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Shoot development in land plants is a remarkably complex process that gives rise
to an extreme diversity of forms. Our current understanding of shoot developmental
mechanisms comes almost entirely from studies of angiosperms (flowering plants), the
most recently diverged plant lineage. Shoot development in angiosperms is based
around a layered multicellular apical meristem that produces lateral organs and/or
secondary meristems from populations of founder cells at its periphery. In contrast, non-
seed plant shoots develop from either single apical initials or from a small population of
morphologically distinct apical cells. Although developmental and molecular information
is becoming available for non-flowering plants, such as the model moss Physcomitrella
patens, making valid comparisons between highly divergent lineages is extremely
challenging. As sister group to the seed plants, the monilophytes (ferns and relatives)
represent an excellent phylogenetic midpoint of comparison for unlocking the evolution
of shoot developmental mechanisms, and recent technical advances have finally made
transgenic analysis possible in the emerging model fern Ceratopteris richardii. This
review compares and contrasts our current understanding of shoot development in
different land plant lineages with the aim of highlighting the potential role that the fern
C. richardii could play in shedding light on the evolution of underlying genetic regulatory
mechanisms.
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INTRODUCTION

Land plants (embryophytes) evolved from aquatic green algae ∼470 million years ago, with
phylogenetic analyses consistently positioning charophytic (streptophyte) algae as the closest
extant sister group (Karol et al., 2001; Lewis andMcCourt, 2004; Wodniok et al., 2011; Ruhfel et al.,
2014). Whilst charophytes exhibit a range of vegetative body plans in the haploid (gametophyte)
generation of the lifecycle (reviewed in Niklas and Kutschera, 2010), the diploid (sporophyte)
generation of the lifecycle is unicellular; the single-celled product of gamete fusion (zygote)
directly undergoes meiosis. By contrast, in all land plants the zygote undergoes intervening mitotic
divisions to create a multicellular sporophyte (the embryo), the uppermost part of which has
become specialized into a photosynthetic shoot. Although amulticellular sporophyte is the defining
characteristic of land plants, the structure has undergone enormous diversification and elaboration
during evolution, from simple and transient (as in the stalked sporangium in most bryophytes)
to highly complex and long-lived (as in the tree-forms of various vascular plants). In all cases,
however, meiosis ultimately generates haploid gametophytes to complete the lifecycle.
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Successive land plant lineages have innovated new sporophytic
shoot structures, leading to increasing morphological and
physiological complexity (Figure 1). Understanding the
genetic mechanisms underlying the origins and continued
modification of the land plant shoot is one of the primary
aims of research into plant evolution and development
(evo-devo). Although the characterization of evolutionary
trajectories is not always straightforward, because many lineages
that contained informative intermediate characters are now
extinct, reconstruction is possible through comparison of
extant species to infer plesiomorphies (ancestral traits) and
apomorphies (derived traits). Our understanding of how land
plant morphologies evolved is based mostly on comparative
developmental studies between representative model species,
predominantly the flowering plants Arabidopsis thaliana and

Oryza sativa and the moss Physcomitrella patens. Further
models are increasingly being exploited as experimental systems
for molecular analyses, including the liverwort Marchantia
polymorpha and lycopods in the genus Selaginella (the genome of
Selaginella moellendorffii has been sequenced (Banks et al., 2011)
whilst the bulk of developmental data comes from S. kraussiana).
A substantial amount of detailed developmental data has been
accumulated in these and other non-seed plant lineages (reviews
include White and Turner, 1995; Banks, 2009; Renzaglia et al.,
2009; Ligrone et al., 2012; Vasco et al., 2013, and references
therein). Key developmental characteristics relating to shoot
development are summarized and compared between the
different models discussed in this review in Figure 2. However,
at present the bulk of gene function data available outside of the
angiosperms is from the moss P. patens. The large evolutionary

FIGURE 1 | The evolution of shoot development across land plants. Simplified phylogenetic tree of extant land plants, based on Qiu et al. (2006), charophytic
algae shown as outgroup. Filled triangles represent monophyletic clades, whereas the bryophyte grade is paraphyletic. Broader clades used for reference in this
review are defined by the green bars above the phylogeny. Key innovations relating to shoot development are marked on the tree, relating to gametophyte shoot
architecture (purple) or sporophyte shoot architecture (blue), respectively.
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FIGURE 2 | Comparing shoot development across model land plants. Comparison of shoot characteristics found in the gametophyte (pink) and sporophyte
(blue) generations of select developmental/genetic model plant species, including examples from most extant land plant (embryophyte) lineages. Broader clade
denominations between these lineages are indicated by green bars above (see Figure 1). It should be noted that not all model species are entirely representative of
development within each lineage, in particular the mosses and liverworts. Examples from other species and fossil data are included in this review where necessary to
provide a more accurate representation of evolutionary trajectories.

distance between these two ends of the land plant phylogeny has
made interpretation of such comparisons extremely challenging
and, in some cases, of little use. It should be noted that model
species are not always wholly representative of their extant
relatives, nor necessarily the ancestral state of that particular
lineage. This is particularly problematic in bryophyte lineages
such as the mosses, where the fossil evidence and diversity
in extant species highlight the potential for confusion over
the ancestral state (see Shoot Branching section). Although in
this review we necessarily focus on the combined genetic and
developmental data available from model species, where required

we highlight fossil data or examples from non-model species
to better represent evolutionary trajectories or the ambiguity
currently surrounding them.

One group of plants that is notably absent in most
comparative studies is the monilophytes (ferns and their
relatives). Monilophytes are the most closely related extant land
plant lineage to seed plants (Figure 1; Pryer et al., 2001). As
such, monilophytes are a highly informative phylogenetic node,
both as outgroup to the seed plants and as an intermediate
lineage to provide resolution for functional comparisons between
homologous genes in bryophytes and angiosperms. That said,

Frontiers in Plant Science | www.frontiersin.org 3 November 2015 | Volume 6 | Article 972

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Plackett et al. Evolution of land plant shoots

the monilophytes themselves represent an ancient and highly
diverse lineage, diverging from the seed plants 400 million
years ago (Pryer et al., 2001) and encompassing a wide
variety of growth habits including tree forms, aquatics and
epiphytes (reviewed in Schuettpelz and Pryer, 2008; Watkins and
Cardelús, 2012). The largest clade of ferns, the leptosporangiate
ferns, account for approximately 80% of non-flowering vascular
plant species (Schuettpelz and Pryer, 2009). A number of
developmental innovations have occurred independently within
the monilophyte lineage, including the evolution of lateral
organs (fronds) and heterospory (Figure 1). However, to date
our understanding of fern developmental genetics has been
impeded by serious technical barriers that are only now being
overcome. These barriers include typically very large genomes
(Barker and Wolf, 2010; Bainard et al., 2011), an obstacle
further complicated by frequent polyploidy (Wood et al., 2009),
and a lack of any genetic transformation system. Two fern
species are now coming to prominence as research vehicles:
Ceratopteris richardii, a homosporous fern long-established in
laboratories for developmental studies and teaching (Hickok
et al., 1995); and the heterosporous aquatic fern Azolla
filiculoides, a species potentially well-suited for industrial biomass
production (Brouwer et al., 2014). Efforts are currently underway
to sequence the genomes of both species (Sessa et al., 2014),
and a wealth of transcriptome data is being generated in diverse
fern species via the 1 KP project (Wickett et al., 2014). In
addition, a number of stable genetic transformation methods
have recently been reported, including methods that are suitable
for C. richardii (Muthukumar et al., 2013; Plackett et al., 2014;
Bui et al., 2015). In light of these advances, the study of ferns to
aid our understanding of shoot evolution is being viewed with
increasing enthusiasm (Bennett, 2014; Banks, 2015; Harrison,
2015). A review of our current understanding of the genetic
regulation of shoot development across the land plants, including
what little is already known about monilophytes, is thus timely
and presents an opportunity to outline the key developmental
questions that need to be answered.

