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World population is expected to reach 9.2 × 109 people by 2050. Feeding them will
require a boost in crop productivity using innovative approaches. Current agricultural
production is very dependent on large amounts of inputs and water availability is a major
limiting factor. In addition, the loss of genetic diversity and the threat of climate change
make a change of paradigm in plant breeding and agricultural practices necessary.
Average yields in all major crops are only a small fraction of record yields, and drought
and soil salinity are the main factors responsible for yield reduction. Therefore there is
the need to enhance crop productivity by improving crop adaptation. Here we review
the present situation and propose the development of crops tolerant to drought and salt
stress for addressing the challenge of dramatically increasing food production in the near
future. The success in the development of crops adapted to drought and salt depends
on the efficient and combined use of genetic engineering and traditional breeding tools.
Moreover, we propose the domestication of new halophilic crops to create a ‘saline
agriculture’ which will not compete in terms of resources with conventional agriculture.

Keywords: food security, abiotic stress, breeding methods, salt tolerance, drought tolerance, biotech crops,
biotechnology

INTRODUCTION

Current world population is about 7.2 × 109 people and is projected to grow by almost 30% over
the next 35 years, to reach 9.2 × 109 individuals by 2050 (Figure 1A). FAO estimates indicate
that it will be necessary to increase agricultural production by at least 60% over 2005–2007 levels
to meet the expected demand for food (Alexandratos and Bruinsma, 2012). Looking back at the
recent past this goal, a priori, does not seem so difficult to be achieved. Indeed, in the last 50 years,
specifically between 1960 and 2009, world population more than doubled while it was still possible
to increase the amount of food per capita, from 2200 Kcal/person/day to an average of more than
2800 Kcal/person/day. This means that today enough food is produced to feed everyone living
on this planet. Clearly, this food is not distributed evenly: while food supply in Europe reached
in 2009, on average, almost 3400 Kcal/person/day, the mean figures for Africa were below the
2600 Kcal/person/day level (Figure 1B; FAOSTAT, 2015). A fairer distribution of food worldwide is
largely a matter of political will and international solidarity. In consequence it is frequently argued
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FIGURE 1 | Global population, food supply and crop yield trends. (A) World population since 1960 to 2050. (B) Food supply (Kcal/capita/day) in different
regions of the world since 1961 to date. (C) Yield evolution for primary crops since 1960. (D) Most important crops for food energy supply. All data taken from
FAO-STAT (http://faostat3.fao.org/home/E). Figures ellaborated by the authors from FAOSTAT data (FAOSTAT, 2015).

that there will be no technical problems to feed the world’s
population if we are able to share the available food resources.
Unfortunately, this reasoning is flawed when taking a look on our
present agricultural systems, the challenges posed by the climate
change and the need of sustainability.

Beyond the Green Revolution: Present
Situation and Challenges for the Near
Future
Between the 1940s and 1970s, scientific and technical advances
induced a new trend in agricultural practices that enabled
growers to increase crop yields dramatically. Such movement
was later known as the ‘Green Revolution’ (GR; Borlaug
and Dowswell, 2005). The first major innovation of the GR
consisted in the development of new high-yielding, disease-
resistant (mainly to stem rust), and semi-dwarf wheat cultivars
(Dubin and Brennan, 2009) which then was spread to other
crops. Another key point of the GR was the monoculture
practice and the replacement of traditional agricultural
methods by modern approaches and technologies, including the
massive use of agrochemicals (pesticides, herbicides, chemical
fertilizers), mechanization of labor, and a large increase in
the area of irrigated crop land (Evans, 1998). This new way
of conceiving agriculture boosted the food production of
primary crops and has resulted in increasing yields every year
(Figure 1C).

Despite the undeniable positive effects of the GR, there is also a
negative side of the strategies used in the past, which may hamper
further increases in food production under the present, quite
different circumstances. In many cases, the agricultural systems
established during the GR have evolved toward an excessive use of

intensive production practices that may not be sustainable. They
include, among others: greenhouses for continuous production
of certain commodities all around the year, lack of crop rotation,
the massive and uncontrolled use of synthetic fertilizers, or
the cultivation in semi-arid regions of species with high water
requirements, which need large amounts of irrigation water.
These practices may cause a series of problems for agricultural
production in the near future, such as the appearance of new
pathogens and pests and also the depletion, contamination, and
salinization of soils and ground waters (Shiva, 1991; Dehaan and
Taylor, 2002; McDonald and Linde, 2002). In addition, the use of
fertilizers from non-sustainable or non-renewable sources (e.g.,
synthetic fertilizers, mineral phosphate) may also limit crop yields
when their availability decreases in the medium or long term
(Shiva, 1991; Stewart et al., 2005).

In addition, GR caused direct impacts on diet and on diversity.
On the one hand, staple crops were improved and the total
amount of protein and energy available to people was increased,
but not the nutritional value in terms of micronutrients;
this, together with the reduction of the variety of products
consumed (specially by poor people) led to an increase of the
micronutrient malnutrition which is known as ‘hidden hunger’
(Welch and Graham, 2002). On the other hand modern uniform
cultivars with high yields and resistances to many pests and
diseases gradually substituted traditional cultivars, heirlooms,
and local varieties. This situation was detrimental to the use
and conservation of the latter, and many of those cultivars were
lost forever (Hammer and Khoshbakht, 2005). That is, GR has
favored the global predominance of a narrow range of crop
species and cultivars (Figure 1D). Moreover, modern cultivars
frequently encompass a low genetic diversity themselves as seed
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companies usually restrict their breeding materials to a very
limited genetic pool. The process of gradual (and irreversible)
decline of agricultural diversity, and consequently of their gene
pool, i.e., ‘genetic erosion,’ may jeopardize food production in the
future (FAO, 2010). Thus, the loss of genetic diversity decreases
the opportunities to find new sources of variation to fight
future challenges (e.g., new pests and diseases or new races in
already known pests and diseases, changing environments) to
which modern varieties will not provide resistances or tolerances
(Esquinas-Alcázar, 2005).

