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To survive winter, many perennial plants become endodormant, a state of suspended
growth maintained even in favorable growing environments. To understand vegetative
bud endodormancy, we collected paradormant, endodormant, and ecodormant axillary
buds from Populus trees growing under natural conditions. Of 44,441 Populus
gene models analyzed using NimbleGen microarrays, we found that 1,362 (3.1%)
were differentially expressed among the three dormancy states, and 429 (1.0%)
were differentially expressed during only one of the two dormancy transitions (FDR
p-value < 0.05). Of all differentially expressed genes, 69% were down-regulated from
paradormancy to endodormancy, which was expected given the lower metabolic activity
associated with endodormancy. Dormancy transitions were accompanied by changes
in genes associated with DNA methylation (via RNA-directed DNA methylation) and
histone modifications (via Polycomb Repressive Complex 2), confirming and extending
knowledge of chromatin modifications as major features of dormancy transitions. Among
the chromatin-associated genes, two genes similar to SPT (SUPPRESSOR OF TY) were
strongly up-regulated during endodormancy. Transcription factor genes and gene sets
that were atypically up-regulated during endodormancy include a gene that seems
to encode a trihelix transcription factor and genes associated with proteins involved
in responses to ethylene, cold, and other abiotic stresses. These latter transcription
factors include ETHYLENE INSENSITIVE 3 (EIN3), ETHYLENE-RESPONSIVE ELEMENT
BINDING PROTEIN (EBP), ETHYLENE RESPONSE FACTOR (ERF), ZINC FINGER
PROTEIN 10 (ZAT10), ZAT12, and WRKY DNA-binding domain proteins. Analyses of
phytohormone-associated genes suggest important changes in responses to ethylene,
auxin, and brassinosteroids occur during endodormancy. We found weaker evidence for
changes in genes associated with salicylic acid and jasmonic acid, and little evidence for
important changes in genes associated with gibberellins, abscisic acid, and cytokinin.
We identified 315 upstream sequence motifs associated with eight patterns of gene
expression, including novel motifs and motifs associated with the circadian clock and
responses to photoperiod, cold, dehydration, and ABA. Analogies between flowering and
endodormancy suggest important roles for genes similar to SQUAMOSA-PROMOTER
BINDING PROTEIN-LIKE (SPL), DORMANCY ASSOCIATED MADS-BOX (DAM), and
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1).

Keywords: chromatin, ecodormancy, endodormancy, gene expression, paradormancy, phytohormone,
transcription factor, QTL
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INTRODUCTION

Dormancy, the temporary suspension of growth (Lang
et al., 1987), is a regulated process that controls plant
growth, development, and architecture. Lang et al. (1987)
subdivided dormancy processes into three types: paradormancy,
endodormancy, and ecodormancy. Paradormancy denotes
the state in which meristem growth (e.g., in buds or seeds) is
inhibited by signals from other plant organs. For example, the
shoot apex can inhibit the outgrowth of axillary buds by exerting
apical dominance—but this state of paradormancy is released
and outgrowth of the axillary buds occurs if the apex is removed.
Endodormancy denotes the state in which meristem growth is
inhibited by signals within the meristem itself. In plants adapted
to cold climates, vegetative buds typically become endodormant
in the fall and early winter, and prolonged periods of chilling (i.e.,
temperatures slightly above freezing) are needed before growth
can resume, even under favorable environmental conditions.
Even after the release of endodormancy, plants may remain
ecodormant because of harsh environmental conditions such
as cold or drought that are not conducive to cell division and
elongation.

The regulated induction and release of bud endodormancy
is critical for the survival and long-term growth of perennial
plants in temperate, arid, and semiarid climates. Adaptation
to local climatic conditions is generally achieved by natural
selection in native populations and by artificial selection in
forestry and agricultural populations. However, the matching
of plant populations and local climatic cycles may become
decoupled with rapid climate change. The induction and release
of endodormancy are temporally associated with other changes
that confer tolerance to cold and other abiotic stresses. Improved
understanding of dormancy-associated gene expression may
allow us to manipulate plant populations to speed climatic
adaptation, and thus mitigate the adverse effects of climate
change on forest and agricultural ecosystems.

Environmental and hormonal signals, including short days
(SD), cold, ethylene, gibberellin (GA), and abscisic acid (ABA)
play direct roles in growth cessation and bud set (Li et al.,
2003; Mølmann et al., 2005; Ruonala et al., 2006). In many trees
and other perennial plants, SD and low night temperatures in
the fall act synergistically to induce growth cessation, vegetative
bud set or shoot-tip abscission, and the first stage of cold
acclimation (Howe et al., 1999; Mølmann et al., 2005; Ruttink
et al., 2007; Rohde et al., 2011a). In some species (e.g., apple
pear, Populus sp.), cold temperatures alone can induce growth
cessation and endodormancy (Mølmann et al., 2005; Heide, 2008;
Rohde et al., 2011a). In the model herbaceous perennial plant,
leafy spurge (Euphorbia esula), cold night temperatures and long
days appear to be most effective for inducing endodormancy
(Horvath et al., 2010). Although cold can induce endodormancy
in some species, extended chilling temperatures release vegetative
bud endodormancy in nearly every temperate perennial species
examined (Arora et al., 2003). After the release of endodormancy
via chilling, warm temperatures in the spring promote cold
deacclimation, vegetative bud flush, and the resumption of
elongation growth. The quantitative genetics of bud set and bud

flush have been well studied, and many quantitative trait loci
(QTL) have been identified (Frewen et al., 2000; reviewed in
Howe et al., 2003; Jermstad et al., 2003; Scotti-Saintagne et al.,
2004; Pelgas et al., 2011; Rohde et al., 2011b).

The phytochrome photoreceptors and components of the
circadian clock regulate short-day-induced dormancy in Populus
and other perennial plants (Howe et al., 1996; Olsen et al.,
1997; Ibanez et al., 2010; Kozarewa et al., 2010). In Populus,
short-day signals induce growth cessation via a regulatory
module consisting of poplar homologs of CONSTANS (CO)
and FLOWERING LOCUS T (FT) in Arabidopsis (Bohlenius
et al., 2006). Ultimately, SD signals lead to changes in poplar
cell proliferation via the Like-APETALA 1 (LAP1) gene product,
which acts on the AINTEGUMENTA-like 1 transcription factor,
which is related to a regulator of cell proliferation in Arabidopsis
(Azeez et al., 2014). In Populus, FT2 was also induced by chilling,
which subsequently led to the induction of 1,3-β-glucanases,
reopening of signal conduits, and release of endodormancy
(Rinne et al., 2011). The authors hypothesized that the reopened
conduits enabled movement of FT2 and CENTRORADIALIS 1
(CENL1) to locations where they promoted bud flush and shoot
elongation (Rinne et al., 2011). The expression of other genes that
regulate cold acclimation and other endodormancy-associated
processes are induced by SD. Transcription factors such as
C-REPEAT/DRE BINDING FACTOR 2/DEHYDRATION
RESPONSE ELEMENT-BINDING PROTEIN (CBF/DREB)
have been implicated in cold acclimation and endodormancy
(Doğramaci et al., 2010). For example, overexpression of a CBF
gene in apple resulted in the ability to induce endodormancy
with SDs (Wisniewski et al., 2011).