THE EVOLUTION OF LAND PLANT
SHOOTS

The alternation of multicellular haploid gametophyte and diploid
sporophyte generations is a shared feature of all land plant
lifecycles. However, the relative dominance of each generation
changed as new land plant lineages evolved. In bryophytes
(liverworts, mosses, and hornworts) the dominant generation of
the lifecycle is the gametophyte. For example, the haploid spores
of P. patens germinate to form filamentous gametophytes that
transition into shoot-like structures (gametophores; Figure 3A)
that produce leaf-like organs (phyllidia) and ultimately male
and female gametangia (gamete-producing structures; reviewed
in Kofuji and Hasebe, 2014). Upon fertilization, the diploid
zygote undergoes a strictly determinate developmental program
to become an unbranched sporophyte axis terminating in
a single sporangium. Within vascular plants (tracheophytes)
the role of the sporophyte generation increased at the

expense of the gametophyte, which fossil evidence suggests
occurred at the base of the clade (reviewed in Gerrienne
and Gonez, 2011). Indeterminate branched sporophytes are
found in all tracheophyte lineages, for example the lycophyte
S. kraussiana (Figure 3B), whilst the S. kraussiana female
and male gametophytes, respectively, produce a thallus inside
the megaspore or directly generate gametangia upon spore
germination (Robert, 1971, 1973). Similar development has been
recorded in the related species S. apoda (Schulz et al., 2010).
Gametophyte development in monilophytes is also reduced
compared to bryophytes. The C. richardii gametophytes develop
as a single cell-layered thallus comprising a few specialized cell
types (reviewed in Banks, 1999). The subsequent sporophyte
develops as an indeterminate shooting structure, producing
fronds sequentially from a persistent post-embryonic shoot apex
(Figures 3C–E; Johnson and Renzaglia, 2008). In angiosperms
the sporophyte develops a highly complex, indeterminate body-
plan from multiple post-embryonic shoot apical and axillary
meristems (Figure 3F; Gifford and Foster, 1989), whereas the
male and female gametophytes comprise just a few cells each
(reviewed in McCormick, 2004; Yadegari and Drews, 2004). In
bryophytes and angiosperms the sporophyte and gametophyte,
respectively, are fully dependent on the dominant stage of the
lifecycle for nutrition (matrotrophic), whereas in both lycophytes
and ferns the gametophyte develops independently of the
sporophyte and, beyond a transient period where the sporophyte
embryo develops upon the gametophyte, the sporophyte is not
nutritionally dependent upon the gametophyte (reviewed in Qiu
et al., 2012).

From a developmental perspective, canonical plant shoots
(as generally recognized in vascular plants) can be defined
as a process, i.e., they develop iteratively from an apex to
produce lateral organs. Using this definition, the gametophores
of extant mosses and ‘leafy’ liverworts can also be classified
as shoots, possessing an axial body-plan. In contrast other
liverwort species (including M. polymorpha) and all hornworts
develop a thalloid body-plan (comprising multiple cell layers),
which possesses apical growth in common with shoots but
lacks defined lateral organs (Figure 2; reviewed in Renzaglia
et al., 2009; Ligrone et al., 2012; Villarreal and Renzaglia,
2015). Although presumably arising from a common origin, the
precise evolutionary relationship between the axial and thalloid
body-plans in early diverging embryophytes is not yet fully
resolved (reviewed in Qiu et al., 2012), and so at present it is
not possible to assess character polarity. It is, however, quite
probable that shared developmental characters are underpinned
by conserved genetic mechanisms (see examples given in the
review below).

A second important component to this definition of the
shoot is the concept of indeterminate growth. The P. patens
sporophyte demonstrates apical growth but only transiently,
terminating after just a few cell divisions in a sporangium
(reviewed in Kato and Akiyama, 2005). Recent transcriptome
data from developing liverwort and moss sporophytes indicates
expression of meiosis-associated genes even during embryonic
stages (Frank and Scanlon, 2015), further suggesting that these
sporophytes lack indeterminacy and thus true shoot function.
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FIGURE 3 | Continued
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FIGURE 3 | Continued

Shoot apical activity across representative model land plants. (A–G) Shoots and lateral organs of representative model land plant species; (A) Physcomitrella
patens gametophore; (B) Selaginella kraussiana shoot and microphylls, showing unequal apical branching; (C–E) Ceratopteris richardii sporophyte (C), showing
emergence of new frond from the shoot apex (D) and a fully developed reproductive frond with lateral pinnae (E); (F,G) Arabidopsis thaliana sporophyte with axillary
branches emerging (F), showing a rosette leaf (G). The position of shoot apical cells (SAC) and lateral apical cells (LAC) are marked. A. thaliana develops from a
multicellular shoot apical meristem (SAM), and axillary branches develop from the activity of similar, axillary meristems [SAM(axl)]. A. thaliana leaves develop from a
multicellular primordium and lack an apical cell (AC) or meristem. (H,I) Diagrammatic summary of different AC geometries and division patterns. (H) tetrahedral AC
with three cutting faces; (I) single AC with two cutting faces; (J) adjacent paired ACS with two cutting faces each. Daughter cells (merophytes), generated through
asymmetric divisions that reconstitute the AC, are marked M, and numbered in order of their production. For clarity, the most recently formed merophyte is
highlighted in blue. In the case of paired ACs, these and their descendants are distinguished by ‘a’ and ‘b’ accordingly. In the interests of clarity, beyond the first
division only the further divisions of AC ‘a’ are shown: these are mirrored by the activity of AC ‘b’. The complex multicellular SAM of A. thaliana is not shown.
(K) Table summarizing the developmental contexts in which the different shoot ACs in (H–J) are found, referring to the labels marked in (A–G) and distinguishing
whether they occur in the gametophyte (pink) or sporophyte (blue) generation.

Similarly, the thalloid gametophytes of the ferns C. richardii
and Lygodium japonicum initially grow from transient apical
cells (ACs) that then terminate (Banks, 1999; Takahashi et al.,
2015). Interestingly, in both species, growth of the chordate
hermaphrodite thallus continues through proliferation of a
second, distinct multicellular meristematic region (the ‘notch
meristem’), iteratively generating archegonia until successful
fertilization has occurred (Banks, 1999; Takahashi et al.,
2015). Development of the strap-like thalloid gametophyte
of the epiphytic fern Colysis decurrens follows the same
principles, with a single transient early AC followed by an
indeterminate multicellular marginal meristem (Takahashi et al.,
2009). The parallels with canonical shoot development are
striking, but whether the notch/marginal meristem represents
the reduction of an ancestral gametophytic shoot has yet to be
determined.

The origins and early evolutionary trajectory of the vascular
plant shoot are much debated, with several competing theories
presented (reviewed in Tomescu et al., 2014), but there is
general agreement on the key developmental innovations that
occurred during shoot evolution: indeterminate apical activity,
organogenesis, shoot branching, and developmental phase-
change.

