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The phytohormone abscisic acid (ABA) regulates many aspects of plant growth and
development as well as responses to multiple stresses. Post-translational modifications
such as phosphorylation or ubiquitination have pivotal roles in the regulation of ABA
signaling. In addition to the positive regulator sucrose non-fermenting-1 related protein
kinase 2 (SnRK2), the relevance of the role of other protein kinases, such as CK2,
has been recently highlighted. We have recently established that CK2 phosphorylates
the maize ortholog of open stomata 1 OST1, ZmOST1, suggesting a role of CK2
phosphorylation in the control of ZmOST1 protein degradation (Vilela et al., 2015). CK2 is
a pleiotropic enzyme involved in multiple developmental and stress-responsive pathways.
This review summarizes recent advances that taken together suggest a prominent role
of protein kinase CK2 in ABA signaling and related processes.

Keywords: protein kinase CK2, ABA signaling, proteasome degradation, circadian clock, post-translational
modifications

INTRODUCTION

The phytohormone abscisic acid (ABA) plays a central role in plant development and responses to
abiotic stress (Leung and Giraudat, 1998; Finkelstein et al., 2002). Water stress conditions induce
the accumulation of ABA levels in guard cells and this increase promotes the closing of stomata in
order to reduce transpiration and water loss (Schroeder et al., 2001). The molecular mechanism of
ABA action is nowwell-established inArabidopsis (Cutler et al., 2010; Kim et al., 2010; Klingler et al.,
2010; Raghavendra et al., 2010; Umezawa et al., 2010; Zhang et al., 2015). ABA triggers downstream
responses by binding to the cytosolic receptors pyrabactin resistance/pyrabactin-like/regulatory
component ofABA receptor (PYR/PYL/RCAR),which then sequester the negative regulators cladeA
type 2C protein phosphatases (PP2C), allowing the activation of Group III Sucrose non-fermenting-
1 related protein kinases 2 (SnRK2; Ma et al., 2009; Park et al., 2009). These three protein types are
necessary and sufficient to mediate an ABA triggered model signaling cascade in vitro (Fujii et al.,
2009). Recent advances engineering ABA receptors using agrochemicals open new possibilities for
crop improvement (Park et al., 2015).

Reversible protein phosphorylation is therefore a key protein modification involved in ABA
signaling and it allows for the rapid regulation of protein function. In addition to the central role
of Group III SnRK2s, multiple kinases have been implicated in ABA signaling. Calcium-dependent
protein kinases (CDPKs) function as calcium sensors and are hub regulators of Ca2+-mediated
immune and stress responses (Mori et al., 2006; Boudsocq and Sheen, 2013). CBL-interacting
protein kinases (CIPKs), another family of kinases involved in calcium signaling, regulate potassium
transport processes in roots and in stomatal guard cells (Cheong et al., 2007). Moreover, mitogen
activated protein kinases (MAPKs) are induced by ABA to elicit a stress response (Danquah et al.,
2015).
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There is growing amount of data linking protein kinase CK2
to ABA signaling and abiotic stress responses, as shown in this
review. CK2 is an evolutionary conserved Ser/Thr kinase found
in all eukaryotes. The CK2 holoenzyme is a heterotetramer
composed by two types of subunits, two catalytic (CK2α) and
two regulatory (CK2β; Litchfield, 2003). Unlike animals, in plants
both kinds of subunits are encoded by multigenic families (Velez-
Bermudez et al., 2011). Plant CK2 is a pleiotropic enzyme involved
in relevant processes such as plant growth and development, light-
regulated gene expression, circadian rhythm, hormone responses,
cell-cycle regulation, flowering time, DNA repair or responses to
biotic and abiotic stress, among others (Riera et al., 2013; Mulekar
and Huq, 2014).

