil (cambisols; 4200–4600 m), and chilly desert soil (cryosols;
>4600 m; Liu and Wang, 2010; Shi et al., 2012). Temperature is
certainly the key growth-limiting factor for the plants growing
at elevations above 2800 m on Mount Gongga but moisture is
definitely not because the climate there is very cold but humid.
There are twometeorological observatories (Moxi meteorological
observatory, 1640 m above sea level; Hailuogou ecological
observatory, 3000 m above sea level) located in the sampling area
of Mount Gongga. The mean annual temperature (MAT) and
mean summer temperature (MST) above 2800 m are less than
5.2 and 11◦C, respectively. However, rainfall is very abundant
with a mean annual precipitation (MAP) of 1940 mm at 3000 m,
and continues to rise with increasing altitude (Zhong et al.,
1997).

Mount Segrila is located on the convergence of the east
Nyainqentanglha range and the east Himalaya range, southeast
Tibet (29◦21′–29◦50′ N, 94◦28′–94◦51′ E). The continuous
vertical vegetation and soil spectra of Mount Segrila are described
as temperate coniferous and broad-leaved mixed forests (3000–
3500 m) with brown soil (luvisols), frigid dark coniferous forests
(3500–4200 m) with dark-brown forest soil (luvisols), alpine
subfrigid shrub meadow (4200–4500 m) with black mattic soil
(cambisols), and alpine frigid meadow and desert zone (4500–
5300 m) with mattic soil (cambisols) and desert soil (cryosols).
The altitudinal changes in climatic conditions and vegetation
spectra were described comprehensively by Xu et al. (2014).
There is one meteorological observatories (at 3900 m) located
in the sampling area of Mount Segrila; additionally, seven sites
with simple meteorological facilities were set in the study area.
The MAP and MAT at the elevations above 3100 m are more
than 1000 mm and less than 4.2◦C, respectively, suggesting that
temperature rather than water availability is the predominant
growth-limiting factor for local plants (Du et al., 2009).

Plant Sampling
We collected 457 plant samples in total (444 spermatophytes
and 13 pteridophytes) in late August 2004 from the east slope
of Mount Gongga (from 1200 to 4500 m). Of these, 181 plant

samples (97 plant species in total) were collected from elevations
above 2800 m and they are all C3 plants. The influence of human
activities, sunshine regime, and location within the canopy, was
minimized by restricting the sampling to non-shaded sites far
from human habitation. Almost all species that we can find at
each sampling altitude were collected. At each site 5–7 plants of
each species of interest were identified and the same numbers
of leaves were collected from each individual. The leaves from
each species at each elevation were pooled to give one composite
sample. For herbs and shrubs, the uppermost leaves of each
individual were taken. For trees, eight leaves were collected from
each individual tree and two leaves at each of the four cardinal
directions from positions of full-irradiance 8−10 m above the
ground surface. Detailed descriptions of the plant sampling on
Mount Gongga have been presented previously (Liu and Wang,
2010; Shi et al., 2012).

Leaves were collected at intervals of about 100 m along an
elevational transect from 3000 to 4600 m on the west slope of
Mount Segrila. The sampling was conducted in late June 2012
when all plants were actively growing at the higher temperatures
of the rainy season. Three sampling quadrats, each 50 m × 50 m
at each altitude, were set for the plant sampling. Almost all species
that we found at each sampling altitude were collected. The
uppermost leaves of herbs and shrubs were collected; the leaves of
trees were taken from positions 8−10 m above the ground. The
leaves from each sampling quadrat at each altitude were pooled
to give one composite sample, giving a total of 45 samples from
Mount Segrila.

Soil Sampling and Soil Water
Measurement
The samples for soil water content (SWC) measurement were
collected in parallel with the plant sampling. The soil sampling
on Mount Gongga was conducted in late August 2004 at the
end of the rainy season. There was no rain in this study area
for at least 1 week based on the meteorological records at the
two meteorological observatories. The soil sampling on Mount
Segrila was performed in late June 2012 in the rainy season. On
Mount Gongga, surface soil samples (0–5, 5–10, and 10–20 cm
depth) were obtained for each assigned site (after removing the
litter layer) with a soil auger. The soil samples at each locality
represented the result of mixing four subsamples randomly taken
within a radius of 10m.OnMount Segrila, three soil cores (2.5 cm
diameter, 20 cm depth) were taken randomly from sampling
quadrates at each altitude. The soil samples were oven-dried
at 105◦C to constant weight; the SWC of each sample was the
difference between its wet weight and its dry weight divided by its
dry weight.