SHOOT INDETERMINACY- APICAL
CELLS VERSUS MULTICELLULAR
MERISTEMS

Cells with shoot apical function (i.e., having indeterminate cell
fate) are present in all extant land plant lineages (Figure 2;
Steeves and Sussex, 1989). In seed plants (gymnosperms and
angiosperms) these are part of a highly organized, multicellular
shoot apical meristem (SAM), whereas in non-seed plants
(bryophytes, lycophytes, and monilophytes) they exist as a
distinct single AC, or small cluster thereof (Figures 2 and 3).
Although they vary in size, shape, and number of cutting planes,
ACs can be defined as dividing asymmetrically to produce
derivatives and replenish themselves.

The P. patens gametophore possesses a single persistent
tetrahedral (pyramid-shaped) AC that cleaves sequentially in
three planes to generate determinate leaf-like organs (Figure 3H;
Harrison et al., 2009). Tetrahedral ACs are also found in the

gametophytic shoots produced by ‘leafy’ liverworts (Crandall-
Stotler, 1980) but these undergo a different pattern of asymmetric
cell division that could indicate convergent evolutionary origins,
a suggestion supported by differing formative division planes
during lateral organ formation (Crandall-Stotler, 1986). In
contrast, the single ACs of thalloid bryophyte gametophytes
display a different geometry, at maturity cleaving across four
faces in both thalloid liverworts (Leitgeb, 1881; Kny, 1890)
and hornworts (recently reviewed in Renzaglia, 1978). Extant
sporophytes in all three bryophyte lineages exhibit entirely
determinate development, developing from temporary ACs
and/or intercalary basal meristems (reviewed in Bartlett, 1928;
Crandall-Stotler, 1980; Kato and Akiyama, 2005). It is therefore
possible that persistent ACs first arose in the gametophyte stage of
the land plant lifecycle, and became incorporated into sporophyte
development.

Whether a single AC truly represents the plesiomorphic state
of the tracheophyte shoot apex is still debated (Banks, 2015;
Harrison, 2015); a number of lycophyte and fern species posses
multiple ACs at their apex (reviewed in White and Turner,
1995), whereas others such as the ferns Nephrolepsis exaltata
(Sanders et al., 2011) and C. richardii (Hou and Hill, 2002)
develop from a single tetrahedral AC (Figure 3H). Evidence
from histology and clonal analysis suggests that S. kraussiana
shoots develop from two adjacent ACs (Figure 3J; Harrison
et al., 2007; Harrison and Langdale, 2010), although single
ACs can be observed in the early stages of minor branch
formation (Harrison et al., 2007) and other authors have
suggested that this condition persists (Jones and Drinnan,
2009). The multicellular SAM in seed plant shoots is at least
superficially more complex in structure than these examples.
The SAM comprises discrete functional zones, namely a central
multicellular zone of pluripotent cells and a surrounding
peripheral zone of cells from which lateral organ primordia are
specified; both zones overlap distinct tissue layers derived from
separate cell lineages (reviewed in Gaillochet and Lohmann,
2015). It has recently been proposed that lycophyte and
monilophyte ACs, subtended by a transcriptionally distinct and
rapidly proliferating ‘core domain’ of daughter cells, might
be functionally equivalent to the central zone of the SAM
(Frank et al., 2015). Laser capture microdissection (LCM)-
RNAseq comparison between apices from S. moellendorffii,
the monilophyte Equisetum arvense and the angiosperm Zea
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mays (maize) found disparate expression profiles between the
lycophyte and monilophyte ACs, but the core domain of both
species expressed numerous genes associated with developmental
regulation in the maize SAM (Frank et al., 2015). As such,
envisaging the AC alone as functionally equivalent to a SAMmay
be too simplistic.

Sufficient data is now available to examine how homologs of
genes with important functions in the A. thaliana SAM function
in other land plant groups. A number of distinct modules
are crucial to maintaining SAM identity and indeterminacy
(summarized in Figure 4). The CLAVATA/WUSCHEL
(CLV/WUS) pathway regulates the size of the apical initial
domain within the multicellular SAM (Schoof et al., 2000;
Bäurle and Laux, 2005), and the Class I KNOTTED1-like
HOMEOBOX/ASYMMETRIC LEAVES, ROUGH SHEATH,
PHANTASTICA (KNOX/ARP) pathway regulates indeterminate
cell fate versus specification of the determinate leaf development
program (Schneeberger et al., 1998; Timmermans et al., 1999;
Tsiantis et al., 1999; Byrne et al., 2000; Guo et al., 2008; reviewed
in Gaillochet and Lohmann, 2015). In some angiosperms Class
1 KNOX expression is later reactivated in established leaf
primordia to generate compound leaves (see Phase Change
section). Both the CLV/WUS and KNOX/ARP pathways require
intercellular communication, which is mediated at least in part by
movement of the component proteins between cells (Lucas et al.,
1995; Lenhard and Laux, 2003; Yadav et al., 2011). A third family
of transcription factors, Class III homeodomain-leucine zipper
(HD-Zip), is also required for SAM formation and maintenance,
the function of which is antagonized by the KANADI (KAN)
genes (Emery et al., 2003; reviewed in Floyd and Bowman, 2007).

Although a WUSCHEL-related HOMEOBOX (WOX) gene is
preferentially expressed in the P. patens gametophyte AC (Frank
and Scanlon, 2015), the CLV1 and CLV2 gene families are absent
from the P. patens genome (Banks et al., 2011), precluding the
existence of the WUS-CLV regulatory module. In contrast, Class
III HD-Zip and KAN homologs have been identified in P. patens
(Sakakibara et al., 2001; Floyd and Bowman, 2007; Banks et al.,
2011) but none are enriched in the AC (Frank and Scanlon,
2015). The expression of Class I KNOX genes has been reported
in the P. patens gametophore AC (Frank and Scanlon, 2015)
but no loss-of-function mutant phenotypes have been detected
in the gametophyte (Singer and Ashton, 2007; Sakakibara et al.,
2008), and ARP genes are absent from the P. patens genome
(Banks et al., 2011). As such, there is currently no molecular
evidence to support the suggestion that these components of
the SAM regulatory network were established in gametophyte
shoots.

The ancestral role for KNOX proteins is sporophytic, as
inferred from studies in chlorophyte algae where hetero-
dimerization of a KNOX and a BELLRINGER protein facilitates
zygote formation (Lee et al., 2008). In angiosperms, Class 1
KNOX expression is essential for SAM maintenance (Long
et al., 1996; Vollbrecht et al., 2000; Belles-Boix et al., 2006). In
the P. patens sporophyte, Class 1 KNOX genes are expressed
transiently in the AC during phases of cell proliferation. However,
loss-of-function mutants demonstrated that although Class I
KNOX genes promote sporophytic cell divisions and regulate