ROLE OF PROTEIN KINASE CK2
IN ABA SIGNALING
Since CK2 is essential for plant viability and the depletion of
CK2α is lethal, as previously demonstrated in yeast (Padmanabha
et al., 1990), plant genetic approaches involving CK2 have been
difficult. The first Arabidopsis CK2α antisense plants produced
confirmed the role of CK2 in light-regulated gene expression
and plant growth (Lee et al., 1999). In recent years, several
transgenic lines for CK2α have been generated. An inducible
dominant-negative for CK2α plants evidenced that CK2 control
chloroplast development, cotyledon expansion, root and shoot
growth, as well as altered cell division, cell expansion and auxin
transport (Moreno-Romero et al., 2008; Marquès-Bueno et al.,
2011). Arabidopsis mutated for all three nuclear CK2α subunits
(α1α2α3) or doubly mutated in all possible combinations, show a
significant decrease of CK2 activity, and a clear phenotype of late
flowering. This indicates that that CK2α subunits influence the
circadian clock period of oscillation (Lu et al., 2011). Moreover,
CK2α knockout lines display altered developmental and stress
responsive pathways with a marked hyposensitivity to ABA and
high salt when tested by the criteria of seed germination and
cotyledon greening (Mulekar et al., 2012).

Chloroplastic isoforms of CK2α (cpCK2α) have been identified
in most higher plants (Turkeri et al., 2012; Vélez-Bermúdez et al.,
2015). Different phosphoproteomic approaches in Arabidopsis
demonstrate the prominent role of cpCK2 for phosphorylation in
these organelles (Reiland et al., 2009; Schonberg et al., 2014). ABA
affects the transcription of most chloroplastic genes (Yamburenko
et al., 2013, 2015). Mutation of chloroplastic isoform CKA4 in
Arabidopsis gives a phenotype of reduced sensitivity to ABA
during seed germination and seedling growth, and increased
stomatal aperture and leaf water loss (Wang et al., 2014).
These effects were attributed to the downregulation of ABA-
responsive genes, including OST1, a representative SnRK2 kinase
central to ABA signaling. The same work suggests that CK2
is involved in retrograde signaling from chloroplast to nucleus,
since the expression levels of the transcription factor ABI4,
directly involved in retrograde and ABA signaling, were reduced
in the cka4 mutant under ABA treatment (León et al., 2012).
Recent work analyzing CK2A4 RNAi lines in the CK2α triple
mutant background confirmed the importance of this gene in the
regulation of ABA response, lateral root formation and flowering

time, in a process that could be regulated by retrograde signaling
(Mulekar and Huq, 2015).

Even though more that 300 substrates have been described
for mammalian CK2 (Meggio and Pinna, 2003; Bian et al.,
2013), the confirmed number of CK2 plant substrates is lower,
around 50, as shown in Table 1. Among these substrates, CK2
phosphorylation of maize LEA protein RAB17 has been one
of more extensively characterized examples (Plana et al., 1991).
LEA proteins/RAB/dehydrins accumulate during embryogenesis
and their protein level correlates with increased levels of ABA
and acquisition of desiccation tolerance (Galau et al., 1986;
Ingram and Bartels, 1996). Previous work performed in our group
established that CK2 phosphorylation regulates the intracellular
dynamics and subcellular localization of maize RAB17. The
phosphodeficient mutant form of RAB17, when overexpressed
in transgenic Arabidopsis, leads to a failure of seed germination
arrest in osmotic stress conditions (Plana et al., 1991; Riera
et al., 2004). The homologs of Rab17 in tomato (TAS14) and in
Arabidopsis (ERD14) are also phosphorylated by CK2 (Godoy
et al., 1994; Alsheikh et al., 2003). Other dehydrins as TsDHN1,
2 from Thellungiella salsuginea can stabilize the cytoskeleton
under stress conditions, in a process that may involve CK2
phosphorylation (Rahman et al., 2011). Recently, ZmLEA5C
that enhances tolerance to osmotic and low temperature stresses
in transgenic tobacco and yeast has been also described as a
CK2 substrate (Liu et al., 2014). Different types of transcription
factors are also CK2 substrates, some of them involved in ABA
response, as EmBP-2 and ZmBZ-1. These two b-ZIP transcription
factors are phosphorylated by CK2 and this modification alters
their DNA binding capacity (Nieva et al., 2005). Also OREB1, a
rice ABRE binding factor is phosphorylated by multiple kinases
such as SnRK2 and CK2 (Hong et al., 2011). These factors
bind to ABRE (ABA Responsive Elements) in the nucleus and
activate the transcription of ABA-inducible genes, suggesting that
CK2 regulation of RAB proteins could involve not only direct
phosphorylation but also altered gene expression.