Apart from the aforementioned reasons concerning crop
varieties and agricultural techniques, many other circumstances
will hamper the necessary increase in food production in the
years ahead (Vermeulen et al., 2012). First, the forecasted effects
of global climate change, with an increase in mean temperatures
worldwide and more frequent, longer and more intense extreme
weather phenomena, such as droughts, ‘heat waves,’ or floods,
will obviously affect negatively overall agricultural production
(IPCC, 2014). The temperature increase may allow cultivation
of some crops in regions which were previously too cold
to grow them, and a higher atmospheric CO2 concentration
will stimulate photosynthesis and plant growth, but these side
effects will not compensate at all the general reduction of crop
yields worldwide (Bita and Gerats, 2013). Lack of rain and
higher temperatures are already contributing to the spreading
of desertification, mostly in arid and semi-arid regions, and the
situation is expected to worsen in the near future. Similarly, an
increasing problem also exacerbated by climate change is the
loss of irrigated cropland due to ‘secondary’ soil salinization
(see below) (Connor et al., 2012). There is also an increasing
demand for biofuels, which are at present obtained from
food crops and produced in arable land and thus competing
with food production (Searchinger et al., 2015). Therefore, it
is imperative to develop and implement new strategies for
improving agricultural production worldwide.

Strategies to Increase Global Food
Production
Increasing the Global Cropland Area
One of the simplest ways to improve agricultural production
with the current technology and crop cultivars would be to
significantly extend the global cropland area. However, new
agricultural lands are scarcely available or can only be obtained at
a high environmental cost. Also, land cultivated with irrigation is
much more productive than rainfed cropland. Irrigation systems
are currently used to grow crops in about 280 × 106 ha. of
arable land (Fischer et al., 2008); this represents just under 20%
of the total cultivated land, but produces more than 40% of
world food supplies (Munns and Tester, 2008). Therefore, a
significant increase in the area of irrigated arable land would
lead to a parallel increase in food production. Unfortunately,
this will not be possible in a world where fresh water for
irrigation is becoming an increasingly scarce resource. Another
possibility would be the use of natural habitats of great
ecological value, such as rainforests, but it would be against the
necessary sustainability of natural resources and conservation
of biodiversity. The use of our actual high-input agriculture

in marginal, low-fertility land will be also unsustainable, as it
will require large inputs of agrochemicals and could not be
maintained for a long time. In addition, at the moment the
area available for agriculture is actually being reduced, mostly
by the change of land use due to urban development and
industrialization in many emerging economies and developing
countries.

Increasing Area of Biotech Crops
Once the possibilities of significantly increasing the overall area
of cultivated land or the relative area of irrigated land are
ruled out, there is still room for improving crop yields by
extending the arable land used to grow biotech crops, since
they have higher average productivity than their conventional
counterparts as shown by the assessment of the global economic
impact of GM crops from the beginning of their large-
scale commercial cultivation in 1996 (Brookes and Barfoot,
2014; Klümper and Qaim, 2014) and despite some studies
indicate the contrary in specific cases (Elmore et al., 2001;
Ma and Subedi, 2005). In 2014, the total area of GM crops
was 181.5 million hectares, which represents about 13% of
global farmland (James, 2014). Yet the rate of adoption of
the main current GM food crops (herbicide tolerant, and/or
insect resistant soybean, maize and rapeseed) is already very
high in the major producing countries, leaving little, or no
room for expansion. Therefore, an important increase in the
general productivity of these crops could only occur in those
countries with low adoption rate (James, 2014). Another way
to augment total agricultural production could be based on
increasing the cultivation of GM varieties of ‘minor’ crops
that at present occupy a very small proportion (<1%) of
global biotech arable land. Nevertheless, only about half of
the extra profit obtained by farmers growing GM crops is
due to their higher productivity, and the rest because of
savings in labor and energy costs (Brookes and Barfoot,
2014). Therefore, the expected increase in the worldwide
cultivation area of our present biotech crops may contribute,
but probably only to a limited extent, to the needed increase
in food production in the next decades. In addition, genetic
transformation is carried out on previously improved, ‘GR-
derived’ crop varieties, so that cultivation of those GM plants
does not solve the aforementioned drawbacks and limitations of
our present agricultural systems, regarding lack of biodiversity,
high inputs requirements, or nutritional and sustainability
issues.

A step forward, and another possibility to improve agricultural
production, is the cultivation of ‘second generation’ biotech crops
where the introduced traits are related to nutritional aspects
rather than yield. Among other examples, we can mention
the iconic ‘golden rice’ which synthesize β-carotene in the
endosperm (Ye et al., 2000). Also the development of a GMmaize
expressing the enzyme phytase in the seeds, which are used as
feed for monogastric animals (pigs, poultry); this modification
allows increasing the assimilation of inorganic phosphate making
growth and meat production more efficient, while decreasing the
environmental pollution caused by the animals manure (Chen
et al., 2008).
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Increasing Yield under Abiotic Stress Condition
For all crops, average yields are only a fraction of maximum
potential yields or even of record yields actually obtained under
optimal cultivation conditions. These differences are mostly due
to abiotic stresses affecting the plants growing in the fields, such as
water or salt stress, wind, hail, flooding, cold, high temperatures,
ozone, UV irradiation, etc. All these stressful conditions cause
yield losses which can range from about 50%, for sugar beet
or potato, to more than 80%, as it is the case for sorghum or
wheat (Buchanan et al., 2000). Drought and high soil salinity, in
particular, are the major causes reducing crop productivity, and
hence food production worldwide (Bartels and Sunkar, 2005).