Many of the same environmental and hormonal signals that
regulate dormancy also regulate cold acclimation and flowering.
Thus, it is not surprising that the flowering genes FT2 and CENL1
also seem to regulate endodormancy (Bohlenius et al., 2006;
Ruonala et al., 2008; Hsu et al., 2011; Rinne et al., 2011). Likewise,
proteins suspected of regulating FT2, such as those encoded
by DORMANCY ASSOCIATED MADS-BOX (DAM) genes, have
also been implicated in endodormancy regulation (Bielenberg
et al., 2008; Horvath et al., 2010; Sasaki et al., 2011; Yamane
et al., 2011). Chromatin remodeling processes associated with
vernalization may also regulate bud endodormancy in perennials
(Horvath et al., 2003), perhaps by modifying the promoters of
DAM genes (Horvath et al., 2010; Leida et al., 2012). Indeed,
chromatin remodeling seems to accompany changes in Populus
dormancy states (Vining et al., 2012).

Microarray analysis in Populus and several other species
have identified common signaling processes associated with
endodormancy induction and release (Mazzitelli et al., 2007;
Ruttink et al., 2007; Halaly et al., 2008; Horvath et al.,
2008; Mathiason et al., 2009; Walton et al., 2009; Campbell
et al., 2010; Doğramaci et al., 2010; Karlberg et al., 2010). In
addition to flowering genes, genes involved in environmental
and phytohormone signaling [e.g., photoperiod, cold, oxidative
stress, ethylene, auxin, ABA, and jasmonic acid (JA)], chromatin
remodeling, and circadian responses are often differentially
expressed during the induction and release of endodormancy.
However, only a modest number of genes (<15,000) have
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been assayed in most previous studies, making it difficult to
compare differential expression among gene family members.
Furthermore, there are few reports in which endodormancy
induction and release were compared under natural conditions
in the same study.

We used analyses of gene expression to infer physiological
processes and cis-acting motifs associated with the induction and
release of endodormancy in Populus. We collected vegetative
axillary buds from the end of summer through early spring, and
then used a NimbleGen genome-scale microarray to measure
global changes in gene expression among dormancy states.
Our primary objectives were to: (1) identify which individual
genes, biological processes, molecular functions, and regulatory
pathways were differentially expressed among dormancy states,
(2) classify the differentially expressed genes into contrasting
gene expression patterns, and (3) identify cis-acting elements
associated with each gene expression group. We used this
approach and previous observations on dormancy physiology
and genomics to better understand the processes regulating
endodormancy induction and release in Populus trees. We
report extensive transcriptome remodeling that both confirm
and contradict physiological pathway expectations from the
published literature.

MATERIALS AND METHODS

Plant Material
We collected axillary buds from the main stem of two,
rapidly growing, 3-year-old Populus trichocarpa trees (clone
Nisqually-1) growing on a field site in Corvallis, OR, USA
on five dates between August 2005 and March 2006 (Step 1,
Figure 1). Average temperatures and precipitation over the
collection period are shown in Supplementary Figure S1.
Separate RNA isolations were performed on a pooled sample
of five buds from each of two trees on each date, resulting in
two biological replicates that were used for array hybridizations.
The buds were dissected in the field using sterile scalpel blades,
immediately frozen in liquid nitrogen, and then subsequently
stored at −80◦C until they were used for RNA isolation.
A few buds collected at the same time were fixed in FAA,
dehydrated, and then embedded in wax for sectioning (WAX-
IT Histology Services, Vancouver, BC, Canada). De-waxed stem
sections were stained with Toluidine Blue-O (Jensen, 1962) and
photographed.

RNA Isolation
RNA was isolated using a Qiagen RNeasy kit according to
the manufacturer’s protocol, including a DNase I treatment
to remove contaminating genomic DNA (Qiagen, Valencia,
CA, USA). The A260/A280 ratios of RNA samples used
for hybridizations ranged from 1.8 to 2.0. The absence of
contaminating genomic DNA and the integrity of RNA samples
were examined by an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA). The RNA Integrity Numbers
(RIN; Mueller et al., 2004) of the RNA samples ranged from

8.5 to 10.0, indicating that high-quality RNA was used for the
microarray hybridizations.

Microarray Analysis
We measured gene expression using a microarray designed to
target all predicted genes in the P. trichocarpa nuclear and
organellar genomes plus a set of divergent aspen transcripts
(Step 2, Figure 1). The microarray, which was manufactured
by Roche NimbleGen1, was originally designed to target 55,794
nuclear, 59 mitochondrial, 71 chloroplast, and 49 miRNA gene
models based on version 1.1 of the P. trichocarpa genome
sequence (v1.1; Tuskan et al., 2006), plus 9,995 unigenes derived
from aspen ESTs (Sterky et al., 2004). With a few exceptions,
each original gene model was represented by two copies of
three different 60-mer isothermal probes. Original microarray
information is archived in the NCBI Gene Expression Omnibus
(GEO) database as accession numbers GPL2699 and GPL7424.
To analyze the microarray data using the latest gene models,
we used BLASTN (Altschul et al., 1990) to reassign the 194,260
Populus probe sequences from the original microarray to the
transcript sequences from the Populus v3.0 genome assembly (file
Ptrichocarpa_210_transcript.fa released as part of Phytozome
v9.02). We assigned each array probe to one v3.0 gene model,
omitting the filtering of low-complexity probes and using a
75% nucleotide identity cutoff. By reassigning the microarray
probes to Populus v3.0 transcripts, we were able to measure
the expression of 35,048 out of 41,335 v3.0 primary transcripts.
For probes that could not be assigned to v3.0 transcripts,
we retained the original gene model assignment. These 9,393
v1.1 transcripts were also included in the analyses described
below.

Biotin-labeled cRNA was produced using the Ambion
MessageAmpTM II aRNA amplification kit according to
the manufacturer’s instructions (Van Gelder et al., 1990;
Life Technologies, 2011), and then sent to NimbleGen for
fragmentation, hybridization, and detection. Briefly, total RNA
(∼1500 ng) from each sample was reversed transcribed using
an oligo(dT) primer with a T7 promoter. After second-strand
synthesis, the cDNA was used as a template for synthesizing
biotin-labeled antisense RNA (cRNA) using in vitro transcription
with T7 RNA polymerase. For each sample, ∼20 μg cRNA
was sent to NimbleGen for fragmentation, hybridization,
and detection as described by Kaushik et al. (2005). After
hybridization and washing, the arrays were stained with a
streptavidin-Cy3 conjugate, and then scanned with a GenePix
4000B microarray scanner.