We have recently established the maize ortholog of open
stomata 1 OST1 (also known as SnRK2.6 or SnRK2E) as
a phosphorylation target of CK2 (Vilela et al., 2015). CK2
phosphorylates ZmOST1 at a cluster of serines in the ABA box
with implications on protein levels, kinase activity, and response
to abiotic stimuli. Transgenic Arabidopsis plants overexpressing
ZmOST1 mutagenized at CK2 phosphorylation sites are more
resistant to drought and are hypersensitive to ABA at the level of
stomata.

ABA SIGNALING AND PROTEASOME
DEGRADATION
In addition to phosphorylation, other post-translational
modifications such as ubiquitination, and sumoylation play
significant roles in regulating ABA signaling (Lyzenga and Stone,
2012). Ubiquitination of the PYR/PYL/RCAR ABA receptors
causes their degradation in the absence of ABA (Irigoyen et al.,
2014). DDB1-ASSOCIATED1 (DDA1), a protein part of the
CULLIN4-RING E3 ubiquitin ligase, binds to PYR8, PYL4 and
PYL9 and facilitates their proteasomal degradation, negatively
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TABLE 1 | List of plant CK2 substrates.

Name Type Species Role References

Light-signal transduction pathway and circadian clock

AT-1 DNA binding factor Pea Binds to ATI-box elements in light regulated
promoters

Datta and Cashmore (1989)

ATBP-1 DNA binding factor Pea Binds to ATI-box elements in light regulated
promoters

Tjaden and Coruzzi (1994)

GBF1 bZIP TF Arabidopsis Binds to G-box elements in light regulated
promoters

Klimczak et al. (1995)

Opaque2 bZIP TF Maize Circadian clock regulated Ciceri et al. (1997)
CCA1 Myb-related TF Arabidopsis Circadian clock regulator Sugano et al. (1998)
LHY, OsLHY Myb-related TF Arabidopsis, Rice Circadian clock regulator Sugano et al. (1998); Ogiso

et al. (2010)
HY5 bZIP TF Arabidopsis Promotes photomorphogenesis Hardtke et al. (2000)
HFR1 bHLH TF Arabidopsis Promotes photomorphogenesis Park et al. (2008)
PIF1 Phytochrome interacting factor Arabidopsis Represses photomorphogenesis Bu et al. (2011)

Abiotic and biotic stress

ZmSnRK2/ZmOSTl Protein kinase Maize ABA signaling Vilela et al. (2015)
Rabl7,ZmLEA5cERD14,
TAS-14

LEA proteins Maize, Arabidopsis,
tomato, wheat

Stress responsive proteins Plana et al. (1991); Liu et al.
(2014); Alsheikh et al. (2003);
Godoy et al. (1994)

TsDHNl,2 Dehydrins Thellungiella salsuginea Stress responsive proteins Rahman et al. (2011)
EmBP-2/ZmBZ-l bZIP TF Maize Activates transcription of the abscisic

acid-inducible gene rab28
Nieva et al. (2005)

TGA2 bZIP TF Arabidopsis Binds to promoter of salicilic-induced
genes

Kang and Klessig (2005)

OREB1 ABRE binding factor Rice Binds to ABRE (ABA responsive Elements) Hong et al. (2011)
p23 co-chaperone protein Arabidopsis Plant response to Salicihc acid Tosoni et al. (2011)
PCS phytochelatin synthase Arabidopsis Synthesis of heavy metal-binding peptides Wang et al., 2009