Drought is the single stressful environmental factor most
devastating for agriculture. Inadequate rainfall brings about a
progressive decrease in the amount of available water in the soil,
affecting plant growth and development and reducing crop yields;
prolonged periods of drought cause premature plant death and
the complete loss of the crop and, eventually, the abandonment
of the land. This problem will worsen in the near future in arid
and semiarid regions, the most affected by the forecasted effects
of climate change, which include the occurrence of longer, more
frequent and more intense drought periods (IPCC, 2014). In fact,
almost 50% of the earth’s land surface is arid or semiarid, but
cropland in these regions is actually the most productive, as far
as enough water is available for irrigation. If drought means that
irrigation is needed to allow efficient crop growth, prolonged
irrigation brings another serious problem for agriculture: soil
salinization. At present, more than 20% (and up to 50% according
to some estimates) of irrigated cropland is affected by salt, to
a greater or lesser extent (Owens, 2001; Flowers, 2004). After
years or decades of continuous irrigation, toxic ions dissolved
in irrigation water (even if fresh, good-quality water is used)
progressively accumulate in the soil, leading to this ‘secondary
salinization’ – of anthropic origin– which causes the loss of more
of 10 million hectares of arable land every year (Owens, 2001);
these losses are expected to increase in the years ahead, again
because of the foreseeable effects of climate change. In addition
to the loss of agricultural land due to secondary salinization, there
are large areas of naturally saline and alkaline soils, amounting to
about 6% of the world’s land surface. These marginal lands have
never been cultivated because of their high soil salinity, as our
present major crops are all salt-sensitive.

If varieties of our major crops are bred for abiotic stress
tolerance (AST), especially with enhanced tolerance to drought
and high soil salinity, it is evident that there is a wide margin
for the improvement of crop productivity. Availability of drought
tolerant crops will allow growing them in arid and semiarid lands,
providing reasonable yields without depending on irrigation
water, or at least with reduced irrigation. These varieties could
even help to recover agricultural abandoned farmland where
cultivation of conventional crops is not profitable due to the
low yields obtained. Similarly, salt tolerant crops will have a
positive effect on crop productivity in irrigated agriculture;
despite progressive soil salinization, these plants could maintain
stable yields, and could also be grown using brackish water for
irrigation – thus saving good-quality fresh water for human
consumption and other uses. Salt-tolerant crops will also help

to reclaim former arable land already lost due to secondary
salinization (Owens, 2001), or could even be grown in naturally
saline, marginal soils.

Summarizing, drought and salt-tolerant crops may
significantly contribute to increase crop productivity and food
supply by reducing yield losses and extending the area available
for agriculture. In order to develop these tolerant varieties
in the shortest possible time, all possible strategies should be
used: genetic engineering and generation of transgenic plants,
conventional breeding with the help of the new biotechnological
tools available to the breeder and domestication and/or use of
halophytes. These three issues are going to be discussed in the
following sections.

DROUGHT AND SALT TOLERANT GM
CROPS

Searching for ‘Stress Tolerance’ Genes
A lot of effort has been invested in the last 20–30 years in
the isolation and characterization of genes involved in stress
response pathways (Figure 2), with the expectation that their
overexpression in transgenic plants would confer improved
tolerance to abiotic stress. They include, for example, genes
encoding ion transporters or enzymes of osmolyte biosynthesis.
Moreover, most stressful environmental factors induce an
increase in cellular ‘reactive oxygen species’ (ROS) levels thus

FIGURE 2 | Diagram of basic and general stress responses caused by
high soil salinity or drought. Under stress, plant cells try to counteract
cellular dehydration through ion homeostasis and osmotic balance (Zhu,
2001; Munns and Tester, 2008; Kronzucker and Britto, 2011). Osmolytes not
only contribute to osmotic adjustment, but also play ‘osmoprotectant’ roles
(Ashraf and Foolad, 2007; Chen and Murata, 2008; Flowers and Colmer,
2008; Szabados and Savouré, 2010). They act as low-molecular-weight
chaperons, directly stabilizing macromolecular structures and have additional
functions in the mechanisms of response to stress, as ‘reactive oxygen
species’ (ROS) scavengers, signal transduction elements or molecules for the
storage of C and/or N and energy to be used during recovery from stress. The
diagram has been elaborated by the authors.

Frontiers in Plant Science | www.frontiersin.org 4 November 2015 | Volume 6 | Article 978

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Fita et al. Drought/salt tolerant food crops

causing, as a secondary effect, oxidative stress in plants.
Consequently, another basic and general response to abiotic
stress involves the activation of enzymatic and non-enzymatic
antioxidant systems to mitigate oxidative damage of DNA,
membranes and proteins. All these responses are mediated by
major stress-induced changes in gene expression patterns, which
also include the synthesis of specific ‘protective’ proteins, such as
heat-shock proteins (HSPs), late embryogenesis-abundant (LEA)
proteins, osmotin, etc. There are 100s of reports in the literature
describing how the expression of these genes may confer variable
levels of tolerance to drought, salinity, high temperatures, and/or
other abiotic stresses to the GM plants. Many of these papers are
mentioned in a number of reviews published over the last years
(e.g., Apel and Hirt, 2004; Wang et al., 2004; Battaglia et al., 2008;
Chen and Murata, 2008; Miller et al., 2008; Ashraf, 2009; Türkan
andDemiral, 2009; Szabados and Savouré, 2010; Gil et al., 2013); a
few specific examples are briefly described below, and some more
are summarized in Table 1.