The complete microarray dataset was deposited in the GEO
database3 as accession GPL20616. We created new NimbleGen
design files (ndf and ngd files) based on the probe reassignments
described above, and then normalized the data using NimbleScan
v2.6. Microarray data were log2 transformed, background
corrected, and then normalized across all arrays using the Robust
Multiple-array Average (RMA; Irizarry et al., 2003).

1http://www.nimblegen.com/
2http://www.phytozome.net/
3http://ncbi.nlm.nih.gov/geo/
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FIGURE 1 | Flow diagram showing the steps used to analyze dormancy related gene expression in Populus. Step 1 shows representative axillary buds
collected in August, November, December, February, and March (left to right). Step 2 shows the NimbleGen gene expression microarray used to measure relative
gene expression. Step 3 shows results of clustering five collection time-points into three dormancy states based on the expression of differentially expressed genes.
The dormancy states are paradormant (Para), endodormant (Endo), and ecodormant (Eco). Step 4 shows a section of Supplementary Data File 1, which includes
results of analyses of variance (ANOVA). Step 5 shows genes that were classified into two of eight gene expression patterns. Step 6 shows a transcription factor
binding to an upstream DNA sequence motif (Evening Element). Step 7 shows a representative regulatory network generated by the Pathway Studio program.
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Characterization of Bud Dormancy
States and Tests of Differential
Expression
We assigned a dormancy state to each collection date using
ANOVA and cluster analysis in SAS v9.3 (Statistical Analysis
System, Cary, NC, USA). First, we used ANOVA and a false
discovery rate (FDR) p-value < 0.05 to identify genes that were
differentially expressed among the collection dates. We then
used UPGMA and Neighbor-Joining hierarchical clustering to
group the collection dates into dormancy states. The UPGMA
analysis clustered the collection dates into three distinct clusters:
August, November/December, and February/March, which we
refer to as paradormant (Para), endodormant (Endo), and
ecodormant (Eco) (Step 3, Figure 1; see Results), respectively.
In the Neighbor-Joining analysis, the February samples clustered
with November and December (rather than with March), but this
was only weakly supported (i.e., as compared to the UPGMA
alternative). Because the UPGMA assignments were judged to
be more biologically accurate (i.e., based on morphological
observations and past research on Populus dormancy), we used
the UPGMA groupings for further analyses. We regrouped
the samples based on the UPGMA cluster analysis, and then
conducted a second ANOVA on the entire dataset to determine
which genes were differentially expressed among the assigned
dormancy states (treatments; Step 4, Figure 1). All subsequent
references to ‘regulated’ or ‘differentially expressed’ genes refer to
the set of 1,362 genes that were differentially expressed among
dormancy states at an FDR p-value < 0.05.

Gene Expression Patterns and Sequence
Motifs
A priori, we defined eight potential patterns of gene expression
that could occur during two dormancy transitions: Para/Endo
and Endo/Eco. For each transition, gene expression may either
be up-regulated (U), stay the same (S), or be down-regulated (D),
which results in eight possible patterns for two transitions when
only the differentially expressed genes are tested (i.e., S/S patterns
are not possible). That is, 8 patterns = (3 possible changes for
the Para/Endo transition × 3 possible changes for the Endo/Eco
transition) – 1 pattern (S/S). For each gene, we determined the
p-value for each of the eight models using the CONTRAST
option of SAS Proc ANOVA, and then used the treatment means
and the model p-values to assign the gene expression pattern
(Step 5, Figure 1). Because we were interested in clustering
the genes based on directional changes in gene expression (not
differences in mean expression), we first normalized the data
using the ANOVAmean square error for each gene.

We used the ELEMENT program (Mockler et al., 2007)
to identify sequence motifs that were overrepresented in each
gene expression group (Step 6, Figure 1). These analyses were
conducted using 2 kb of upstream sequence relative to the
Populus v3.0 transcription start site. Motifs were associated with
a particular gene expression pattern when the average number
of motifs per sequence (MOTIF_MN_HITS) was significant at
an FDR p-value < 0.05 for only one of the gene expression
groups. We inferred potential functions of the motifs using the

SIGNALSCAN program and the database of Plant Cis-acting
Regulatory DNA Elements (PLACE4; Higo et al., 1999), and by
comparing the motifs to motifs in the PlantCare database5) and
published literature. We then ranked the motifs based on the
number of sequences that contained one or more copies of the
motif (SEQ_HIT_P), and identified the top 50 motifs.

Identification of Key Differentially
Expressed Genes
We focused attention on genes encoding transcription factors,
and genes associated with chromatin, phytohormone responses,
or dormancy-related QTL. For each analysis (subset of genes), we
classified the genes into four groups: up- or down-regulated from
paradormancy to endodormancy, and up- or down-regulated
from endodormancy to ecodormancy. Within each group, we
ranked genes by FDR p-value, and then focused on the top 15
genes in each group if they had an FDR p-value < 0.05.

Chromatin-associated genes were identified using the
Arabidopsis thaliana chromatin database (ChromDB; Gendler
et al., 2008) and by including genes that had “chromatin” or
“histone” in the TAIR10 functional annotation (defline) of the
Populus v3.0 annotation file or in any of the “full name” aliases
listed in the TAIR10 gene aliases text file6. Transcription factor
genes were identified using the P. trichocarpa and A. thaliana
Plant Transcription Factor Databases v3.0 (TFDB; Jin et al.,
20147). Because phytohormones are involved in very large
signaling networks with substantial cross-talk, we defined
phytohormone-associated genes as those having direct roles
affecting hormone responses via their influence on hormone
metabolism (biosynthesis or inactivation), transport, or signaling.
This definition encompassed genes that link hormone receptors
to primary downstream transcription factors, but excluded genes
that regulate hormone metabolic genes, secondary transcription
factors, and other downstream response genes. Genes located
within dormancy-related QTL were identified by mapping
the gene models shown in Supplementary Table S4 of Rohde
et al. (2011b) to the Populus v3.0 gene models using the gene
model aliases shown in Supplementary Data File 1. Some gene
models noted by Rohde et al. (2011b) were excluded if they no
longer mapped to the same general region of the Populus v3.0
genome, and some new v3.0 gene models were added if they
were contiguous to the genes previously described by Rohde
et al. (2011b). The genes belonging to each of these subsets are
identified in Supplementary Data File 1.