Chromatin associated and nuclear proteins

lamin-like protein lamina matrix protein Pea Nuclear stability, chromatin organization Li and Roux (1992)
MFP1 coil-coil protein Tomato Allium cepa Structural roles in nuclear matrix and

chloroplast
Meier et al. (1996);
Samaniego et al. (2006)

NopA64/nopA61 nucleolin-like phosphoproteins Allium cepa Located in nucleolus de Cárcer et al. (1997)
P-proteins Ribosomal proteins Maize Complex with 60S ribosomal subunits Bailey-Serres et al. (1997)
DNA helicase I DNA helicase I Pea DNA transcription Tuteja et al. (2001)
DNA topoisomerase I DNA topoisomerase I Pea DNA transcription Tuteja et al. (2003)
HMGB proteins High mobility group B proteins Maize, Arabidopsis Chromatin associated proteins Stemmer et al. (2002)
SSRP1 structure-specific recognition

protein
Maize Chromatin associated proteins Krohn et al. (2003)

eIF2ab/3c/4b/5 elongation initiation factors Arabidopsis, maize,
wheat

Translation initiation Dennis and Browning (2009)

Histone deacetilase 2B Histone deacetilase Arabidopsis Chromatin remodeling enzyme Dennis and Browning (2009)

Chloroplast machinery

Chloroplast
RNPs/28RNP/
p34/RNP29,33

Ribonucleoproteins Spinach, Arabidopsis RNA binding proteins involved in
chloroplast RNA processing and
stabilization

Kanekatsu et al. (1993,
1995); Lisitsky and Schuster
(1995); Reiland et al. (2009)

CP29 photosystem II subunit Maize Light harvesting complex import Testi et al. (1996)
TOC159 preprotein receptor Arabidopsis Nuclear-encoded chloroplast preproteins

from the cytosol
Agne et al. (2010)

SIG1/SIG6 plastid sigma factors Arabidopsis Gene-regulatory proteins for promoter
binding and transcription initiation

Schweer et al. (2010)

Alb3 Thylakoid membrane protein Arabidopsis Thylakoid biogenesis Schonberg et al. (2014)

Other

CFOCFl-ATPase Chloroplast ATP synthase (b
subunit)

Spinach ATP synthesis Kanekatsu et al. (1998)

C2 subunit of the 20S proteasome Rice Protein degradation of ubiquitinated
proteins

Umeda et al. (1997)

gpl00/gp96 Glycyrrhizin (GL)-Binding Protein
(gp100)

Soybean Lipoxygenase that catalyzes the
oxygenation of unsaturated fatty acids

Ohtsuki et al. (1994, 1995)

β-Conglycinin α Subunit β-Conglycinin α Subunit Soybean storage protein Ralet et al. (1999)
calreticulin Calreticulin Spinach Ca2+ binding protein Baldan et al. (1996)
apyrase apyrase Pea ATP hydrolysis Hsieh et al. (2000)
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regulating ABA responses. Conversely, ABA protects PYL8 from
destabilization by limiting its polyubiquitination by a process
that is still unknown. ABA also reduces PYL8 expression after 3h
of treatment in a process that would facilitate a faster receptor
turnover, after the signal is attenuated (Irigoyen et al., 2014). In
addition, the turnover of PYL4 and PYR1 in the proximity of the
plasma membrane is regulated by the interaction with a single
subunit RING-type E3 ubiquitin ligase, RSL1 (Bueso et al., 2014).