their orientation, they are not essential for apical activity per
se (Sakakibara et al., 2008). Within the tracheophytes, Class
1 KNOX expression has been detected in the shoot apices
of both S. kraussiana and S. moellendorffii with expression
localized to either the AC (Frank et al., 2015) or cells
immediately subtending it (Harrison et al., 2005). In both
cases, transcripts were absent from newly developing organ
primordia, a pattern similar to that seen in the angiosperm
SAM (e.g., Jackson et al., 1994). Class 1 KNOX activity in
angiosperm leaf primordia is repressed by ARP gene function,
as a consequence of which the two components display mutually
exclusive expression patterns (Timmermans et al., 1999; Tsiantis
et al., 1999; Byrne et al., 2000; Guo et al., 2008). Class 1
KNOX expression is seen in both the shoot apex and young
organ primordia of the ferns Osmunda regalis (Harrison et al.,
2005), Annogramma chaeophylla (Bharathan et al., 2002) and
C. richardii (Sano et al., 2005), although transcripts are absent
from older primordia. ARP homologs are expressed in the
organ primordia of both S. kraussiana and O. regalis (older
primordia only), but they are also co-expressed with Class 1
KNOX at the shoot apex (Harrison et al., 2005). The ancestral
function of Class 1 KNOX appears to relate to cell division
in the land plant sporophyte, but in the absence of mutant
phenotypes in lycophytes or monilophytes it is impossible
to say at what stage it became essential for AC/meristem
maintenance. Based on observed expression patterns, the
evolution of the mutually exclusive KNOX/ARP expression
pattern may have occurred coincident with the formation of
the SAM in seed plants. Overexpression and complementation
studies in A. thaliana suggest that Class 1 KNOX and ARP
homologs from lycophytes and monilophytes, respectively, can
provide some of the same functions as endogenous A. thaliana
genes (Harrison et al., 2005; Sano et al., 2005), but these
experiments are not informative about what these genes do in
their native context. Currently there is no transgenic system
available in a lycophyte species, but future functional studies in
C. richardii should begin to resolve some of these functional
questions.

At present, much less is known about the function and
expression of other SAM gene homologs within non-seed
vascular plants. Although one WOX gene is detected at the
S. moellendorffii shoot apex, it is not expressed in the AC, instead
transcripts accumulate within the core domain and in developing
primordia (Frank et al., 2015). There may be greater conservation
of HD-Zip function between lycophytes and angiosperms: a Class
III HD-Zip homolog is strongly expressed in the S. kraussiana
shoot AC (Floyd et al., 2006) and KAN expression is up-regulated
in the core domain beneath them (Frank et al., 2015). In the
C. richardii sporophyte, expression of Class III HD-Zip homologs
has been detected (Aso et al., 1999; Floyd et al., 2006) but
spatial expression data is not yet available. Thus, although known
regulators may have a role in apical development within vascular
plants, whether their specific functions are conserved or differ
remains to be established.

Phytohormones are another important regulatory force within
the angiosperm SAM, acting to integrate other developmental
signals. Cytokinin (CK) maintains the indeterminate central
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FIGURE 4 | Conservation of the genetic regulators of shoot apical meristem (SAM) function across model land plant species. Summary table
comparing known data about expression patterns and gene function of homologs of important regulators of the A. thaliana SAM across different land plant model
species. Higher phylogenetic relationships between the model species are indicated by color coding (see Figures 1 and 2). In the case of Selaginella, genetic and
developmental data come from both S. kraussiana and S. moellendorffii, as specified. Gene families highlighted in gray are absent from the genome of that particular
species.
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zone by promoting WUS expression in a complex multiple
feedback loop (reviewed in Gaillochet and Lohmann, 2015), and
CK biosynthesis is up-regulated by the Class 1 KNOX gene
SHOOTMERISTEMLESS (STM; Jasinski et al., 2005; Yanai et al.,
2005), thus linking Class 1 KNOX and WUS activity. STM
also represses biosynthesis of gibberellin (GA) within the SAM
(Jasinski et al., 2005), which otherwise promotes tissue growth
and differentiation. Interestingly, a homolog of the GA response-
repressing DELLA transcription factor is up-regulated in the
S. moellendorffii shoot apex (Frank et al., 2015), suggesting a
conserved requirement for GA suppression, although the same
was not found in the monilophyte E. arvense. In P. patens, CK
signaling-related transcripts are up-regulated in the gametophore
AC (Frank and Scanlon, 2015), and exogenous CK promotes
AC identity, causing increased branching and the development
of ectopic meristematic cells in callus-like tissue (Coudert et al.,
2015). Application of CK is also sufficient to induce callus tissue
at the shoot apex of C. richardii sporophytes (Plackett et al.,
2014). Collectively these observations point to an ancestral and
conserved function for CK in regulating AC function and shoot
development. Importantly, loss of Class 1 KNOX function does
not perturb the expression of CK biosynthesis gene homologs in
the P. patens sporophyte (Sakakibara et al., 2008), indicating that
functional links between Class 1 KNOX and CK emerged in the
tracheophyte lineage.

A second hormone, auxin, functions to promote pluripotency
in the central zone of the angiosperm SAM by enhancing CK
signaling (reviewed in Gaillochet and Lohmann, 2015), and both
CK and auxin signaling are present in all land plant lineages
(Wang et al., 2015). Disruption to polar auxin transport (PAT)
in S. kraussiana causes the shoot apex to terminate, supporting
a conserved function for auxin in indeterminate cell fate in
lycophyte and angiosperm shoot apices (Sanders and Langdale,
2013). Notably, in situ analysis of a PIN auxin transporter
in S. moellendorffii detected PIN expression surrounding the
shoot AC, with a concomitant increase in expression of an
AUXIN RESPONSE FACTOR (ARF) in the AC (Frank et al.,
2015). This suggests the presence of an auxin maximum (peak
in concentration) at the lycophyte AC. Presumably perturbed
PAT therefore leads to a decrease in auxin levels in the
AC, and hence to the observed termination (Sanders and
Langdale, 2013). Recent analysis in M. polymorpha also found
the greatest concentration of auxin in apical/meristematic regions
(Eklund et al., 2015). Conversely, phenotypic analysis of pin
mutants in P. patens identified a role for PAT in maintaining
gametophore AC function by preventing auxin accumulation
at the AC (Bennett et al., 2014). This apparent contradiction
may relate to the inhibitory role of auxin in suppressing
axillary branching in the moss gametophore, which is not
found in lycophytes or monilophytes (see Shoot Branching
section). Despite this difference, interactions between the auxin
and CK signaling pathways are thought to promote AC
fate in the P. patens gametophore (reviewed in Kofuji and
Hasebe, 2014), as they do in angiosperm SAMs. As such, the
auxin-CK signaling module likely became associated with AC
function and shoot indeterminacy in the earliest diverging land
plants.

ORGANOGENESIS AND LATERAL
ORGAN DEVELOPMENT

It is often assumed that the morphology of the majority of
extant bryophyte sporophytes is representative of ancestral
sporophytes, being single axes with no lateral outgrowths
(reviewed in Kato and Akiyama, 2005). It has been proposed
that the transition from an unbranched shoot axis to a complex,
indeterminate shoot branching system occurred in a stepwise
fashion (reviewed in Tomescu et al., 2014). One of the most
significant steps in this trajectory was the evolution of lateral
organs, i.e., ‘leaves.’ Leafless fossils have been assigned to each
of the lycophyte, monilophyte, and seed plant clades (Kenrick
and Crane, 1997), and subsequent analysis of fossil characters
against extant species strongly suggest that lateral organs evolved
independently within the three tracheophyte lineages (Boyce and
Knoll, 2002; Sanders et al., 2009; Tomescu, 2009). To avoid
confusion, the term ‘megaphylls’ (describing both fern fronds
and seed plant leaves) is not used in this review because of their
probable independent origins. The term ‘frond’ is instead used to
distinguish monilophyte lateral organs from the seed plant ‘leaf.’
Importantly for developmental studies, it has been proposed
that lycophyte lateral organs (‘microphylls’) have an independent
evolutionary origin to both fronds and leaves, arising as tissue
outgrowths which later became vascularized (the enation theory;
Bower, 1935) as opposed to being modified lateral branches of
vascularized shoots (the telome theory; Zimmermann, 1952).
Notably, a comparison of genetic mechanisms operating in
these different lateral organs provided evidence for KNOX/ARP
function in the formation of microphylls, monilophyte fronds
and seed plant leaves (Harrison et al., 2005). This suggests that
the same pathway was recruited to distinguish determinate lateral
organs from indeterminate shoots during the evolution of both
microphylls and megaphylls.