Identification of Differentially Expressed
Gene Sets using Gene Set Enrichment
Analysis (GSEA)
We used gene set enrichment analysis (GSEA) to identify
gene sets that were overrepresented among the differentially
expressed genes (Step 7, Figure 1). GSEA is a statistical

4http://www.dna.affrc.go.jp/PLACE/
5http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
6ftp://ftp.arabidopsis.org/Genes/gene_aliases_20130831.txt
7http://planttfdb.cbi.pku.edu.cn/
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approach for determining whether sets of genes defined a priori
(e.g., genes with a common Gene Ontology term) preferentially
occur toward the top or bottom of a ranked list of genes
(Subramanian et al., 2005). Using the FDR p-values, we ranked
all genes according to their changes in expression between (1)
paradormancy versus endodormancy and (2) endodormancy
vs. ecodormancy. For each dormancy transition, we conducted
two analyses. First, we analyzed the data considering whether
the genes were up-regulated or down-regulated. That is, we
subtracted the FDR p-value from 1, and then multiplied the result
by −1 if the gene was down-regulated. GSEA was then used to
identify gene sets that were preferentially located near the top
or bottom of this list. Second, we analyzed the data ignoring the
direction of change (i.e., no −1 multiplier was used), and then
used GSEA to identify genes that were preferentially located near
the top of this list. This second analysis was used to identify gene
sets whose members contribute to the same biological response
via opposite changes in gene expression.

We implemented GSEA using the java application GSEA
v2.0.13 (Broad Institute, Cambridge, MA, USA8) and 1000
bootstrap replications. We used default parameters, except for
setting the minimum and maximum gene set sizes to 5 and
500. Gene sets were considered statistically significant at an FDR
p-value of 0.10. We analyzed three datasets: two Gene Ontology
(GO) datasets (biological process and molecular function GO
categories9; Gene Ontology Consortium, 2012) and one Pathway
Studio (PS) dataset (Pathway Studio v8, Elsevier). For the GO
gene sets, Populus genes were assigned using the GO terms or
Arabidopsis gene assignments downloaded from the Phytozome
web site (Supplementary Data File 1; Phytozome v9.010). For the
Pathway Studio dataset, we combined seven types of pathways.
The combined dataset included sets of genes that encode (1)
expression targets, (2) miRNA targets, (3) protein modification
targets, (4) proteins regulating disease, (5) proteins regulating
cell processes, and (6) binding partners and (7) neighbors of key
proteins and biological processes.

RESULTS

Assignment of Bud Dormancy States
We collected axillary buds on five dates between August and
March, and then assigned these samples to three dormancy states
or treatments based on cluster analysis of gene expression data.
Of a total of 44,441 gene models represented on the microarray,
1,206 gene models (36 v1.1 and 1170 v3.0 transcripts) were
differentially expressed among months (FDR p-value < 0.05;
Supplementary Data File 1). Clustering of these differentially
expressed genes produced three well-supported groups consisting
of samples collected in (1) August, shortly after terminal
bud set, (2) November and December, and (3) February
and March (Figure 2). We classified the first group (August
samples) as paradormant (Para), the November and December

8http://www.broadinstitute.org/gsea/index.jsp
9http://geneontology.org/
10http://www.phytozome.net/

FIGURE 2 | UPGMA cluster analysis was used to group the 10 samples
into three dormancy states: paradormant (Para), endodormant (Endo),
and ecodormant (Eco). Clustering was based on the relative expression of
1,206 genes that were differentially expressed among five collection dates in
August (samples A1 and A2), November (N1 and N2), December (D1 and D2),
February (F1 and F2), and March (M1 and M2). Green indicates high relative
gene expression and blue indicates low relative gene expression. Bootstrap
values (1000 replicates) were 100% for all branch points, except those labeled
as 77 and 84%.
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FIGURE 3 | Relative expression of differentially expressed chromatin-associated genes. Chromatin-associated genes were identified using the Arabidopsis
thaliana chromatin database (ChromDB; Gendler et al., 2008). Genes were classified into four groups: up-regulated or down-regulated from paradormancy to
endodormancy (A,B), or up-regulated or down-regulated from endodormancy to ecodormancy (C). Within each group, we ranked genes by FDR p-value, and then
displayed the top 15 genes for each group if they had a FDR p-value < 0.05. Only four genes were differentially expressed between endodormancy and
ecodormancy, and all of these were up-regulated (C). Gene expression values are the means for each month normalized to a mean of zero and a standard deviation
equal to the ANOVA RMSE from the analysis of gene expression differences among months. ChromDB is the ChromDB identifier, Populus gene is the P. trichocarpa
gene-locus name, and AGI and TAIR10 symbols are the Arabidopsis gene identifiers and gene symbols from the P. trichocarpa v3.0 annotations
(http://www.phytozome.net/).
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samples as endodormant (Endo) and the February and March
samples as ecodormant (Eco). Morphological observations
of bud development (Supplementary Figure S2), and past
dormancy research on P. trichocarpa and other cottonwoods
(see Discussion) support the assignment of these dormancy
states.

Major Transcriptome Changes Occur
during Endodormancy Induction and
Release
Of the 44,441 gene models analyzed, 1,362 genes (v1.1 = 43;
v3.0 = 1,319) were differentially expressed among dormancy
states (FDR p-value < 0.05; Supplementary Data File 1). Based
on analyses of individual dormancy transitions, however, 1,523
genes (v1.1 = 25; v3.0 = 1,498) were differentially expressed
between paradormancy and ecodormancy, and the majority of
these (n = 1,168) were down-regulated. Only 293 transcripts
(v1.1 = 13; v3.0 = 280) were differentially expressed between
endodormancy and ecodormancy, and the majority of these
(n = 193) were up-regulated. A total of 190 genes (v1.1 = 4;
v3.0 = 186) were differentially expressed during both transitions.
Of all the v3.0 differentially expressed genes discussed above, only
3.2% were novel—i.e., had no Arabidopsismatch (Supplementary
Data File 1). We found no evidence that transcripts associated
with the mitochondrial, chloroplast, or miRNA gene models
were differentially expressed. However, results for the organelle
gene models are difficult to interpret because total RNA was
reversed transcribed using an oligo(dT) primer.

Gene Set Enrichment Analysis (GSEA)
In addition to single-gene analyses, we used GSEA to help
identify differentially expressed genes sets, which are groups of
genes that share a common biological function, chromosomal
location, or regulation (Subramanian et al., 2005). Compared
to single-gene analyses, GSEA has the potential to identify
biologically relevant genes, even when the results of single
gene analyses are not statistically significant, and may yield
insights that are not obvious from reviewing long lists of
statistically significant genes. In particular, GSEA can be valuable
for identifying important regulatory pathways. Significant
gene sets identified using the GO-term, Pathway Studio, and
phytohormone analyses are presented in Supplementary Tables
S1–S8, and overrepresented ontologies of particular interest are
described below.