Several transcription factors involved in ABA signaling as
ABI3, ABI5, ABFs ABI4, and ATHB6 can also be regulated by
proteasome degradation. The B3-domain transcription factor
ABSCISIC ACID-INSENSITIVE 3 (ABI3), a central regulator in
ABA signaling, is an unstable protein that is polyubiquitinated
by an ABI3-interacting protein (AIP2), which contains a RING
motif. AIP2 negatively regulates ABA signaling by targeting
ABI3 for post-translational destruction (Zhang et al., 2005).
During vegetative growth, ABA induces AIP2 expression, tightly
regulating ABI3 turnover while promoting its accumulation
during seed maturation. Another example is ABSCISIC ACID
INSENSITIVE 5 (ABI5), a member of the basic leucine zipper
(bZIP) transcription factor, that plays an important role in
controlling ABA dependent postgerminative growth arrest
as well as late phases of seed maturation (Finkelstein and
Lynch, 2000; Lopez-Molina et al., 2001). The abundance of
ABI5 is tightly controlled by the ubiquitin-26S proteasome
system. KEEPONGOING (KEG), a RING3-type E3 ubiquitin
ligase, negatively regulates ABA signaling by promoting
ABI5 ubiquitination and subsequent degradation by the 26S
proteasome (Liu and Stone, 2010). This process occurs in
the cytosol when ABA is absent (Liu and Stone, 2013). In
the nucleus, ABI5 stability is regulated by another negative
regulator of ABA, a E3 ubiquitin ligase assembled with ABA-
hypersensitive DCAF1 (ABD1; Seo et al., 2014). In addition to
ubiquitination, sumoylation of ABI5 is thought to maintain a
degradation-resistant inactive pool of ABI5 in the absence of
ABA (Miura et al., 2009). An additional class of ABI5-interacting
proteins, the AFPs, has also been reported to alter ABI5 stability
(Lopez-Molina et al., 2003). Another group of positive effectors
in ABA responses regulated by proteasome degradation is the
ABA Binding Factor/ABA-Responsive Element Binding Proteins
(ABF/AREB) subfamily of bZIP-type transcription factors. ABF1
and ABF3 have similar functions to ABI5 in regulating seed
germination and post-germinative growth (Finkelstein et al.,
2005). ABF1 and ABF3 are ubiquitylation substrates of KEG
and the abundance of both proteins is affected by ABA and the
ubiquitin pathway (Chen et al., 2013). The stabilization of ABF1
and ABF3 by ABA is thought to be achieved by phosphorylation
by SnRK2 kinases, which in turn promotes the binding of
14–3–3 proteins (Sirichandra et al., 2010). ABSCISIC ACID
INSENSITIVE 4 (ABI4), a member of the DREB subfamily
A-3 of ERF/AP2 transcription factors, is required for proper
ABA signaling during seed development and germination
(Gregorio et al., 2014). Like ABI3 and ABI5, ABI4 is subject
to a stringent post-transcriptional regulation that targets the
protein to degradation and prevents it from accumulating to high
levels. However, unlike ABI3 and ABI5, ABI4 is not stabilized
in the presence of ABA (Finkelstein et al., 2011). Finally, the

HD-Zip transcription factor ATHB6 physically interacts with the
PP2C phosphatase ABI1 and it has been described as a negative
regulator of the ABA signal pathway (Himmelbach et al., 2002).
Moreover, ABA negatively regulates ATHB6 protein turnover
(Lechner et al., 2011).

Proteosomal degradation in response to ABA is regulated by
phosphorylation/dephosphorylation mechanisms (Figure 1A).
For instance, ABA promotes the self ubiquitination and
degradation of KEG after phosphorylation, a process that
could be regulated by the SnRK2 kinases belonging to the core
ABA signaling complex (Antoni et al., 2011). Another kinase,
Calcineurin B-like Interacting Protein Kinase 26 (CIPK26)
interacts with the ABA signaling components ABI1, ABI2, and
ABI5. CIPK26 influences the sensitivity of germinating seeds to
the inhibitory effects of ABA and is also targeted by KEG for
proteasomal degradation (Lyzenga et al., 2013).

Our recent work points toward a role of protein kinase
CK2 in control of ZmOST1 protein degradation (Vilela et al.,
2015). CK2 phosphorylation enhances ZmOST1 interaction with
PP2C phosphatases, probably causing a sustained “off ” state of
kinase activity, and also primes SnRK2 for protein degradation
through the 26S proteasome pathway. Thus, CK2 seems to act
in dampening the ABA signal output through its action on
ZmOST1 while at the same time inducing ZmOST1 transcription
(Figure 1A). This type of regulation would be particularly
effective in the absence of ABA, with the silencing of SnRK2
output and the preparation of the new state of ABA response.