Ion Transporters
One of the first reports on improvement of salt tolerance
in transgenic plants overexpressing ion transporters refers to
Arabidopsis thaliana transformed with the AtNHX1 gen from
the same species, encoding a vacuolar Na+/K+ antiporter (Apse
et al., 1999). Later-on, promising results were obtained when
the same gene was expressed in tomato plants, which appeared
to become highly tolerant to NaCl and accumulated salt in
the leaves, but not in the fruits; that is, the quality of the
harvested product was not affected (Zhang and Blumwald,

2001); however, these results were soon challenged since they
could not be reproduced by other authors (Cuartero et al.,
2006). Overexpression of a different Na+/K+ antiporter, this
time of the plasma membrane (AtSOS1) also increased salt
tolerance in transgenic Arabidopsis plants (Shi et al., 2003). More
recent research has demonstrated, again in A. thaliana, that the
tissue-specific strong expression of the sodium transporter gene
AtHKT1;1 can reduce shoot Na+ accumulation and therefore also
improve salt tolerance (Møller et al., 2009).

Osmolyte Accumulation
Another approach to generate stress-resistant GM plants was
based on the manipulation of specific metabolic pathways, by
overexpression of the appropriate enzymes, to increase the
cellular levels of particular osmolytes. For example, expression of
�1-pyrroline-5-carboxilase synthetase in transgenic tobacco led
to increased (10- to 18-fold) levels of proline and a significant
improvement of drought and salt tolerance, as compared to
the non-transformed controls (Kishor et al., 1995). Similarly,
transgenic rice transformed with the codA gene for choline
oxidase showed increased levels of glycine betaine and a parallel
enhancement of tolerance to cold and salt stress (Sakamoto et al.,
1998). There are also several reports describing the generation
of transgenic plants with improved tolerance to drought, cold,
and/or salt stress, correlated with an increase in the intracellular
contents of the disaccharide trehalose, for example in tobacco
(Romero et al., 1997), potato (Yeo et al., 2000), or rice (Garg
et al., 2002). One of the first reports supporting a functional
role of osmolytes in salt stress tolerance mechanisms described

TABLE 1 | Some examples of improved stress resistance through genetic transformation.

Function/transgene Source organism Host species Phenotype Reference

Ion transporters AlNHX Aeluropus littoralis Nicotiana tabacum ST∗ Zhang et al., 2008a

SbSOS1 Salicornia brachiata N. tabacum ST Yadav et al., 2012

GmHKT Glycine max N. tabacum ST Chen et al., 2014

Osmolyte synthesis BvCMO Beta vulgaris N. tabacum DT Zhang et al., 2008b

SeCMO Salicornia europea N. tabacum ST Wu et al., 2010

betA Escherichia coli Zea mays DT Quan et al., 2004

AtP5CS Arabidopsis thaliana Petunia hybrida DT Yamada et al., 2005

OsP5CS Oryza sativa P. hybrida DT Yamada et al., 2005

P5CS Vigna aconitifolia Triticum aestivum DT Vendruscolo et al., 2007

mtlD E. coli T. aestivum DT, ST Abebe et al., 2003

PsTP Pleurotus sajor-caju N. tabacum DT Han et al., 2005

otsA and otsB E. coli O. sativa DT, ST, LTT Garg et al., 2002

Transcription factors DREB1A/CBF3 A. thaliana Festuca arundinacea DT Zhao et al., 2007

AtDREB1A A. thaliana Arachis hypogaea DT Bhatnagar-Mathur et al., 2007

MYB15 A. thaliana A. thaliana DT Ding et al., 2009

AP37 O. sativa O. sativa DT Oh et al., 2009

Protective proteins (LEA, HSP) sHSP17.7 O. sativa O. sativa DT Sato and Yokoya, 2008

HVA1 Hordeum vulgare Morus indica DT, ST Lal et al., 2008

BhLEA1 and 2 Boea hygrometrica N. tabacum DT Liu et al., 2009

Antioxidant activity VTE1 A. thaliana N. tabacum DT Liu et al., 2008

APX5 A. thaliana N. tabacum DT, ST Badawi et al., 2004

MnSOD Pisum sativum O. sativa DT Wang et al., 2005

∗ST, salt tolerant; DT, drought tolerant; LTT, low temperature tolerant.
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the transformation of tobacco with the mt1D gene, isolated from
Escherichia coli and encoding the enzyme mannitol-1-phosphate
dehydrogenase; its expression in the GM tobacco led to increased
mannitol contents and improved salt tolerance, as compared with
the control plants (Tarczynski et al., 1992, 1993). Similar results
were obtained by Zhifang and Loescher (2003), who transferred
to A. thaliana the mannose-6-phosphate reductase gene from
celery, as an alternative to the bacterial gene.

Overexpression of Antioxidant Enzymes and Other
Proteins
Activation of antioxidant systems is one of the general responses
of plants to different abiotic stresses, and there are several
reports on transgenic plants with enhanced stress tolerance by
expression of different antioxidant enzymes, such as glutathione
S-transferase/glutathione peroxidase in tobacco (Roxas et al.,
1997), or superoxide dismutase in alfalfa (McKersie et al., 1999).