Lateral organs arise sequentially from the shoot apex across
all lineages, but through different generative mechanisms.
Angiosperm lateral organ primordia develop from multicellular
populations of founder cells specified at the periphery of the
SAM whereas lateral organs in non-seed plant lineages arise
from a single or a few initials derived from the shoot AC
(reviewed in Steeves and Sussex, 1989; Gaillochet et al., 2015).
Lateral organ ACs are for the most part morphologically distinct
from their corresponding shoot AC (with the exception of
S. kraussiana), comprising wedge or lenticular shapes with only
two cutting faces (Figure 3K). Similar AC shapes are found
in early stages of bryophyte thallus development (reviewed
in Ligrone et al., 2012). The phyllidia of moss gametophores
each arise from a single AC that is specified within two cell
divisions of the shoot AC (Harrison et al., 2009). Sector analysis
demonstrated that microphylls arising from S. kraussiana shoots
initiate from a pair of adjacent ACs (Harrison et al., 2007),
strikingly mirroring the two-celled nature of the shoot apex.
Fern fronds typically (but not always) arise from a single
AC (reviewed in Vasco et al., 2013). Non-seed plant lateral
organ growth is therefore largely driven by ordered patterns
of cell division at the tip of the structure (Figure 3), whereas
in seed plant leaves cell divisions occur across the organ
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and morphogenesis is co-ordinated by non-cell autonomous
‘supracellular’ mechanisms (reviewed in Dengler and Tsukaya,
2001; Fleming, 2002).

Whilst a great deal is now understood about the specification
of angiosperm leaf primordia, in which positional signals such
as transient auxin maxima are critical (see below), very little is
known about the specification of lateral organ initials. In both
P. patens gametophores (Harrison et al., 2009) and S. kraussiana
shoots (Harrison et al., 2007), cells arising from shoot and
leaf initials follow predictable fates. Although these patterns
could indicate cell-autonomous mechanisms for specification,
it has been demonstrated in similarly predictable systems that
perturbations to division patterns do not change cell fate
specification (e.g., van den Berg et al., 1995, 1997), and thus
that non-cell autonomous signals can at least compensate
for loss of any lineage-based mechanisms. Studies of fern
development have found that new frond and pinna initials
are specified within distinct merophytes, i.e., groups of related
cells descended from a single daughter cell of the AC, in a
manner similar to that seen in P. patens and S. kraussiana
(Hou and Hill, 2002; Sanders et al., 2011). However, a role
for non-cell autonomouss signals is more evident in this case
because newly arisen frond primordia develop as shoots if
grown in isolation from the shoot apex and older fronds,
demonstrating that frond identity is specified by the apex and/or
other fronds (reviewed in Vasco et al., 2013). In C. richardii,
specification of the frond initial is increasingly delayed after
cleavage from the shoot AC as development progresses (Hou
and Hill, 2002), and patterning of sporangia on reproductive
pinnae is dependent on cell position (Hill, 2001). Thus, although
fern frond development displays tip-based acropetal growth in
common with bryophytes and lycophytes, there is also evidence
for non cell-autonomous regulation of developmental patterning
in common with angiosperms.

In the case of bryophytes, lycophytes, and seed plants,
development of individual lateral organs is determinate. In
contrast, fern frond development is iterative, with further
subordinate ACs arising from the products of the frond
AC, resulting in the outgrowth of pinnae (Figures 3C–E).
Interestingly, pinna development on C. richardii reproductive
fronds is driven by the activity of two adjacent ACs (Figure 3J;
Hill, 2001), rather than the single AC seen at the apex of vegetative
fronds (Figure 3I; Hou and Hill, 2002), suggesting a functional
distinction between the two hierarchical levels (Figure 3K).
Frond development is fully indeterminate in some fern species
(Vasco et al., 2013), and fossil fronds of early monilophytes also
contain indeterminate characters (Sanders et al., 2009). Together
with fossil analysis that shows shoot branching in both fern
and seed plant lineages prior to the emergence of lateral organs
(Sanders et al., 2009), these observations suggest that fern fronds
originated as modified shoots.

Polar auxin transport is an essential component of
organogenesis at the angiosperm SAM (Reinhardt et al., 2003),
where transient auxin maxima in the peripheral zone specify
the site of each incipient lateral organ (Vernoux et al., 2011).
Similarly, blocking PAT in the P. patens gametophore disrupts
phyllidia outgrowth and development (Bennett et al., 2014;

Viaene et al., 2014), with extreme examples lacking lateral organs
entirely. PAT is also necessary for correct boundary formation
between the shoot ACs and microphyll initials in S. kraussiana,
but microphyll initiation per se is unaffected by inhibition of
PAT (Sanders and Langdale, 2013). The functions of PAT in the
fern sporophyte remain to be investigated, but microsurgical
experiments found that primordia do not arise independently, in
that each primordium influences the positioning of subsequent
primordia at the shoot apex (reviewed in Vasco et al., 2013). At
least superficially, this reflects what happens in the angiosperm
shoot apex. These observations suggest a conserved role for
auxin and PAT in specifying which cells at the apex contribute to
lateral organs, and a more divergent role in organ initiation and
outgrowth. PAT also has a conserved role in specifying which
cells within the lateral organ will form vascular tissue, influencing
venation patterns in angiosperm leaves (Scarpella et al., 2006),
fronds of the fernMatteucia struthiopteris (Ma and Steeves, 1992)
and microphylls of S. kraussiana (Sanders and Langdale, 2013).
More detailed analysis of auxin and PAT function in C. richardii
shoot development would determine the extent to which these
different auxin functions are each conserved within the vascular
plants.

As in the case of auxin, two aspects of HD-Zip function appear
to be differentially conserved in vascular plants. In addition
to functions within the SAM, Class III HD-Zip transcription
factors in A. thaliana specify adaxial fate and sites of vascular
development in newly formed leaf primordia (Prigge et al., 2005;
reviewed in Floyd and Bowman, 2007). Expression patterns in
two gymnosperms indicate a conserved role for specifying adaxial
leaf fate in seed plants (Floyd and Bowman, 2006), but no
expression is found in newly formed microphyll primordia of
S. kraussiana (Floyd and Bowman, 2006). In contrast, expression
patterns support a conserved role in the developing vasculature
of S. kraussiana microphylls (Floyd and Bowman, 2006; Floyd
et al., 2006). Given that vasculature evolved in the tracheophytes
prior to lateral organs, it is likely that HD-Zips and auxin
were first recruited to specify veins, a role that is conserved in
extant lycophytes, ferns, and seed plants. When lateral organs
subsequently evolved in each of the three lineages, HD-Zip
function was modified for specification of leaf polarity in seed
plants but not in lycophytes. Closer analysis of HD-Zips in
fern frond development would determine whether a role in
leaf polarity was independently adopted in monilophytes, and
functional analysis in P. patens should reveal the ancestral role
in non-vascular plants.