Carbon Isotope Measurement
All plant samples were oven-dried at 65◦C and ground to 60 μm
mesh using a steel ball mixer mill MM200 (Retsch GmbH, Haan,
Germany). The carbon isotope composition (δ13C) of the whole
leaf tissue were determined at the Stable Isotope Laboratory of
the College of Resources and Environmental Sciences, China
Agricultural University, Beijing, China, using a DeltaPlusXP mass
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spectrometer (Thermo Scientific, Bremen, Germany) coupled
with an elemental analyzer (FlashEA 1112; CE Instruments,
Wigan, UK) in continuous flow mode. The elemental analyzer
combustion temperature was 1020◦C.

The carbon isotopic composition is reported in the delta
notation relative to the V-PDB standard. The standard deviation
for the δ13Cmeasurements is less than 0.15�. Plant� is obtained
by the following formula based on Farquhar et al. (1989)

� = δ13Cair − δ13Cplant

1 + δ13Cplant/1000
≈ δ13Cair − δ13Cplant

in which δ13Cair is the carbon isotope ratio of atmospheric
CO2 (−7.8 �) and δ13Cplant is the measured δ13C value of leaf
material.

Data Selection
Previous studies have reported that photosynthesis and plant
enzyme activity can be strongly inhibited when grown at
temperatures below 5◦C (Graham and Patterson, 1982; Ramalho
et al., 2003). Some woody plants cannot withstand much below
−6◦C for any length of time and cease growth if the maximum
daily temperature is below 9◦C (Parker, 1963). Based on these
studies, we confidently assume that temperature is the key
growth-limiting factor for plants grown in cold and humid alpine
areas where MAT is below 5◦C. Because the MAT below 2800
m is greater than 5.2◦C on Mount Gongga (Zhong et al., 1997),
the δ13C data of the plants grown below 2800 m were excluded
in this study. As for Mount Segrila, all δ13C data obtained
were included in the present study because the MAT values at
all sampling sites are less than 4.2◦C (Du et al., 2009). Note
that the direct measurement of temperature at each elevation
is not available, MAT data was obtained by linear interpolation
with original data from the meteorological observatories and the
simple meteorological facilities in the study areas (Zhong et al.,
1997; Du et al., 2009).

Statistical Analysis
Bivariate correlation analysis was first performed to examine
the links between plant � and MAT and SWC. Considering
the existence of potential interactions between MAT and SWC,
partial correlation analysis, in which MAT and SWC were
separately controlled, was applied to describe the actual links
between plant � and MAT and SWC. Regression analysis was
used to constrain the influences of MAT and SWC on plant �.
Since the plant sampling was conducted in two mountain regions
and this might introduce a ‘random effect’ (Bolker et al., 2008)
into the analysis, a linear mixed model was applied to constrain
the influence of MAT and SWC on � between the regions,
in which MAT, SWC and their interaction (MAT × SWC)
are defined as the fixed factor, while the study sites (Mount
Gongga or Mount Segrila) are defined as the random factor.
Multiple stepwise regression was used to eliminate the influence
of potential collinearity existing between MAT and SWC.
Variables were selected into the model with P-value < 0.05 and
excluded with P-value > 0.1. The variable with the largest partial
correlation coefficient will be first selected into the predicting

model. All statistical analysis was performed using IBM SPSS
Statistics 22.0 (IBM Corporation, New York, NY, USA).

RESULTS

Correlations between � and
Temperature and Water Availability
The MAT and SWC data and the site-averaged carbon isotope
discrimination values (�) of plants collected at each sampling site
are shown in Table 1. In both mountain regions the climate is
cold with MAT varying between −5 and 5◦C. The surface SWC
on Mount Gongga varied from 10.7 to 48.3% with a mean value
of 26.7%, while SWC at 0–20 cm depth on Mount Segrila ranged
from 25.1 to 76.3% with an average value of 33.1%. There were
significant correlations between MAT and SWC on both Mount
Gongga (r = 0.212, p = 0.013) and Mount Segrila (r = −0.301,
p = 0.044).