Other proteins whose expression in transgenic plants confers
tolerance to different abiotic stresses include, to give only a few
examples: heat shock proteins (HSPs) such as Arabidopsis At-
HSP17.6A, which enhances osmotolerance when overexpressed
in the same species (Sun et al., 2001); LEA proteins, such as
HVA7 from barley, which confers water and salt stress tolerance
in transgenic rice (Xu et al., 1996); or transcription factors which
control the expression of other genes involved in abiotic stress
responses, for example expression of DREB1A in Arabidopsis
(under the control of a stress-inducible promoter) improved
plant drought, salt and freezing tolerance (Kasuga et al., 1999).

A slightly different strategy to enhance stress tolerance in
GM plants relies on the overexpression of stress ‘target’ proteins;
that is, proteins which are inactivated under stress conditions or
which are functionally relevant in cellular processes inhibited by
stress. For example, more than 10 years ago two genes encoding
SR-like splicing factors were isolated from an A. thaliana cDNA
library, based on the salt tolerance conferred when expressed in
yeast; their expression in transgenic Arabidopsis plants led to salt
(LiCl andNaCl) tolerance (Forment et al., 2002). A few years later,
it was shown that these GMplants were alsomarkedly resistant to
drought (Bourgon et al., 2007). These results suggested that RNA
processing – or RNA metabolism, in general – is very sensitive to
abiotic stress, and provided new possible targets for engineering
tolerance in plants.

Despite these and many other promising results, the
usefulness of the aforementioned genes as biotechnological tools
for developing stress-tolerant biotech crops has been questioned
(Flowers, 2004), for several reasons: (i) assessment of tolerance
phenotypes in in vitro systems, which do not reflect the natural
physiological conditions of the plants; (ii) lack of quantitative
data regarding the differences in tolerance between the transgenic
and the control plants; (iii) evaluation of the plants only at
specific phases of development, not along their full life cycle;
(iv) side effects of expression of the transgenes, under non-
stress conditions, causing reduced growth or developmental
abnormalities, etc. Nevertheless, the most serious criticism is that
inmost of these experiments model species, such asA. thaliana or
Nicotiana tabacum have been used, and generally it is not possible
to extend the results to crop species. In any case, stress tolerance

has been seldom evaluated from an agronomic point of view,
and it is important to note that any improvement in tolerance
is useless if the quality of the harvested product (seeds, fruits,
tubers...) or the crop’s yield is significantly reduced.

Referring specifically to the generation of salt-tolerant crops,
intensive research is being carried out in many public and private
labs all over the world and it is to be expected that this goal will be
achieved in the medium or long term using genetic engineering
techniques. Yet at present no commercial salt-tolerant ‘biotech’
(GM) crops are growing in our fields.

Drought Tolerant Maize, A Successful
Case
Contrary to salt-tolerant biotech crops, which are not yet
available, the first drought tolerant GM crop has been
commercially launched not long ago, in 2012. Monsanto, in
collaboration with BASF, has developed a genetically modified
maize variety with improved resistance to water stress, conferred
by expression of bacterial genes encoding RNA chaperones
(Castiglioni et al., 2008); this reinforces the idea that maintaining
active RNA metabolism is critical for plant performance under
stress. After going through all the regulatory process and field
trials, the company obtained approval in USA and Canada, and
the crop was grown for the first time in 2012, in the more
drought-prone U.S. states of Nebraska and Kansas. The expected
increments in yield under normal conditions were very modest,
of no more than 10%. However, that year there was a very
strong drought which devastated the crops of conventional maize
in non-irrigated farmland, while the biotech variety performed
quite well. Nevertheless, some further improvement is expected
with more advanced ‘versions’ of the crop and by introducing
the trait in other, more drought-tolerant cultivars obtained by
classical breeding. There are plans to make drought tolerant
maize available to some sub-Saharan African countries by 2017,
in the frame of a Public–Private Partnership project entitled
‘Water Efficient Maize for Africa (WEMA)’, coordinated by the
African Agricultural Technology Foundation, based on Nairobi
(James, 2014). Development of this drought-resistant maize has
open the way to introduce the trait in other major crops, although
overexpression of some of the genes mentioned in the previous
section may also be successful in delivering crops with enhanced
resistance to water deficit.

In any case, it is to be expected that biotech crops tolerant
to different environmental stresses will be available in the
near future for large-scale commercial cultivation. Those with
improved tolerance to drought and high soil salinity, the abiotic
stress conditions responsible for most of the reduction in crop
yields worldwide, will significantly contribute to themuch needed
increase in food production in the next decades.

CONVENTIONAL BREEDING FOR AST

Present Situation of AST Breeding
Conventional breeding for adaptation to abiotic stresses is
far more complicated than breeding for other traits. One
reason is the difficulty to establish the characters which best
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define tolerant genotypes. For each stress there are different
levels and mechanisms of tolerance, which can also produce
divergent responses depending on the plant phenological stage
(Reynolds et al., 2005). In addition, these traits are controlled
by numerous genes that generate a continuous variation, the so-
called ‘quantitative trait loci’ (QTL; Collins et al., 2008). Despite
these limitations and drawbacks, conventional breeding for AST
has proven successful in some cases in the past. For example,
Ashraf (2010) listed a series of new cultivars tolerant to drought,
bred by controlled mating and selection. Traditional breeding
was also successful to breed new salt-tolerant rice varieties (Singh
et al., 2010).