SHOOT BRANCHING

The ability to branch is a key innovation in sporophyte shoot
development. Two distinct branching systems are found in
tracheophytes: apical branching, where the shoot apex bifurcates;
and the outgrowth of lateral (axillary) meristems produced in
association with lateral organs (reviewed in Sussex and Kerk,
2001). Apical branching is found across the tracheophytes,
including lycophytes (such as S. kraussiana; Harrison et al.,
2007), monilophytes (although not C. richardii; Bierhorst,
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1977) and in some seed plants (reviewed in Gola, 2014). The
existence of tracheophyte fossils such as Cooksonia, which have
determinate, branched sporophytes (reviewed in Boyce, 2010),
suggests that apical branching is the ancestral sporophytic
branching mechanism. In addition, the existence of non-vascular
polysporangiate fossils (recently reviewed in Edwards et al.,
2014) indicates that sporophyte branching emerged prior to the
divergence of the first tracheophytes. Most extant bryophyte
sporophytes comprise a single axis, but examples of sporophyte
apical branching have also been reported in extant mosses
and liverworts (Leitgeb, 1876; Györffy, 1929; Bower, 1935).
Apical branching is also seen during thallus development of
liverwort and hornwort gametophytes (Schuster, 1984a,b). Thus
the capacity for sporophyte branching presumably first originated
prior to the divergence of bryophytes and vascular plants, but
whether branched sporophytes represent an ancestral state in any
of the bryophyte lineages is unknown.

Multiple different cellular mechanisms for apical branching
have been described across land plants (reviewed in Gola,
2014), such as the proliferation of existing ACs in S. kraussiana
to establish new axes without interruption (Harrison et al.,
2007) or the loss of a single AC followed by initiation of
multiple new branch initials, as seen in some leptosporangiate
ferns (Hébant-Mauri, 1993). The genetic mechanisms underlying
apical branching are poorly understood. Experiments in P. patens
demonstrated that disturbance of PAT or LEAFY (LFY) gene
function can induce sporophyte branching and the production
of two terminal sporangia (Tanahashi et al., 2005; Fujita et al.,
2008; Bennett et al., 2014). In S. kraussiana and fern shoot
apices, branching occurs in a regular pattern after a fixed number
of lateral organs have been initiated (Bierhorst, 1977; Harrison
et al., 2007), suggesting the involvement of a time or distance-
dependent regulatory mechanism. Excising S. kraussiana shoot
tips from a parent plant disrupts this mechanism, resulting
in a far greater interval before branching re-initiates, and
thus implying that branching is regulated by a mobile signal
(Sanders and Langdale, 2013). Auxin is an important branching
regulator in seed plants, imposing apical dominance by inhibiting
outgrowth of axillary buds through basipetal PAT (reviewed in
Müller and Leyser, 2011). S. kraussiana shoots exhibit basipetal
PAT, but inhibiting auxin transport did not affect the branching
interval (Sanders and Langdale, 2013). The different apical
branching modes could reflect either convergent evolution of
different mechanisms or subsequent diversification from an
ancestral branching mechanism. Further study in all non-seed
plant lineages is necessary to resolve this.

Early tracheophyte sporophyte fossils exhibit equal
(dichotomous) branching (Boyce, 2010), but in subsequent
lineages shoot architecture is more complex, with unequal
branch growth and apical dominance. Apical branching in
S. kraussiana is unequal (Figure 3B): one branch becomes the
major growth axis because of an unequal partitioning of the
AC population at the time of branching (Harrison et al., 2007).
Unequal branch growth has been proposed as an important
component in the origins of lateral organs as part of the telome
theory (reviewed in Sussex and Kerk, 2001), with a progression
from equal (dichotomous) branching to an asymmetric

branching structure with a dominant shoot apex. The regulatory
mechanisms underpinning the evolution of unequal growth
have so far not been investigated. Shoot growth in seed plants
is regulated by the hormone GA (reviewed in Fleet and Sun,
2005), triggering degradation of the DELLA transcription factors
that otherwise restrict growth (reviewed in Ueguchi-Tanaka
and Matsuoka, 2010). Functional GA signaling evolved after
the divergence of the bryophytes (Hirano et al., 2007; Yasamura
et al., 2007), although evidence from S. moellendorffii suggests
that GA originally regulated reproductive development and not
vegetative shoot growth (Aya et al., 2011). The advent of unequal
branch growth in the tracheophyte sporophyte might therefore
be linked with the co-option of GA signaling as a regulator of
vegetative growth.

In contrast to other tracheophytes, shoot architecture in
seed plants is dominated by axillary branching (reviewed in
Sussex and Kerk, 2001). De novo lateral meristems arise in
the axils of leaves after lateral organ formation, a process
that requires a local depletion of auxin followed by a ‘pulse’
of CK (Wang et al., 2014). Basipetal PAT from the SAM
inhibits axillary bud outgrowth by maintaining high local
auxin concentrations, whereas CK promotes their activation by
antagonizing auxin function (reviewed in Müller and Leyser,
2011). Axillary branching is also found in moss gametophores
where lateral branches arise from single initials re-specified from
epidermal cells (Berthier, 1972 and references therein; reviewed
in La Farge-England, 1996). Experiments in P. patens show that,
in striking similarity to seed plant shoots, apically synthesized
auxin creates a zone of branching inhibition equivalent to apical
dominance (although basipetal PAT is not involved), whilst
CK correspondingly promotes branching (Coudert et al., 2015).
The degree to which this represents convergent evolution is
unclear. Chemical and genetic manipulation of auxin levels
in M. polymorpha indicate a role in apical dominance and
branching in the liverwort thallus (Kaul et al., 1962; Binns and
Maravolo, 1972; Davidonis and Munroe, 1972; Maravolo, 1976;
Flores-Sandoval et al., 2015), indicating a potential ancestral
role for auxin in apical dominance at the base of the land
plants. A third hormone, strigolactone (SL), is an important
repressor of branch outgrowth in angiosperms (reviewed in
Janssen et al., 2014). SL biosynthesis and signaling are thought
to have originated prior to the evolution of land plants (Delaux
et al., 2012;Wang et al., 2015), and SL has been shown to similarly
repress branching in the P. patens gametophore (Coudert et al.,
2015). Thus, the hormonal regulation of axillary branching
is strongly similar in bryophyte gametophytes and seed plant
sporophytes.

The precise origins of axillary branching remain unknown.
Interestingly, branch points in Selaginella species generate
de novo structures termed ‘angle meristems’ (Cusick, 1954;
Jernstedt et al., 1992). These can develop into aerial roots or
shoots, with shoot fate promoted through increased CK or
inhibition of PAT (Sanders and Langdale, 2013). The nature of
fern fronds is still not fully resolved, but they bear a superficial
resemblance to the axillary shooting structure in seed plants,
in that ACs are initiated at the frond margin in a hierarchical
manner to produce pinnae (Sanders et al., 2011). Many fern
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species (including C. richardii) also develop de novo foliar
buds on the adaxial surface of otherwise differentiated lateral
organs, which are capable of becoming independent sporophytes
(reviewed inVasco et al., 2013). From these observations, it can be
hypothesized that axillary branching in seed plantsmay have been
derived from mechanisms of lateral apical development similar
to that seen in fern fronds, potentially relating back to ancestral
apical branching mechanisms. However, given that axillary buds
are derived from the adaxial surface of the developing lateral
organ primordia in angiosperms (McConnell and Barton, 1998),
it is perhaps more likely that the axillary branching mechanisms
were co-opted from those operating to form de novo shoots
in the context of monilophyte foliar buds and/or lycophyte
rhizophores. In either case, a greater understanding of fern shoot
and frond development will be highly informative in addressing
this question.