There was a significantly positive correlation between MAT
and � of the plants growing on Mount Gongga (r = 0.565,
p < 0.001) and Mount Segrila (r = 0.456, p = 0.02) in bivariate
correlation analysis (Table 2), and this impact of MAT on � was
further expanded after controlling for SWC in partial correlation
analysis (r = 0.602, p < 0.001 for Mount Gongga; r = 0.553,
p < 0.001 for Mount Segrila). The correlation between SWC
and �, however, was not significant in either mountain region
(Table 2) and remained non-significant after controlling for
MAT, except at Mount Segrila (r = 0.400, p = 0.007).

Considering that the response of carbon isotope discrimation
to environmental factors may be dependent on plant functional
type (PFT), the influences of MAT and SWC on � were analyzed
separately based on PFTs. MAT was positively correlated with
� for all PFTs as well as Rhododendron sp., which is a widely
distributed evergreen shrub at elevations of 2800–4200 m, as
suggested by both bivariate correlation and partial correlation
analyses (Table 3). By contrast, the correlation between SWC
and � was not significant in either type of correlation except for
shrubs in the bivariate correlation (r = 0.289, p = 0.044).

Regression Analysis and Linear Mixed
Model of the Relationship between �
and MAT and SWC
Results of regression analysis reveal that carbon isotope
discrimination was significantly influenced by MAT on Mount
Gongga (R2 = 0.319, p < 0.001, Figure 2A), whereas the
relationship between MAT and � is shown as a unimodal
pattern with a turning point at MAT = −1◦C on Mount Segrila
(R2 = 0.365, p < 0.001, Figure 2B). Variation in � with
SWC, however, presents a unimodal pattern on both mountains
(� = 23.5 − 0.307SWC + 0.006SWC2, R2 = 0.092, p = 0.002
for Mount Gongga; � = 23.9 − 0.099SWC + 0.001SWC2,
R2 = 0.182, p = 0.015 for Mount Segrila). When analyzed with
the whole dataset, variation in � was significantly influenced by
eitherMAT (R2 = 0.134, p< 0.001, Figure 2C) or SWC (� = 18.9
+ 0.053SWC, R2 = 0.148, p < 0.001).
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Multiple linear regression analysis shows that MAT and SWC
in total accounted for 39.5 and 33.4% of the variance in �
at Mount Gongga and Mount Segrila, respectively (Table 4).
Further inclusion of PFTs into the regression model did not
increase the estimated R2 on Mount Gongga. When calculated
with the whole dataset, MAT and SWC altogether accounted for
37.9% of the variance in �. In view of the significant correlations
between MAT and SWC, multiple stepwise regression analysis
was applied to eliminate the influence of collinearity existing

between the two variables. The results reveal that MAT was
the only variable entered in the stepwise regression model
of � for Mount Gongga (R2 = 0.386, p < 0.001, Table 4),
and the first variable selected into the model of � for
Mount Segrila (R2 = 0.208, p = 0.002) and for the whole
dataset (R2 = 0.169, p < 0.001). Both MAT and SWC
were finally entered in the model of � for Mount Segrila
(R2 = 0.334, p < 0.001) and for the whole dataset (R2 = 0.379,
p < 0.001).

TABLE 1 | Descriptions of climatic condition, dominant vegetation type, and site-averaged plant carbon isotope discrimination value (�) of different
sampling sites on Mount Gongga and Mount Segrila.

Sampling mountain Site no. Altitude (m a.s.l.) MATa (◦C) SWC (%) Site-averaged � (�) Replicate