Success in classical breeding relays on the one hand in a
proper identification of a donor of tolerance genes. Landraces
and neglected crops exhibit a great genetic diversity and
different survival strategies, displaying a large variation in their
responses to stress (Reynolds et al., 2005, 2007). They have
been selected for centuries by the farmers to be adapted to
a particular environment. Therefore, landraces which evolved
along different conditions differ in their adaptation in those
conditions. For example, geographical gradients of rainfall should
produce a gradient of drought resistance in the germplasm,
as shown by Blum and Sullivan (1986), who were able to
identify superior genotypes for drought performance in sorghum
and millet which came from the driest regions within their
study area. In a 2-year experiment with wheat cultivars
and landraces from different countries, Dencic et al. (2000)
identified genotypes with high yields under optimal cultivation
conditions and under drought stress. Therefore, given their
potential to contribute with favorable alleles to stress tolerance,
landraces have been included along with other cultivars in
many screenings for AST. Interesting sources of resistance
against a broad range of abiotic stresses have been found in
different species; for example, for drought tolerance in beans
(Muñoz-Perea et al., 2006), chickpea (Anbessa and Bejiga, 2002),
wheat (Mobasser et al., 2014), maize (Cairns et al., 2013), oat
(Sánchez-Martín et al., 2012), or potato (Barra et al., 2013);
for salt tolerance in tomato (Foolad, 2004) or rice (Yeo et al.,
1990).

The second basis for a successful breeding for AST is the
identification of QTL responsible for the tolerance and their
association to linked molecular markers, which are then used for
an effective selection through marker assisted selection (MAS).
In the last decades, numerous studies have been conducted
to map genes or QTL associated, for example, to drought
tolerance in rice (Courtois et al., 2000; Price et al., 2002; Bernier
et al., 2007), barley (Talamé et al., 2004), or maize (Tuberosa
et al., 2002), or to salt resistance in rice (Lin et al., 2004)
or soybean (Li et al., 2005). Yet the transference of marker-
QTL information to breeding programs is still limited mainly
due to: (i) the dependence of the QTL effects on genetic
background and the environment, which implies that it is
necessary to repeat the experiment in different conditions/years
and different genetic backgrounds to obtain reliable results,
and (ii) the possible linkage drag of undesirable traits when
wild relatives are used as QTL donors (Podlich et al., 2004;
Vargas et al., 2006). The new genomic approaches have overcome

many of the restrictions for the detection and characterization
of QTL/genes responsible for AST (Kole et al., 2015). Next
generation sequencing (NGS) technologies allow the massive
discovery of molecular markers to obtain ultra-high density
genetic maps, which are very useful to locate precisely the
QTL and clone them. In addition, using markers close to
the QTL minimizes the linkage drag during the introgression
process. Moreover, SSR and especially SNPs generated through
NGS can be used in high-throughput genotyping platforms,
which permit the simultaneous analysis of many markers
and many individuals. Therefore it is possible to move from
the exploitation of recent recombination through the analysis
biparental mapping populations to the genome-wide association
(GWA) studies, which use the natural diversity to identify
genetic loci associated with phenotypic trait variation and
provides better resolution. For example, this strategy resulted
in the identification in barley of a number of genomic regions
that strongly influenced salt tolerance and ion homeostasis
(Long et al., 2013). Genomic studies in combination with
transcriptomic analysis also allow discovering new genes and
regulatory systems and their positions (Roorkiwal et al., 2014).
All this information, available from large public databases,
grants the transfer of information from one species to
another.

These molecular technologies offer a wide array of tools
to accelerate AST breeding. However, phenotyping protocols
suitable for the evaluation of large populations are essential, both
for the identification of sources of tolerance and in the selection
process. Nowadays there are many new phenotyping tools,
based on non-invasive or minimally invasive techniques, which
can be implemented in phenotyping platforms able to acquire
large amounts of data (Fiorani and Schurr, 2013). Nevertheless,
experiments under controlled conditions (greenhouse), require
careful planning (e.g., pot size, growth medium, water and
nutrient supply, light quantity, etc.) to ensure both within-
laboratory repeatability and reliability with respect to field
results (Poorter et al., 2012a,b). On the field the challenge
is the optimal platform to ensure high quality records. Field
phenotyping tools based on remote sensing of growth-related
parameters, using spectral reflectance and infrared thermometry
to estimate plant water status are available (Masuka et al., 2012).
Sophisticated biometrical methods are necessary to calibrate and
validate the data and build robust prediction models (Cabrera-
Bosquet et al., 2012; Römer et al., 2012). In practical breeding
programs, however, time for data validation for selection can be
extremely short, e.g., only one to two months between harvest
and sowing.

The Way to Follow: Some Examples of
Successful Breeding for AST
The combination of appropriate selection of sources of resistance,
MAS, precise phenotyping protocols, and other new molecular
tools open a promising scenario for the improvement of plant
AST. In the following paragraphs, a few examples of the
successful development of tolerant cultivars are described.

At CIMMYT, Mexico, a marker-assisted backcross (MABC)
selection program, meant to improve grain yield under limited
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water conditions, was carried out in tropical maize, and
involved crossing a drought resistant line with a drought
susceptible line. After the backcross program, under severe
drought conditions five MABC-derived hybrids produced yields
about 50% higher than those of control hybrids (Ribaut and
Ragot, 2006).

Azucena, an upland japonica rice variety originally from
the Philippines identified as drought tolerant (Courtois et al.,
1996) was used as donor parent to improve root morphological
characteristics of Kalinga III, an Indian upland indica elite
rice variety that escapes end-of-season drought through early
maturity; yet it is still susceptible to early andmid-season drought
(Steele et al., 2006). Again a MABC breeding program was
used to pyramid four previously reported QTLs for improved
root morphological characteristics (Price et al., 2000, 2002) from
Azucena into Kalinga III. The resulting NILs were evaluated in
field trials and four of them resulted superior in terms of tolerance
(Steele et al., 2007). The result of this breeding program was a
highly drought tolerant rice variety, Birsa Vikas Dhan 111 (PY
84), released in the Indian state of Jharkhand (Steele, 2009).