Differential Expression of
Chromatin-associated Genes
Overview
Among the Populus v3.0 genes on the array, 727 were identified
as being chromatin-associated, 21 of which were differentially
expressed between adjacent dormancy states (Supplementary
Data File 1). During the transition from paradormancy to
endodormancy, 19 genes were down-regulated and 2 were
up-regulated. During the transition from endodormancy to
ecodormancy, no genes were down-regulated, and 4 were up-
regulated. Four genes were differentially expressed during both

dormancy transitions. Changes in expression for the top genes
(ranked on FDR p-value) are shown in Figure 3.

Chromatin-associated Gene Sets
Three chromatin-associated Pathway Studio gene sets
were expressed at lower levels during endodormancy—
with significant changes in expression at each of the two
dormancy transitions. These gene sets were ‘Neighbors of RDR6’
(RNA-DEPENDENT RNA POLYMERASE 6), ‘Regulators
of cytosine methylation,’ and ‘Regulators of maintenance of
DNA methylation’ (Supplementary Tables S5 and S6). Sixteen
other gene sets were differentially expressed during one of the
two dormancy transitions, 13 of which were down-regulated
from paradormancy to endodormancy. These Pathway Studio
gene sets were ‘Neighbors of SWN’ (SWINGER), ‘Expression
targets of RDR6,’ ‘Neighbors of DCL1’ (DICER-LIKE 1),
‘Neighbors of CMT3’ (CHROMOMETHYLASE3), ‘Regulators
of DNA methylation,’ ‘Neighbors of HDA6’ (HISTONE
DEACETYLASE A6), ‘Neighbors of histone,’ ‘Binding partners
of FIE’ (FERTILIZATION INDEPENDENT ENDOSPERM),
‘Expression targets of DET1’ (DEETIOLATED 1), ‘Regulators
of chromatin remodeling,’ ‘Neighbors of PRMT11’ (PROTEIN
ARGININE METHYLTRANSFERASE 11), ‘Neighbors of
AGO7’ (ARGONAUT7), ‘Neighbors of FIE,’ ‘Neighbors of
HD1’ (HISTONE DEACETYLASE 1), ‘Neighbors of polycomb
complex,’ and the GO molecular function gene set, ‘Histone-
lysine n-methyltransferase activity.’ Finally, five additional
Pathway Studio gene sets were differentially expressed, from
paradormancy to endodormancy, but with no common pattern
of expression among the gene set members (‘Up- or down-
regulated’ gene sets in Supplementary Tables S5 and S6). These
gene sets were ‘Binding partners of DDB1A’ (DNA DAMAGE-
BINDING PROTEIN 1A), ‘Neighbors of DCL2’ (DICER-LIKE
2), ‘Regulators of histone methylation,’ ‘Binding partners of
JAZ10’ (JASMONATE ZIM-DOMAIN PROTEIN 10), and
‘Neighbors of PKL’ (PICKLE).

Chromatin-associated Genes
Of the genes shown in Figure 3, four genes were down-regulated
from paradormancy to endodormancy and then up-regulated
from endodormancy to ecodormancy. One of these genes
(Potri.004G087500; HMGA3) is similar to a gene that encodes a
HIGH MOBILITY GROUP A (HMGA) protein in Arabidopsis.
The second gene (Potri.008G155400; RHEL1) is similar to
Arabidopsis SILENCING DEFECTIVE 3 (SDE3). The third gene
(Potri.014G189400; DNG5) is similar to genes that encode
DNA glycosylases involved in gene silencing and chromatin
remodeling. The last gene (Potri.T029800; ABHF4) is similar
to a gene that encodes an alpha/beta-hydrolase in Arabidopsis.
Two genes had atypical patterns of expression—being strongly
up-regulated from paradormancy to endodormancy, and then
down-regulated from endodormancy to ecodormancy. The first
gene (Potri.004G162500; GTA2), which is listed as encoding
a GLOBAL TRANSCRIPTION FACTOR GROUP A2 (GTA2)
protein in Figure 3, is similar to Arabidopsis SPT5-2, an
ortholog of yeast SUPPRESSOR OF TY 5 (Durr et al., 2014).
The second gene (Potri.001G034300; GTB1), which is listed as
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encoding a GLOBAL TRANSCRIPTION FACTOR GROUP B1
(GTB1) protein, is similar to the SPT6-like (SPT6L) gene from
Arabidopsis (Li et al., 2010; Gu et al., 2012). Other distinct
chromatin-associated genes were also differentially expressed
(see ChromDB classifications PATPA1, EPB1, FLT4, NFA5,
and CHR42 in Figure 3). These genes encode proteins that
may be involved in histone ubiquitination and methylation,
chromatin assembly or disassembly, histone and DNA binding,
and chromatin remodeling.

Differential Expression of Transcription
Factor Genes
Overview
Among the Populus v3.0 genes on the array, 2,469 were identified
as transcription factors, 117 of which were differentially
expressed between adjacent dormancy states (Supplementary
Data File 1). During the transition from paradormancy to
endodormancy, 89 genes were down-regulated and 19 were
up-regulated. During the transition from endodormancy to
ecodormancy, 5 genes were down-regulated and 19 were up-
regulated. Fifteen genes were differentially expressed during both
dormancy transitions. Changes in expression for the top genes
(ranked on FDR p-value) are shown in Figure 4.

Transcription Factor Gene Sets
Nine transcription factor gene sets were differentially expressed
during both dormancy transitions. Four were expressed at
higher levels during endodormancy: ‘Neighbors of EIN3’
(ETHYLENE INSENSITIVE 3), ‘Expression targets of EIN3,’
‘Neighbors of RHL41’ (RESPONSIVE TO HIGH LIGHT 41),
and ‘Expression targets of WRKY” (Supplementary Tables S5
and S6). The other five gene sets were expressed at lower
levels during endodormancy: ‘Neighbors of JLO’ (JAGGED
LATERAL ORGAN), ‘Neighbors of SEU’ (SEUSS), ‘Neighbors of
RPL’ (REPLUMLESS), ‘Neighbors of ARF2’ (AUXIN RESPONSE
FACTOR 2), and ‘Neighbors of BASIC-HELIX-LOOP-HELIX
PROTEIN.’