Mount Gongga 1 2800 5.2 22.8 21.10 14

2 2850 4.9 32.5 21.23 4

3 2860 4.8 32.5 18.26 1

4 2900 4.6 42.2 21.61 12

5 3000 4.0 16.7 21.24 12

6 3100 3.4 34.6 22.36 13

7 3200 2.8 — 21.21 12

8 3250 2.5 — 19.71 7

9 3300 2.2 — 19.31 12

10 3430 1.4 — 19.45 10

11 3510 0.94 25.3 20.32 18

12 3550 0.70 23.7 21.26 7

13 3600 0.67 22.0 19.62 2

14 3650 0.10 18.8 18.55 7

15 3700 −0.20 15.4 20.20 5

16 3750 −0.50 19.7 18.96 10

17 3800 −0.80 23.8 17.84 8

18 3930 −1.58 33.9 18.18 3

19 3950 −1.7 33.9 18.67 2

20 4000 −2.0 29.3 17.93 4

21 4050 −2.3 31.1 18.28 1

22 4100 −2.6 32.8 18.46 4

23 4200 −3.2 — 19.04 3

24 4400 −4.4 30.9 18.75 5

25 4500 −5.0 18.2 18.74 5

Mount Segrila 1 3135 4.2 33.5 22.25 3

2 3271 3.3 25.1 21.84 3

3 3365 2.7 32.1 22.59 3

4 3456 2.1 45.7 21.93 3

5 3565 1.4 33.5 22.04 3

6 3689 0.65 48.7 21.98 3

7 3770 0.13 76.3 23.06 3

8 3893 −0.65 56.0 22.37 3

9 3960 −1.1 36.3 22.59 3

10 4080 −1.8 71.8 23.23 3

11 4170 −2.4 45.0 19.94 3

12 4284 −3.2 50.9 20.86 3

13 4371 −3.7 48.1 22.18 3

14 4485 −4.4 36.9 21.61 3

15 4590 −5.1 46.8 19.49 3

MAT, mean annual temperature; SWC, soil water content. aMAT data was calculated by linear interpolation with original data from Zhong et al. (1997) for Mount Gongga
and Du et al. (2009) for Mount Segrila.
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TABLE 2 | Pearson correlations (r) between plant � and mean annual
temperature (MAT) and soil water content (SWC) on Mount Gongga and
Mount Segrila.

Mount Gongga Mount Segrila

r p r p

Bivariate correlation

MAT 0.565 <0.001 0.456 0.02

SWC 0.225 0.08 0.202 0.183

Partial correlation

MATa 0.602 <0.001 0.553 <0.001

SWCb 0.122 0.158 0.400 0.007

Values presented in bold indicated significant correlations (p < 0.05). a Indicates
controlling for SWC. bIndicates controlling for MAT.

TABLE 3 | Pearson correlations (r) of MAT and SWC with � of different
plant functional types (PFTs; herbs, shrubs, and trees) as well as
Rhododendron sp. growing on Mount Gongga.

Herbs Shrubs Trees Rhododendron
sp.

r p r p r p r p

Bivariate correlation

MAT 0.512 <0.001 0.575 <0.001 0.527 0.007 0.690 0.003

SWC 0.157 0.231 0.289 0.044 0.251 0.300 0.140 0.682

Partial correlation

MATa 0.552 <0.001 0.603 <0.001 0.521 0.027 0.724 0.018

SWCb 0.031 0.814 0.170 0.248 0.155 0.540 0.068 0.851

Values presented in bold indicated significant correlations (p < 0.05). a Indicates
controlling for SWC. bIndicates controlling for MAT.

In the linear mixed model MAT, SWC and their interaction
(MAT× SWC)were defined as the fixed factor and the study sites
(Mount Gongga or Mount Segrila) were defined as the random
factor. Results show that the sampling mountains did not have
any significant effect on the estimated relationship between �
and MAT or SWC, as the test for the estimated intercept of
covariance parameter was not significant (p = 0.495, Table 5).
MAT (p< 0.001) and SWC (p = 0.002) both significantly affected
� but their interaction did not (p = 0.674).

DISCUSSION

Effect of Soil Water Availability on Plant
Carbon Isotope Discrimination
The mechanism of water availability on plant carbon isotope
discrimination is that the plants would close their stomata to
reduce water loss when moisture decreases, resulting in a lower
ci/ca ratio and thus less negative δ13C values. Numerous studies
have reported the influence of water availability on plant carbon
isotope discrimination (e.g., Wang et al., 2005, 2008; Diefendorf
et al., 2010; Kohn, 2010), and a positive correlation between �
and water availability has been observed onmost occasions. In the
present study, however, the correlation between � and SWC on

FIGURE 2 | The influence of mean annual temperature (MAT) on � as
suggested by regression analysis with data in Mount Gongga (A),
Mount Segrila (B), and the whole dataset (C).