PHASE CHANGE- MODIFYING APICAL
AND LATERAL ORGAN DEVELOPMENT

It can be inferred from extant bryophytes that the ancestral
sporophyte was purely reproductive in nature, consisting
entirely of a stalked sporangium. In contrast, all tracheophyte
sporophytes precede reproduction with a vegetative phase that
can be short or prolonged depending on the combined activity
of endogenous developmental cues and external environmental
signals. The developmental origins of this vegetative phase
are unclear, and theories to explain its appearance include
sterilization of sporangia or interpolation of a novel vegetative
structure prior to development of the ancestral reproductive
sporophyte (reviewed in Tomescu et al., 2014). Expression
analysis of embryonic liverwort and moss sporophytes found
evidence of meiosis-associated gene function, even prior to visible
sporangium formation (Frank and Scanlon, 2015). It has been
proposed that repression of these genetic programs in the early
sporophyte led to indeterminate development and, ultimately,
the emergence of a vegetative phase. This evidence is consistent
with the hypothesis of Bower (1908) that proposed that the
elaboration of the sporophyte was driven by selective pressure to
delay meiosis (recently reviewed in Qiu et al., 2012).

The vegetative phase can be further sub-divided into
juvenile and adult phases, the transitions distinguishable in
angiosperms through changes in leaf shape and properties such
as leaf hairs and cuticle composition (reviewed in Huijser and
Schmid, 2011). Similarly, S. kraussiana exhibits a developmental
phase change, distinguishable as a change from juvenile spiral
phyllotaxy to adult dorsiventral asymmetry (Harrison et al.,
2007). Consistent with this, C. richardii fronds also undergo a
strong and gradual heteroblastic change in morphology during
vegetative development, progressing from simple, spade-shaped
lamina to highly dissected forms (Hou and Hill, 2002). In
angiosperms these phase changes, including the transition to
reproductive development (see below) are regulated by two
microRNAs, miR156 and miR172 (reviewed in Huijser and
Schmid, 2011). miR156 expression has been detected in non-
seed plants including mosses and ferns, although corresponding

gene function is not known, whereas conservation of miR172
outside of the angiosperms is still subject to debate. Downstream
of these regulators, changes in leaf shape between the juvenile
and adult phases in angiosperms are caused by a number of
diverse, independently originating mechanisms (reviewed in Bar
and Ori, 2015), including reactivation of Class 1 KNOX gene
expression in leaf primordia (e.g., in tomato; Hareven et al.,
1996), ectopic expression of LFY (e.g., in pea; Hofer et al.,
1997), or through the activity of the REDUCED COMPLEXITY
(RCO) homeodomain protein (e.g., in brassicas; Vlad et al.,
2014). Activity of these transcription factors, along with the
organization of discrete auxin maxima along the leaf margin,
promote localized cell divisions in the leaf that convert entire
leaf blades into more complex structures with serrated, dissected
or compound morphology. Whether the underlying mechanisms
driving changes in C. richardii frond morphology are conserved
with those regulating phase transitions in seed plants is currently
unknown.

The most evident phase change during tracheophyte shoot
development is the transition to reproductive growth (reviewed
in Huijser and Schmid, 2011). In angiosperms, the SAM
converts to an inflorescence meristem (IM) that produces floral
meristems (FMs) subtended by bracts at its periphery. This
transition is promoted by the LFY transcription factor, which
is up-regulated in the SAM (Weigel et al., 1992). LFY also
plays a role in the reproductive transition in gymnosperms
(Mouradov et al., 1998). In P. patens, however, LFY instead
regulates the first division of the zygote (Tanahashi et al.,
2005), a function clearly distinct from its known role in seed
plants. P. patens LFY (PpLFY) homologs are expressed in
gametophore shoot apices throughout development, and also
in the developing archegonium and the developing sporophyte
(Tanahashi et al., 2005). However, no loss-of-function mutant
phenotype is obvious in the gametophyte. C. richardii LFY
(CrLFY) homologs are also expressed in both gametophytic and
sporophytic tissues (Himi et al., 2001), but no functional data
have yet been reported. These observations suggest ancestral
functions for the LFY gene family in tracheophytes that cannot
be predicted from our current knowledge of seed plants.

Whether LFY has a role in reproductive transitions in
lycophytes and monilophytes is not known, but this question
is particularly pertinent in ferns where sporangia develop
on ‘fertile’ fronds rather than as distinct structures arising
from the shoot apex. Transcriptional analysis of the fern A.
filiculoides found that homologs of genes associated with the
angiosperm floral transition were up-regulated in sporogenous
tissues, including FLOWERING TIME (FT) and LFY (Brouwer
et al., 2014). Consistent with a role in reproductive development,
CrLFY expression has also been detected in the shoot apex
and in developing reproductive fronds (Himi et al., 2001).
The functional divergence of LFY between angiosperms and
bryophytes is reflected in changes in protein structure that alter
target specificity (Sayou et al., 2014). As a consequence, PpLFY
homologs cannot complement lfy loss-of-function mutants in
A. thaliana (Maizel et al., 2005). A CrLFY homolog (CrLFY2) can
partially complement the A. thaliana lfy mutant (Maizel et al.,
2005), indicating some functional conservation but equally that
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CrLFY function is not identical to that in angiosperms. Notably,
LFY expression in angiosperms is promoted by GA to induce
flowering (Blázquez et al., 1998) andGA treatment ofCeratopteris
thalictroides accelerates the production of fertile fronds (Stein,
1971). These results suggest that at least some reproductive
functions of LFY might be conserved between monilophytes and
seed plants, although in light of changing target specificity the
downstream mechanisms could vary (see below).

Floral meristem development represents a modification of
organogenesis and shoot development within the angiosperms,
producing modified lateral (floral) organs in successive,
concentric whorls and then terminating the meristem (reviewed
in Irish, 2010). Most closely studied in A. thaliana, floral organ
identity and shoot determinacy are governed by MADS box
transcription factors. Two major types of MADS box genes
are found across eukaryotes, with type I MADS box genes
having received least attention. Type I genes are involved in
female gametophyte development and post-zygotic lethality of
interspecific hybrids, and mutants generally display phenotypes
that are only subtly different from wild-type (Alvarez-Buylla
et al., 2000). Type II MADS box genes, with a role in gamete
formation in representatives of the sister lineage to land plants
(Tanabe et al., 2005), underwent a duplication after the transition
to land, diverging into an MIKC* clade, implicated mainly in
male gametophyte development (Zobell et al., 2010; Kwantes
et al., 2012) and an MIKCc clade, functioning mostly in the
sporophyte. In seed plants, MIKCc MADS box genes are
expressed, with one exception, exclusively in the sporophyte
generation (Zobell et al., 2010), whereas they are expressed in
both generations in ferns and mosses (Münster et al., 1997;
Hasebe et al., 1998; Quodt et al., 2007). It is therefore presumed
that MIKCc MADS box gene function became canalized from
an ancestral role in gametophyte development to sporophyte
reproduction in seed plants (Nishiyama et al., 2003).

In a revealing analogy to how HOX genes organize the animal
body plan (Shubin et al., 1997), floral MIKCc MADS box genes
were first described in angiosperms for their patterning role
during flower development, as part of the ABCEmodel (Bowman
et al., 1989; Schwarz-Sommer et al., 1990; Coen and Meyerowitz,
1991; Pelaz et al., 2000). The eye-catching examples whereby
homeotic mutations swapped organs such as legs and antenna
in the fly Drosophila melanogaster or petals and stamens in
A. thaliana flowers propelled and popularized the field of evo-
devo. But beyond the in-depth studies conducted originally in
the model flowers of A. thaliana and Antirrhinum majus, and
the necessary modifications to the ABCE model when delving
into other branches of the flowering plant phylogeny (Litt and
Kramer, 2010), little is known today about the function of
ancestral MADS box genes, prior to the evolution of seed plants.