‘Saltol’ is a major QTL for salt tolerance in rice, which
maps in the short arm of chromosome 1 (Thomson et al.,
2010). MAB strategy was undertaken to introgress the ‘Saltol’
QTL into the widely accepted two mega rice varieties BR11 (T.
Aman, monsoon) and BR28 (Boro, dry, winter). For ‘Saltol’ QTL
introgression, a near isogenic line (NIL) derived from Pokkali (a
salt tolerant donor variety) was used (Linh et al., 2012).

In the case of the development of salt tolerant durum
wheat, Byrt et al. (2007) and Munns et al. (2012) explored
natural diversity in shoot Na+ exclusion within ancestral wheat
germplasm. Durum wheat (Triticum turgidum ssp. durum)
is more salt sensitive than common bread wheat (Triticum
aestivum). Both species are polyploids, durum wheat a tetraploid
(genomes A and B), and bread wheat a hexaploid (genomes
A, B, and D). In the D genome there is a Na+ excluding
locus (Kna1) enabling bread wheat to maintain relatively low
leaf Na+ concentration, which contributes to salt tolerance.
A source of Na+ exclusion (the sodium transporter Nax2) not
present in durum wheat or in bread wheat was found in the
wheat relative T. monococcum. This latter species contains an
Am genome, which is homologous to the A genomes (although
some recombination/pairing problems exist) of T. turgidum
ssp. durum and T. aestivum but, as it has evolved separately,
contains many genes not present in durum or bread wheat.
Nax2 was introgressed from T. monococcum into a modern
durum cultivar, Tamaroi, by means of durum derivative line
149 and NILs with and without Nax2. The newly developed
durum wheat lines with the introgression of Nax2 were tested
in saline fields, giving yields approximately 25% higher than the
controls.

These are just a few examples of the possibilities that appear
when a good characterization of the germplasm meets with a
breeding-oriented use of modern molecular tools. These results
encourage the use of conventional breeding to generate AST
varieties of our crops, which will contribute – together with
genetically modified abiotic stress tolerant plants – to the future
food supply needs.

HALOPHYTIC CROPS FOR A ‘SALINE
AGRICULTURE’

Halophytes are defined as plants specific of saline environments
that are able to survive and complete their life cycles in
the presence of salt concentrations equivalent to, at least,
200 mM NaCl (Flowers et al., 1986; Flowers and Colmer, 2008).
However, many can grow at salt concentrations even higher
than that of seawater. Only about 0.25% of all angiosperm
species are considered to be halophytic, which still represents
more than 600 taxa, widely distributed among different plant
genera and families (Flowers et al., 2010). Many of these
halophytes (Figure 3) have the potential to be transformed
into useful ‘new’ crops although, as wild plants, they should
go first through a domestication process. Nevertheless, as they
are already salt tolerant – which is the most important and the
most difficult trait to introduce and manipulate – it should be
relatively easy to carry out specific breeding programs to rapidly
improve the required agronomic characteristics of the most
promising halophytic taxa. It may be necessary to select the best
genotypes for particular cultivation conditions, to increase yields,
to eliminate or at least reduce the content of toxic compounds
or anti-nutrients (e.g., saponins, Glenn et al., 1991), or to
improve marketing characteristics (shelf-life, market availability,
uniformity of the product in size, color, taste, etc.), and to tailor
general agricultural methods to specific crops. In short, some
of the common objectives of traditional plant breeding and
agricultural practice.

For centuries, many halophytes have been collected by people
from nature, to be self-consumed, grown in backyard and kitchen
gardens or sold in local markets; their leaves are commonly
eaten as raw vegetables (in fresh salads, for example) or, in
some cases, also cooked or pickled. The traditional use as food
of these species will make them more easily acceptable by the
general public, so that they are appropriate candidates to be
domesticated and transformed into leafy vegetable crops for
saline agriculture. These plants are not only edible but, in general,
also very nutritious: they are rich in protein, antioxidants and
essential nutrients – minerals, vitamins, amino acids, and/or fatty
acids (Table 2).

Regarding the halophilic plants that have a greater potential
to be domesticated and cultivated commercially as vegetables, we
should mention species of the genera Salicornia (annuals) and
Sarcocornia (perennial), which are closely related taxonomically.
These taxa have attracted attention for its long tradition of
use as food by people, and its extreme salt tolerance, as they
can grow in the presence of seawater. Several field trials have
been conducted in different countries to optimize their culture
conditions, with promising results, and several projects are
in progress for the small-scale, commercial cultivation of this
species using seawater for irrigation, for example in Mexico, run
by private companies or sponsored by non-profit organizations,
such as the OASE Foundation1 or the Seawater Foundation.2
Given this accumulated knowledge and experience, it should be

1www.oasefoundation.eu
2www.seawaterfoundation.org
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FIGURE 3 | Image of some plants suitable for a saline agriculture. (A) Inula crithmoides, (B) Limonium girardianum, (C) Plantago crassifolia, and
(D) Sarcocornia fruticosa. Pictures belong to the authors.

TABLE 2 | Some examples of halophilic species and their main uses.