Transcription Factor Genes
Of the genes shown in Figure 4, five were differentially
expressed during both dormancy transitions. Two genes were
down-regulated from paradormancy to endodormancy and
then up-regulated from endodormancy to ecodormancy. One
of these genes (Potri.009G134000) is similar to a gene that
encodes MYB DOMAIN PROTEIN 4 (MYB4) in Arabidopsis.
The second gene (Potri.004G230100) is similar to Arabidopsis
VERNALIZATION1 (VRN1). Three other genes had atypical
patterns of expression—being strongly up-regulated from
paradormancy to endodormancy, and then down-regulated
from endodormancy to ecodormancy. Potri.008G210900 is
similar to a gene that encodes an ETHYLENE-RESPONSIVE
ELEMENT BINDING PROTEIN (EBP), Potri.014G017300 is
similar to the SALT TOLERANCE ZINC FINGER (STZ) gene, and
Potri.001G066900 is similar to an Arabidopsis gene that encodes
a trihelix transcription factor.

Differential Expression of
Phytohormone-associated Genes
Overview
Among the Populus v3.0 genes on the array, 718 genes were
identified as being putatively involved in hormone synthesis,
catabolism, signaling, or transport. Of these, 41 were differentially
expressed between adjacent dormancy states (Supplementary
Data File 1). During the transition from paradormancy
to endodormancy, 38 genes were down-regulated and only
2 were up-regulated. No genes were down-regulated from
endodormancy to ecodormancy, but 8 genes were up-regulated.
Seven genes were differentially expressed during both dormancy
transitions. Changes in expression for the top genes (ranked on
FDR p-value) are shown in Figure 5.

Auxin-associated Gene Expression
The auxin-associated gene set was mostly down-regulated
from paradormancy to endodormancy, and then up-regulated
thereafter (Supplementary Tables S7 and S8). Changes in Pathway
Studio gene sets provide additional support for the importance
of auxin associated genes. One auxin-associated gene set
(‘Neighbors of ARF6,’ AUXIN RESPONSE FACTOR 6) was up-
regulated from paradormancy to endodormancy, but three other
key gene sets, ‘Binding partners of ARF1,’ ‘Neighbors of ARF2,’
and ‘Binding partners of TIR1’ (TRANSPORT INHIBITOR
RESPONSE 1), were down-regulated (Supplementary Tables S5
and S6). Two gene sets associated with ARF2 were subsequently
up-regulated from endodormancy to ecodormancy.

Ethylene-associated Gene Expression
The ethylene gene set was up-regulated from paradormancy to
endodormancy, and then down-regulated from endodormancy
to ecodormancy (Supplementary Tables S7 and S8). More
specifically, one of only two phytohormone genes that were
significantly up-regulated from paradormancy to endodormancy
is similar to a gene that encodes the CTR1 (CONSTITUTIVE
TRIPLE RESPONSE 1) protein, which is a negative regulator of
the ethylene response pathway in Arabidopsis. Changes in other
genes that participate in ethylene responses were described above
(see Differential Expression of Transcription Factor Genes).

GA-associated Gene Expression
Gibberellin-associated genes were generally up-regulated from
paradormancy to endodormancy, but did not change from
endodormancy to ecodormancy (Supplementary Tables S7 and
S8). We then focused attention on genes encoding GA-
20 oxidases and GA-2-oxidases because of their potential
involvement in endodormancy. We identified genes encoding
GA-20-oxidases and GA-2-oxidases based on similarities to
Arabidopsis genes and the information presented in Gou et al.
(2011), but none was differentially expressed. In fact, no
individual GA-related genes were differentially expressed.

ABA-associated Gene Expression
The ABA-associated gene set did not change among dormancy
states (Supplementary Tables S7 and S8), but our analyses
of individual ABA genes identified four genes that were

Frontiers in Plant Science | www.frontiersin.org 9 December 2015 | Volume 6 | Article 989

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Howe et al. Transcriptome Changes Associated with Populus Endodormancy

FIGURE 4 | Relative expression of differentially expressed transcription factor genes. Transcription factor genes were identified using the P. trichocarpa and
A. thaliana Plant Transcription Factor Databases v3.0 (TFDB; Jin et al., 2014; http://planttfdb.cbi.pku.edu.cn/). Genes were classified into four groups: up-regulated
or down-regulated from paradormancy to endodormancy (A,B), or up-regulated or down-regulated from endodormancy to ecodormancy (C,D). Within each group,
we ranked genes by FDR p-value, and then displayed the top 15 genes for each group if they had a FDR p-value < 0.05. Gene expression values are the means for
each month normalized to a mean of zero and a standard deviation equal to the ANOVA RMSE from the analysis of gene expression differences among months.
Family is the TFDB family designation for the corresponding Arabidopsis gene, Populus gene is the P. trichocarpa gene-locus name, and AGI and TAIR10 symbols
are the Arabidopsis gene identifiers and gene symbols from the P. trichocarpa v3.0 annotations (http://www.phytozome.net/).
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FIGURE 5 | Relative expression of differentially expressed phytohormone-associated genes. Genes were classified into four groups: up-regulated or
down-regulated from paradormancy to endodormancy (A,B), or up-regulated or down-regulated from endodormancy to ecodormancy (C). Within each group, we
ranked genes by FDR p-value, and then displayed the top 15 genes for each group if they had a FDR p-value < 0.05. All genes differentially expressed between
endodormancy and ecodormancy were up-regulated (C). Gene expression values are the means for each month normalized to a mean of zero and a standard
deviation equal to the ANOVA RMSE from the analysis of gene expression differences among months. Abbreviations for phytohormones: ABA, abscisic acid; BR,
brassinosteroid; CK, cytokinin; ET, ethylene; GA, gibberellin; IAA, indole-3-butyric acid; JA, jasmonic acid, and SA, salicylic acid. Populus gene is the P. trichocarpa
gene-locus name and AGI and TAIR10 symbols are the Arabidopsis gene identifiers and gene symbols from the P. trichocarpa v3.0 annotations (http://www.

phytozome.net/).

differentially expressed between one or more dormancy states.
One gene (Potri.008G0734000), similar to a gene that encodes
a PYL (PYRABACTIN RESISTANCE-LIKE) ABA receptor, was

down-regulated slightly from paradormancy to endodormancy,
and then significantly up-regulated from endodormancy to
ecodormancy (Figure 5). Three other genes were significantly
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down-regulated from paradormancy to endodormancy,
including genes that likely encode proteins involved in
ABA transport (Potri.001G175700), ABA biosynthesis
(Potri.003G176300), and positive regulation of ABA signaling
(Potri.013G112500). The Pathway Studio gene set, ‘Neighbors
of ABF2’ (ABA RESPONSIVE ELEMENTS-BINDING FACTOR
2), was significantly down-regulated from paradormancy to
endodormancy. In contrast, the gene set, ‘Neighbors of ABF3,’
was down-regulated from endodormancy to ecodormancy.