Mount Gongga was not significant (Table 2). It has been observed
that carbon isotope discrimination responds differentially over
the range of MAP and often becomes nearly constant in wet
environments (Kohn, 2010). In the study area of Mount Gongga
the water supply is so abundant (with an MAP over 1800 mm)

Frontiers in Plant Science | www.frontiersin.org 6 November 2015 | Volume 6 | Article 961

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Xu et al. Key growth-limiting factor dominated δ13C

TABLE 4 | Multiple linear regression of plant � against MAT, SWC, and PFT.

Model Variables
entered

R2 Adjusted R2 F p

Variable selection method: Enter

Mount Gongga

1 MAT+SWC 0.395 0.386 43.721 <0.001

2 MAT+SWC+PFT 0.382 0.362 19.040 <0.001

Mount Segrila

1 MAT+SWC 0.334 0.303 10.542 <0.001

Whole dataset

1 MAT+SWC 0.379 0.372 54.635 <0.001

Variable selection method: Stepwise

Mount Gongga

1 MAT 0.386 0.381 84.789 <0.001

Mount Segrila

1 MAT 0.208 0.189 11.282 0.002

2 MAT+SWC 0.334 0.303 10.542 <0.001

Whole dataset

1 MAT 0.169 0.165 36.705 <0.001

2 MAT+SWC 0.379 0.372 54.635 <0.001

TABLE 5 | Summary of the linear mixed model of � with MAT, SWC and
their interaction (MAT × SWC) as the fixed variables while the sampling
mountains as the random variables.

Linear mixed model results

Information criteria

Akaike information criterion (AIC) 651.679

Bayesian information criterion (BIC) 658.042

Estimation of fixed effect

Source F Significance

MAT 13.475 <0.001

SWC 10.346 0.002

MAT × SWC 0.177 0.674

Intercept 464.366 0.012

Estimation of covariance parameter

Parameter Wald Z Significance

Residual 9.407 <0.001

Intercept 0.682 0.495

that water availability is thereby no longer a factor limiting plant
growth. Our finding is consistent with the results of Diefendorf
et al. (2010) that the correlation of � with precipitation is not
significant when MAP is over 1800 mm.

In contrast to Mount Gongga, no significant correlation was
indicated by the bivariate correlation analysis in Mount Segrila.
However, we found a significant relationship between SWC and
� after controlling for MAT in the partial correlation analysis
(Table 2). The differentiated results from the two sites may derive
from the difference in MAP because the MAP on Mount Segrila
varies from 980 to 1300 mm, much less than that on Mount
Gongga. Nonetheless, this result indicates a partial influence of
water availability on carbon isotope discrimination on Mount
Segrila. Moreover, the fact that SWC finally entered the model
for Mount Segrila as well as for the whole dataset in multiple

stepwise regression model of variation in � (Table 4) also
suggests that soil water availability has had an effect on carbon
isotope discrimination to some extent. As the present study was
conducted in areas with high precipitation where plants obtain
sufficient water for their growth, our results suggest that even
in humid areas, water availability may still be one of the major
determining factors shaping the variation in �.

Temperature as the Key Factor
Influencing Plant Carbon Isotope
Discrimination
Variation in � with changing temperature has been studied
extensively (e.g., Körner et al., 1988, 1991; Morecroft and
Woodward, 1990, 1996; Hultine and Marshall, 2000; Treydte
et al., 2007; Wang et al., 2013). In the present study we also
observed a strong impact of MAT on � in two mountain regions
(Figure 2). MAT together with SWC in total accounted for
a large proportion of the variation in � of the two montane
regions (Table 4). Although soil water availability is expected
to have certain impact on carbon isotope discrimination in
the study areas, this impact is more limited than that of
temperature as suggested by the results of partial correlation
analysis and stepwise regression (Tables 2 and 4). Taking these
results together, we believe that temperature, rather than soil
water availability, has exerted the key influence on carbon isotope
discrimination of the plants growing in these two mountain
regions. Since temperature is considered to be the key growth-
limiting factor in these two frigid alpine areas, the present study
supports the hypothesis that the key growth-limiting factor is also
the key factor influencing plant carbon isotope discrimination.