Main use Species Features Reference

Vegetable Inula crithmoides Source of iodine in the diet Zurayk and Baalbaki, 1996;
Tardío et al., 2006

Aster tripolium High levels of polyphenols and minerals Koyro et al., 2011

Atriplex hortensis High protein and amino acid contents Carlson and Clarke, 1983

Plantago coronopus Vitamins A, C and K Koyro, 2006

Batis maritima Essential amino acids and antioxidants
such as vitamin E

Debez et al., 2010

Portulaca oleracea High levels of omega-3 fatty acids and
several antioxidant compounds
(β-carotene, vitamins C and E)

Simopoulos, 2004

Vegetable, grain crop and
oilseed

Salicornia and Sarcocornia sp. Rich in essential fatty acids, minerals,
and antioxidant compounds such as
polyphenols

Ventura and Sagi, 2013

Grain crop Distichlis palmeri Chenopodium quinoa High-quality protein Glenn et al., 2013

Oilseed Suaeda fruticosa, Haloxylon stocksii, Halopyrum
mucronatum, Cressa cretica, Arthrocnemum
macrostachyum, Alhaji maurorum

22–25% of oil content and relatively
high fraction of unsaturated fatty acids

Weber et al., 2007

Feed fodder livestock Atriplex lentiformis Glenn et al., 2013

relatively simple to develop breeding programs for transforming
Salicornia into a ‘standard’ crop, based on the selection of the best
genotypes and the improvement of its marketing characteristics

(Ventura and Sagi, 2013). In addition to their use as fresh
vegetables, many halophytes can be transformed in profitable
oilseed crops. For example, Salicornia bigelovii, is interesting due
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to its seed yield, about 2 tons per hectare per year, which are
equivalent to those of conventional oilseed crops such as soybean.
Seed protein and oil contents are relatively high, about 30% each,
and the oil contains a high percentage of polyunsaturated fatty
acids (70% of linoleic acid) so that it can be considered as high
quality edible oil.

Another species to focus on to is quinoa (Chenopodium
quinoa). This species cannot be considered as a ‘new’ crop, as
it was domesticated in the Andean region between 4000 and
5000 years ago (Pickersgill, 2007). Quinoa is a ‘pseudocereal,’
producing highly nutritious seeds rich in starch and high-quality
protein, including all essential amino acids, as well as a good
source of dietary fiber, minerals (phosphorus, iron, magnesium,
and calcium), and vitamins. The seeds are gluten-free, so that
they can be consumed by celiac patients, and are considered easy
to digest (Vega-Galvez et al., 2010; FAO, 2011). In addition to
its exceptional nutritional quality, quinoa shows an enormous
capacity to adapt to diverse environmental conditions, including
extreme habitats: it is grown at sea level and in high mountains,
up to almost 4,000 m. It is frost-resistant, withstanding below-
zero temperatures (–4◦C), but also temperatures as high as 38◦C,
as well as a wide range of relative humidity (40–88%). Quinoa
is extremely tolerant to salinity; it is also a very water-efficient
plant, remarkably resistant to drought, producing relatively good
yields with low rainfall (100–200 mm). Quinoa’s capacity to adapt
to such a disparate range of environmental conditions makes
this species an unparalleled candidate for cultivation in different
regions all over the world: in arid or semiarid land, in coastal
and inland saline soils or in high mountains. At present, the only
major producers are still Andean countries, especially Peru and
Bolivia, but the area of cultivation is expanding to other regions.
Although the market is still small, quinoa seeds and derived
products are sold at relatively high prices in western countries
and can be found in the ‘bio-food’ shelves of supermarkets,
and in specialized shops. Considering all its proprieties, quinoa
has been defined by FAO as ‘an ancient crop to contribute to
world food security’ (FAO, 2011), and the UN declared 2013
as the ‘International Year of Quinoa’. Despite its great potential
value, as quinoa has not been subjected to extensive modern
breeding, it should be improved regarding some important traits,
for example grain yield, unequal ripening or reducing the levels of
(slightly) toxic saponins – although saponins are easily eliminated
by washing the seeds. Since they have different medical, cosmetic
and household applications, saponins could be considered as a
commercially interesting by-product of quinoa cultivation.

In general, halophytes which are edible for humans can also
be used to feed animals and in most cases the choice will
depend on economic and marketing reasons rather than on
technical and scientific ones. On other hand, saline agriculture
has also the potential to provide a wide range of commercially
interesting plant-derived products. Halophytic crops could also
be an alternative for biodiesel production from oleaginous seeds
(e.g., Abideen et al., 2012), as a source of lignocellulosic biomass
for bioethanol production (e.g., Eshel et al., 2010), or for the
isolation of many different metabolites with pharmacological,
nutraceutical, medical, aromatic, cosmetic or other industrial or
traditional household uses. These non-food applications could
be economically important, but are outside the scope of this
review and will not be discussed further. Therefore, development
of a ‘saline agriculture’ based on the domestication of a selected
number of halophytic species, represents a complementary
approach to increase agricultural production in the years
ahead (Rozema and Flowers, 2008; Ruan et al., 2010; Rozema
et al., 2013). Once these ‘halophytic crops’ are developed and
established, they could be grown in marginal saline soils – which
have never been used for agriculture as our conventional crops
are all salt-sensitive – as well as in abandoned crop land affected
by secondary salinization. That means that commercially grown
halophytes will not compete with conventional crops for fertile
land and good-quality irrigation water.

CONCLUSION AND PERSPECTIVES

It is clear that agriculture and food production faces at the
moment one of its biggest challenges in history. Feeding 9.2× 109
people is not going to be an easy task. Up to now, apart
from a few exceptions, neither traditional plant breeding nor
genetic engineering has delivered widely used commercial stress-
tolerant varieties. Nevertheless, research lines in progress are
providing promising results and we should be confident that
in the coming years the combination of both approaches will
allow the improvement of AST for our major crops. Moreover,
the complementary approach of promoting ‘saline agriculture’
dependent on highly salt-tolerant halophytes, could be used to
reclaim salinized crop land already lost for agriculture, and also
naturally saline, marginal soils, using brackish, or sea water for
irrigation. This will add the advantage that they will not compete
with standard crops for limited resources (i.e., good-quality
irrigation water and fertile crop land).
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