Brassinosteroid-associated Gene Expression
The brassinosteroid (BR) gene set showed nearly the same
expression pattern as the auxin gene set—general down-
regulation from paradormancy to endodormancy, and
then up-regulation from endodormancy to ecodormancy
(but at a FDR p-value of 0.115). In addition, the Pathway
Studio gene set, ‘Binding partners of BES1’ (BRI1-EMS
SUPRESSOR 1), was down-regulated from paradormancy to
endodormancy. Analyses of individual genes identified three
BR-related genes (Potri.010G170000, Potri.008G084800, and
Potri.003G088900) that showed the same general pattern of
gene expression (Figure 5). The first two genes are similar
to Arabidopsis CABBAGE1 (CBB1) and the third is similar to
BRASSINOSTEROID-SIGNALING KINASE 2 (BSK2).

Salicylic-acid-associated Gene Expression
Among the phytohormone gene sets, the SA-associated gene
set had the strongest evidence for differential expression
(Supplementary Tables S7 and S8). Four of the seven SA-
associated genes that were differentially expressed were similar
to Arabidopsis PAL1 (PHENYLALANINE AMMONIA-LYASE 1),
and all of these were down-regulated from paradormancy to
endodormancy.

Jasmonic-acid-associated Gene Expression
Although the JA-associated gene set was not differentially
expressed, the Pathway Studio gene sets, ‘Neighbors of
JA,’ ‘Neighbors of MEJA,’ ‘Expression targets of COI1’
(CORONATINE INSENSITIVE 1), and ‘Neighbors of COI1’
were all down-regulated from paradormancy to endodormancy.
Furthermore, we saw this same pattern of expression for all six
JA-associated genes that were differentially expressed, the top
three of which are shown in Figure 5. Five of these six genes
are associated with JA synthesis (Supplementary Data File 1)
and one is associated with negative JA signaling. This latter
gene (Potri.018G047100) is similar to Arabidopsis JASMONATE
ZIM-DOMAIN 12 (JAZ12). Another Pathway Studio gene set,
‘Binding partners of JAZ10,’ was differentially regulated, but with
no consistent pattern among the gene set members.

Cytokinin-associated Gene Expression
Although the hormone gene set was not differentially expressed,
the Pathway Studio gene set, ‘Neighbors of cytokinin,’ and three
individual genes (Potri.009G060300, Potri.010G027100, and
Potri.016G044100) were all down-regulated from paradormancy
to endodormancy.

Differential Expression of Genes
Associated with Bud Set QTL
Among the Populus v3.0 genes on the array, 2,181 were identified
as being associated with bud set QTL. These genes covered
genomic regions ranging from 1.9 Mbp for QTL LG13, to
7.3 Mbp for QTL LG3. A total of 103 genes were differentially
expressed using two different criteria. Seventy of these genes
were differentially expressed among the three dormancy states
(F-test), whereas 94 were differentially expressed between
either of the two adjacent dormancy states (Supplementary
Data File 1). During the transition from paradormancy to
endodormancy, 67 genes were down-regulated and 19 were up-
regulated. Six genes were down-regulated from endodormancy
to ecodormancy, and 15 genes were up-regulated. Fourteen genes
were differentially expressed during both dormancy transitions.
Changes in expression for the top genes (ranked on FDR p-value)
are shown in Figure 6. Differentially expressed genes were well
distributed among the six QTL (described below).

Quantitative trait loci LG3 and LG5 each mapped near 16
differentially expressed genes (i.e., genes differentially expressed
among the three dormancy states or between adjacent dormancy
states), but none had any obvious regulatory role in bud set. In
contrast, several potential regulatory genes were found among
the 19 differentially expressed genes located near QTL LG6.
These include genes that seem to encode a chromatin-associated
DCL protein (Potri.006G188800) and a JAZ protein involved in
JA signaling (Potri.006G217200; discussed above). Among the 19
differentially expressed genes located near QTL LG8a, are genes
that seem to encode proteins involved in chromatin remodeling
(Potri.008G073500), positive ABA signaling (Potri.008G073400),
BR synthesis (Potri.008G084800), responses to far-red light
(Potri.008G076800), organization of lateral organ boundaries
(Potri.008G071500), and a NAC-domain transcription factor
associated with leaf senescence (Potri.008G089000). QTL
LG8b maps near 24 differentially expressed genes, including
two chromatin-associated genes (Potri.008G155400 and
Potri.008G136100), an Aux/IAA gene (Potri.008G172400),
and a gene similar to MITOTIC ARREST-DEFICIENT 2
(Potri.008G179600). Nine differentially expressed genes mapped
near QTL LG13, including a gene (Potri.013G011400) that
seems to encode a plant homeodomain (PHD) finger family
protein that was up-regulated during endodormancy, and a
gene (Potri.013G025900) that may encode a bHLH transcription
factor that was strongly down-regulated and mapped near the
center of the QTL.

Patterns of Gene Expression and
Regulatory Motifs
With three dormancy states, eight different patterns of gene
expression are possible (Figure 7). We used ANOVA to identify
genes that were differentially expressed among dormancy states
(FDR p-value< 0.05), and then used contrast statements to assign
each gene to a specific pattern of gene expression. The numbers
of genes assigned to each expression pattern ranged from 25 to
470 (Figure 7); the gene expression pattern assigned to each gene
is available in Supplementary Data File 1.
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FIGURE 6 | Relative expression of differentially expressed genes located near dormancy-related QTL. Genes were classified into four groups:
up-regulated or down-regulated from paradormancy to endodormancy (A,B), or up-regulated or down-regulated from endodormancy to ecodormancy (C,D). Within
each group, we ranked genes by FDR p-value, and then displayed the top 15 genes for each group if they had a FDR p-value < 0.05. Gene expression values are
the means for each month normalized to a mean of zero and a standard deviation equal to the ANOVA RMSE from the analysis of gene expression differences
among months. QTL is the QTL designation from Rohde et al. (2011b), Populus gene is the P. trichocarpa gene-locus name, and AGI and TAIR10 symbols are the
Arabidopsis gene identifiers and gene symbols from the P. trichocarpa v3.0 annotations (http://www.phytozome.net/).
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FIGURE 7 | Expression patterns of 1,362 genes that were differentially expressed among dormancy states. Genes were classified into eight gene
expression patterns associated with two dormancy transitions: paradormancy to endodormancy and endodormancy to ecodormancy. For each transition, gene
expression was either up-regulated (U), the same (S), or down-regulated (D). Solid green lines represent the mean normalized expression for each gene, and the
solid black lines represent the mean expression of all genes shown in the panel (i.e., gene expression group).

We subsequently tested whether genes sharing a common
pattern of gene expression have common upstream regulatory
motifs. For each gene expression group, we analyzed 2 kb
of upstream sequence, identifying 315 unique, overrepresented
sequence motifs (Supplementary Data File 2). We found only
a few unique motifs for four expression patterns (SU and

US = 2; SD and UU = 3). Larger numbers of motifs
were found for two expression patterns (DD = 16 and
DU = 64). The largest numbers of motifs were found for
patterns UD (n = 103) and DS (n = 122). The putative
functions of the top 50 overrepresented motifs are shown in
Table 1.