OTHER IMPLICATIONS OF CK2 ACTION
IN ABA SIGNALING
One particularly important process in the regulation of plant-
water relationship is the incorporation of circadian responses in
the output of the ABA signal. In fact, the regulation of circadian
rhythms to anticipate daily and seasonal environmental cycles
allows the plant to optimally incorporate external conditions into
internal processes. Stomata, for instance, are able to anticipate the
dawn and dusk signals, and are more responsive to ABA in the
afternoon, coinciding with the timing of (Ca2+) peak oscillations
(Seo and Mas, 2015).

Circadian rhythms are autoregulatory, endogenous rhythms
with a period of approximately 24 h. In Arabidopsis, the core
circadian clock is made up of genes that interact through a
series of transcriptional and post-transcriptional feedback loops
to create rhythmic gene expression (Seo et al., 2012; Bendix
et al., 2015). Briefly, the core circadian clock consists of a
negative feedback loop between the two homologous MYB-
like transcription factors CIRCADIAN CLOCK ASSOCIATED 1
(CCA1) and LATE ELONGATED HYPOCOTYL (LHY) on one
hand and TIMING OF CAB EXPRESSION1 (TOC1) on the other
(Fogelmark and Troein, 2014).

TOC1 and ABA work antagonistically to achieve the optimal
response towater status. ABA treatment induces TOC1 expression
and, in a feedback loop, TOC1 attenuates ABA signaling
and negatively regulates the expression of ABA signaling
genes. TOC1 mis-expressing plants have defects in ABA-
dependent stomata closure and altered tolerance to drought stress
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FIGURE 1 | (A) Regulation of ABA signaling by the control of protein turnover. In the absence of ABA, major regulators of the hormone such as the PYR/PYL/RCAR
receptors, the SnRK2 kinases, and several transcription factors (ABI3, ABI5, ABF1, ABF3) are degraded by the proteasome, and/or inactivated. In this way the
output of the ABA signal is thoroughly dampened in the absence of the hormone. When ABA levels rise, these major regulators are protected from degradation
through the inactivation or degradation of the negative regulators such as KEG. CK2 is known to mediate the stabilization and destabilization of proteins in other
systems and is a likely candidate to also have a role as a housekeeping kinase controlling protein turnover in ABA signaling. (B) Integration of the plant circadian
clock on ABA signaling. The core circadian clock consists of a negative feedback loop between the CCA1 and LHY on one hand and TOC1 on the other. ABA
treatment induces TOC1 expression and, in another feedback loop, TOC1 attenuates ABA signaling and negatively regulates the expression of ABA signaling genes
like ABAR, known to interact with the ABA central signaling complex. CCA1 an LHY act synergistic to ABA and antagonistic to TOC1 expression. CCA1 and LHY are
phosphorylated by CK2 targeting them for degradation, promoting CCA1 dimerization, CCA1-DNA complex formation, and interaction with the promoters of
downstream genes. ABAR is also a substrate of CK2 and, even though the effects of this activity are still unknown, they could include protein turnover and altered
gene expression by retrograde signaling from the chloroplast.
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(Legnaioli et al., 2009). Consequently, CCA1 an LHY should
be synergistic to ABA and antagonistic to TOC1 expression
(Pokhilko et al., 2013). Interestingly, one of the ABA genes
negatively regulated by TOC1 is themagnesium quelatase subunit
H (ABAR/CHLH/GUN5). ABAR is involved in retrograde
signaling and positively regulates guard cell signaling in response
to ABA. It has been recently demonstrated that ABAR and
OST1 can interact in vitro, but that ABAR phosphorylation is
independent of OST1 since it apparently acts upstream of the
PP2C-SnRK2 complex (Liang et al., 2015). It should be noted
that ABAR has been suggested as a potential substrate of cpCK2
(Reiland et al., 2009; Schonberg et al., 2014) but additional
experiments are required to elucidate the effect of CK2 activity on
this protein.