Temperature is one of the most important factors that control
plant growth and certain physiological processes related to plant
gas exchange activity. A decline in temperature usually results in
a reduction in enzyme activity and photosynthetic rate (Beerling,
1994), thus leading to decreased CO2 assimilation and a lower
growth rate as a consequence. Under such circumstances the
intercellular CO2 concentration (ci) is likely to increase if the
ambient CO2 concentration (ca), stomatal conductance (gs) and
mesophyll conductance (gm) all hold constant. An increase
in � with decreasing temperature is therefore expected and
has been observed in most of the studies on the influence of
temperature on carbon isotope discrimination (e.g., Pearman
et al., 1976; McCarroll and Loader, 2004; Treydte et al., 2007;
Wang et al., 2013). Our results, however, are inconsistent
with these studies and suggest a decline in � with decreasing
temperature on Mount Gongga (Figure 2A). Similarly, several
studies have also reported a positive correlation between � and
temperature along an elevational gradient (Körner et al., 1988;
Hultine and Marshall, 2000) and a latitudal gradient (Körner
et al., 1991). Moreover, a decrease in � with low temperature
was also observed in experiments with controlled environment
(Morecroft and Woodward, 1990, 1996). There is still no
conclusive explanation for this positive correlation but several
possible mechanisms have been proposed. One of these is related
to the changes in leaf morphology in response to temperature
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(Körner and Diemer, 1987; Körner et al., 1991). Increased leaf
thickness has been observed in alpine plants as an adaptation
to low temperatures (Körner et al., 1988; Hultine and Marshall,
2000) and this may cause a longer CO2 diffusion distance from
the ambient to the intercellular air space and result in a decline
in � (Körner and Diemer, 1987; Zhu et al., 2010). Kogami
et al. (2001) also reported that the plants growing in highlands
had lower CO2 transfer conductance inside the leaf (gi) due to
greater leaf thickness, thicker mesophyll cell walls and higher
mesophyll cell density, resulting in decreased � with decreasing
temperature. Another explanation is that low temperatures may
increase water viscosity (Cernusak et al., 2013). Smith et al. (1984)
suggested that lower temperatures might inhibit sapwood water
movement and thereby decrease plant water potential, resulting
in partial stomatal closure and decreased � as a consequence.
Finally, the lower �with decreasing temperature may also be due
to an increase in the efficiency of carbon uptake or carboxylation
efficiency at low temperatures, which depends on the amount
of active ribulose bisphosphate carboxylase-oxygenase (Rubisco)
per unit leaf area (Morecroft andWoodward, 1990).

Changes in temperature and water availability are usually
correlated; for example, high temperature can lead to water
stress because of high evaporation. These two variables can
have synergistic effects on plant growth; co-occurrence of high
temperature and water stress was found to constrain plant
productivity worldwide (O’Connor et al., 2001). Since carbon
isotope discrimination value is an integrated parameter reflecting
carbon and water relation, temperature, and water availability
are also expected to have interactions on carbon isotope
discrimination. Craufurd et al. (1999) found that plant � was
significantly affected by the interaction of high temperature and
water deficit. Xu and Zhou (2005) reported that a perennial grass
species decreased its carbon isotope composition in the condition
of high nocturnal temperature and water stress. However, the
present study showed no significant interaction of temperature

and soil water availability on plant � (p = 0.674, Table 5). This
result likely suggests that the disturbance of plant water relations
by low temperature in the study areas is not significant as
reported in previous studies (Norisada et al., 2005; López-Bernal
et al., 2015).

CONCLUSION

In the present study we conducted an intensive investigation of
plant � in two cold and humid mountain regions and analyzed
the influence of temperature and soil water availability on the
variation in �. Temperature, the key growth-limiting factor for
the local plants, was found to have a significant influence on
carbon isotope discrimination irrespective of study area or PFT
but the influence of SWC was relatively weak. Future study
should consider temporal dynamics on water availability in
relation to plant carbon isotope discrimination. Furthermore, a
close relationship between plant carbon isotope discrimination
and WUE implies that temperature might potentially affect
plant WUE. Ecosystems at high altitudes in Tibetan Plateau are
fragile and sensitive to climate change. Elevated temperature may
reduce WUE in plants, which may have enormous impacts on
productivity and stability of ecosystems in the future.
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