Interrogation of the S. moellendorffii genome and subsequent
analyses conclude that at least two Type II genes were present
in the common ancestor of vascular plants (Banks et al.,
2011; Gramzow et al., 2012) but the ABCE class genes are
seed plant-specific. Gymnosperms have orthologs of B and
C class MIKCc genes; the expression of the former during
male cone development and the later during female and male
cone development, points to a conserved role in sporophyte

reproductive structures across seed plants (Tandre et al., 1995,
1998; Rutledge et al., 1998; Mouradov et al., 1999; Shindo et al.,
1999; Sundström et al., 1999; Winter et al., 1999; Jager et al.,
2003; Zhang et al., 2004). The origin of the different clades of
angiosperm-specific MIKCc genes, including the floral homeotic
genes, is presumed to trace back to the seed plant ancestor
after the evolution of ferns (Gramzow and Theißen, 2015). This
hypothesis is consistent with the absence of floral homeotic gene
orthologs from the genomes of P. patens and S. moellendorffii
(Rensing et al., 2008; Banks et al., 2011; Gramzow et al.,
2012). Similarly, homologs of MIKCc genes identified from
ferns cannot be assigned to particular subclades of ABCE class
genes. In C. richardii, at least eight MIKCc MADS box genes
belonging to three main clades have been reported, representing
an independent line of evolution from the seed plant MADS box
genes and occupying an intermediate position between those of
moss and of the major clades of seed plants (Münster et al., 1997;
Hasebe et al., 1998; Gramzow et al., 2012; Kwantes et al., 2012).
Expression of these genes has been detected in the shoot apex and
in both developing vegetative and reproductive fronds (Figure 4;
Hasebe et al., 1998). Within the bryophytes, P. patens has six
MIKCc-type MADS box genes, which are expressed in both
the gametophyte and sporophyte generation, and development
of both is impaired upon down-regulation (Quodt et al., 2007;
Singer et al., 2007).

In light of the documented substantial bias toward seed
plants (mostly angiosperms) in the study of MIKCc MADS box
genes, the prospect of investigating the role of these important
regulators of plant development in an evolutionary intermediate
plant lineage such as ferns is timely. Unfortunately, the current
lack of a transgenic system in lycophytes hinders any immediate
prospects of learning about their function in the earliest lineage
of vascular plants. Yet the time is ripe for functional studies in a
representative of the fern lineage. Such studies will offer a unique
glimpse into the function of these genes before they evolved
their important role in the development of the flower as a key
innovation.

Within the angiosperms the MIKCc MADS box genes are
directly activated by LFY (reviewed in Irish, 2010). While the
regulatory relationship between LFY and the floral homeotic
genes is an established fact in angiosperms, and possibly
conserved within seed plants, it is unknown how early in land
plant evolution this module was established. Coincident patterns
of gene expression between the gymnosperm LFY homolog
NEEDLY (NDLY) and the MIKCc MADS box genes, and the
ability of NDLY to largely rescue the A. thaliana mutant lfy-1
suggested that LFY-mediated regulation of floral MADS box
orthologs was already present in the ancestor of seed plants
(Mouradov et al., 1998).Whether LFY regulatesMADS box genes
outside of seed plants is unclear. Non-overlapping patterns of
expression of C. richardii LFY and MADS box genes suggest
that LFY homologs may not have functioned as regulators of
MIKCc MADS box genes prior to seed plants (Münster et al.,
1997; Hasebe et al., 1998; Himi et al., 2001). Functional analysis
of CrLFY in C. richardii will facilitate the reconstruction of the
LFY gene response network in general, and of its relationship to
the MADS box genes in particular.
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CONCLUSION AND PERSPECTIVES

In seed plants, shoots and organs develop from the co-ordinated
activity of multiple cells, requiring complex intercellular
communication to co-ordinate development. In contrast, non-
seed plant shoots typically develop from single or multiple
distinct ACs. With little known about the genetic pathways
underlying AC function, based on morphology they were
considered to be functionally divergent from the SAM. However,
recent cell-specific expression analysis has suggested that it
is inappropriate to think of ACs as single-cell shoot apices,
with a number of regulatory mechanisms associated with seed
plant SAMs expressed in tissues immediately surrounding them.
A comparison between ACs from different land plant lineages
suggests a gradual accumulation of conserved shoot apical
regulatory mechanisms, a number of which (e.g., Class 1 KNOX,
CK and auxin) are associated with apical function in earliest
diverging bryophyte lineages. Beyond the shoot apex, however,
greater divergence is evident in the regulation of organogenesis
and subsequent lateral organ development. This is perhaps to
be expected, as it reflects the independent origins of lateral
organs within each lineage of vascular plants: the lycophytes,
monilophytes, and seed plants.

Close scrutiny of the monilophyte (fern) shoot system
highlights differences compared to both the moss and flowering
plant developmental models, P. patens and A. thaliana.
Arising from single or paired ACs, C. richardii shoot and
frond development nevertheless shows indications of complex
supracellular regulation more similar to flowering plants than
to moss. However, the evidence to date points to independent
origins for fern fronds and seed plant leaves, with frond
development more equivalent to flowering plant shoots than to
leaves. In short, ferns are not more elaborate mosses or slightly
simpler flowering plants, but posses a distinct and complex
developmental identity of their own.

In most aspects of shoot development covered in this
review, relatively clear trajectories can be inferred between the
bryophytes and the tracheophytes, including the conservation
or adaptation of several ancestral regulatory mechanisms.
Although major evolutionary changes occured during the
bryophyte-tracheophyte transition, equally significant alterations
to shoot development occurred within the vascular plant
lineages, and the questions regarding these are often intractable
based on current data. As sister group to the seed plants,
exploring fern development has the potential to dramatically
improve our understanding of seed plant evolution and to

fully resolve the broader evolutionary trajectories that have
occurred in land plants as a whole. Throughout this review
we have highlighted numerous specific examples where further
information regarding gene function in a fern would be
invaluable. Given the broad diversity of the monilophytes,
it is probable that numerous model species will ultimately
be required from within this clade to fully understand
different adaptive aspects of their development. Despite its
derived aquatic adaptations, C. richardii can be considered
a good candidate as an initial model species because, as a
leptosporangiate fern, it represents a major clade within the
monilophytes. Of crucial advantage, however, are the facts
that it has already been established for laboratory use and
the tools for genetic analysis in this species have now been
developed. Forward genetic analysis (i.e., identification of
unknown genes involved in a particular developmental process
through mutants) has been exploited successfully in C. richardii
to elucidate the pathway regulating sex-determination during
gametophyte development (Warne and Hickok, 1991; Banks,
1994, 1997; Strain et al., 2001), and a double-haploid mapping
population between two C. richardii ecotypes was used to
create a genetic linkage map (Nakazato et al., 2006). Until
now, however, such approaches have been severely limited
by a lack of resources, with large-scale mutant libraries
such as those available for A. thaliana not yet established.
The recent development of methods to genetically transform
C. richardii is therefore an important milestone, as it will allow
investigation of gene function in a monilophyte via a reverse
genetics approach (manipulation of candidate gene expression
or function), and hopefully also provide the impetus to improve
the other genetic resources available for this and other fern
species.
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