The phosphorylation of clock proteins plays a critical role
in generating proper circadian rhythms (Lu et al., 2011).
Overexpression of CK2 regulatory subunits (CKB3 or CKB4)
in Arabidopsis displays increased CK2 activity, a reduction
of the subjective day length inducing alterations in clock-
regulated gene expression, hypocotyl elongation, and flowering
time (Sugano et al., 1999; Perales et al., 2006). CCA1 and LHY
are phosphorylated by CK2 and this phosphorylation is required
for the normal functioning of the CCA1 protein (Daniel et al.,
2004). CK2 is involved in the temporal regulation of CCA1
protein activity, targeting it for degradation, promoting CCA1
dimerization, CCA1-DNA complex formation, and interaction
with the promoters of downstream genes, such as TOC1
(Kusakina and Dodd, 2012).

Thus, increasing levels of ABA lead to an increase in TOC1
levels, resulting in the repression of the ABA signal through the
down-regulation of ABAR/CHLH/GUN5 and CCA1 by TOC1.
Concomitantly, CK2 activity would regulate the level of CCA1
repression through its controlled degradation, and regulation of
protein andDNA interaction, in a process analogous to the SnRK2
repression explained earlier (Figure 1B).

CONCLUDING REMARKS
Our understanding of ABA signaling has expanded exponentially
in recent years. Two seminal works on a family of soluble proteins
that are able to bind ABA made possible the construction of
a functional model for ABA signal transduction (Ma et al.,
2009; Park et al., 2009). These ABA receptors (PYR/PYL/RCAR),
together with SnRK2 kinases and PP2C phosphatases constitute
the central core of ABA signaling.

The central core of ABA signaling controls a fast cellular
response to ABA that ranges from activation of ion transports
to a large transcription reprogramming. Nevertheless, there is

growing evidence that, following the initial response to ABA, the
persistence of the signal results in a secondary response that leads
to stress adaptation.ABA signaling is also capable of incorporating
several other processes, such as circadian rhythms, in their output.

Protein phosphorylation and dephosphorylation play a central
role in ABA signaling and promote the activation, deactivation,
sequestration and degradation of a wide range of protein
regulators. In addition to protein phosphorylation, regulation
of protein stability by the 26S proteasome is an important
mechanism for ABA signaling.

ABA signaling appears to undergo dynamic changes in the
steady state of some of its major components (Figure 1). In
the absence of the hormone, the PYR/PYL/RCAR receptors, the
SnRK2 kinases, and several transcription factors that elicit ABA
response are degraded by the proteasome, and/or inactivated.
This results in an effective dampening of the ABA signal.
Conversely, ABA has a protecting effect on the protein turnover
of these components and their activation. At the same time, ABA
transcriptionally regulates the future changes in the ABA signal.

CK2 mediated stabilization and destabilization of proteins
represents a known evolutionarily conserved mechanism.
Phosphorylation by CK2 enhances the polyubiquitination of
target proteins, signaling to or protecting from proteasomal
degradation. For instance, CK2 phosphorylation regulates
photomorphogenesis stabilizing HY5 and HR1 and promoting
degradation of PIF1 (Hardtke et al., 2000; Park et al., 2008; Bu
et al., 2011). In addition, CK2 does not appear to be under
major transcriptional regulation and the holoenzyme activity
appears to always be in an “on” state. These characteristics
make CK2 a housekeeping kinase that can modify protein
functions and protein turnover in a dynamic way. In the context
of ABA signaling, CK2 is already known to promote SnRK2
degradation through the 26S proteasome and inactivation
through the interaction with PP2C, and has been connected
with ABAR phosphorylation. Exploring the effects of CK2 in
the phosphorylation and ubiquitination of other ABA regulators
should help to give a broader perspective on ABA signal, protein
stability and integration of other processes in abiotic stress
responses.
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