Frontiers in Plant Science | www.frontiersin.org 14 December 2015 | Volume 6 | Article 989

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Howe et al. Transcriptome Changes Associated with Populus Endodormancy

TABLE 1 | Top 50 upstream sequence motifs overrepresented in eight gene expression pattern-groups.

Motif no. Pattern Sequence motif Seq p-value Motif p-value Place sites and other motifs Proposed functions

208 UD AAATATCT 5.82E-09 1.63E-14 GATABOX, ROOTMOTIFTAPOX1,
EVENINGELEMENTLIKE∗

Cold, light, and circadian
responses

214 UD GCCGAC 1.51E-08 4.92E-08 LTRECOREATCOR15, DRECRTCOREAT,
CBFHV

Cold, dehydration responses

143 DU AAAAATCA 2.26E-08 1.50E-07 ARR1AT Cytokinin response

211 UD ACGTGTCC 7.87E-08 1.59E-08 ACGTABREMOTIFA2OSEM, ABRELATERD1,
ACGTATERD1, GADOWNAT

ABA, GA, and light responses

221 UD ATGTCGG 2.88E-07 8.44E-07 LTRECOREATCOR15 Cold, dehydration responses

213 UD CCGACA 3.45E-07 1.73E-08 LTRECOREATCOR15 Cold, dehydration responses

223 UD GCCGACA 2.08E-06 1.13E-06 LTRECOREATCOR15, DRECRTCOREAT,
CBFHV

Cold, dehydration responses

219 UD GTCGGCA 2.20E-06 5.39E-07 LTRECOREATCOR15, DRECRTCOREAT,
CBFHV

Cold, dehydration responses

41 DS GAAAAATA 2.26E-06 1.91E-06 GT1CONSENSUS, GT1GMSCAM4 Stress and light responses

212 UD CCGAC 2.52E-06 1.62E-08 LTRECOREATCOR15 Cold, dehydration responses

147 DU GTTTTTTA 3.61E-06 2.20E-06

61 DS TATAATAA 4.18E-06 1.51E-05

229 UD ATGTCGGC 5.88E-06 8.31E-06 LTRECOREATCOR15, DRECRTCOREAT,
CBFHV

Cold, dehydration responses

42 DS TATAATA 6.52E-06 1.95E-06

224 UD AGCCGCC 6.66E-06 2.77E-06 AGCBOXNPGLB, GCCCORE Ethylene and other responses

311 US GGTGAAC 1.05E-05 1.58E-06 GTGANTG10 Pollen expression

55 DS AATTATTA 1.69E-05 9.17E-06 POLASIG3 Polyadenylation-like motif

210 UD AATATCT 2.13E-05 1.12E-09 GATABOX, ROOTMOTIFTAPOX1,
EVENINGELEMENTLIKE∗

Cold, light, and circadian
responses

264 UD GCCGCC 2.24E-05 1.03E-04 GCCCORE Ethylene and other responses

297 UD CCGTC 2.45E-05 1.12E-03

142 DU AAAATAAC 2.52E-05 8.32E-08 TATABOX5 TATA-box motif

69 DS AAGTTTAT 2.74E-05 2.56E-05

44 DS AATTATAT 3.01E-05 3.37E-06

161 DU AGTAAAAA 3.13E-05 1.97E-05 CACTFTPPCA1 Widely distributed cis-acting
element

245 UD CATGTCGG 3.70E-05 5.14E-05 LTRECOREATCOR15 Cold, dehydration responses

118 DS GGTAAAA 3.96E-05 3.21E-04 GT1CONSENSUS Stress and light responses

53 DS GTATTTTA 4.51E-05 7.81E-06

231 UD GTCGGCAA 4.55E-05 1.84E-05 LTRECOREATCOR15, DRECRTCOREAT,
CBFHV

Cold, dehydration responses

230 UD AAGCCGCC 4.56E-05 1.26E-05 AGCBOXNPGLB, GCCCORE Ethylene and other responses

244 UD CCGACAC 5.00E-05 5.06E-05 LTRECOREATCOR15 Cold, dehydration responses

153 DU AATCATGG 5.62E-05 7.96E-06 ARR1AT Cytokinin response

261 UD CGAGGATA 5.69E-05 9.10E-05 GATABOX, MYBST1 Light and MYB responses

63 DS CTAGTCGC 6.79E-05 1.95E-05

265 UD ACCGT 7.03E-05 1.13E-04

258 UD CACGCCA 7.81E-05 7.29E-05

21 DS ATATAAT 8.23E-05 9.13E-10

207 SU CGTAC 8.24E-05 8.29E-04 CURECORECR SBP response

144 DU AAATATTT 8.25E-05 1.61E-07 ROOTMOTIFTAPOX1 Starch degradation gene
expression

64 DS AAATAATA 8.63E-05 1.98E-05 POLASIG3, TATABOX5 Polyadenylation-like and TATA
motifs

12 DD AACGAC 8.76E-05 1.96E-04 Auxin response

105 DS GTTAAAAA 9.57E-05 1.58E-04

263 UD GCCGCCC 9.64E-05 9.74E-05 GCCCORE Ethylene and other responses

96 DS ACCGCACG 1.03E-04 1.33E-04

108 DS AAACTTTA 1.16E-04 1.68E-04 DOFCOREZM, NTBBF1ARROLB,
TAAAGSTKST1

Auxin and Dof responses

(Continued)
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TABLE 1 | Continued

Motif no. Pattern Sequence motif Seq p-value Motif p-value Place sites and other motifs Proposed functions

243 UD AGGACACG 1.18E-04 5.01E-05

155 DU TAATAAAA 1.20E-04 1.01E-05 POLASIG1 Polyadenylation-like motif

250 UD ACGTGTC 1.23E-04 6.25E-05 ACGTABREMOTIFA2OSEM, ABRELATERD1,
ACGTATERD1, GADOWNAT

ABA, GA, and light responses

59 DS ATAAAAAT 1.29E-04 1.12E-05 SEF4MOTIFGM7S Widely distributed cis-acting
element

114 DS CCGCACG 1.30E-04 2.33E-04

181 DU ACGTGAT 1.34E-04 1.79E-04 GTGANTG10, ABRELATERD1, ACGTATERD1,
RHERPATEXPA7

ABA, cytokinin, and light
responses

The motif number can be used to find additional motif information in Supplementary Data File 1. ‘Pattern’ is the gene expression pattern, where the first letter indicates the
direction of change from paradormancy to endodormancy (U = up-regulated, D = down-regulated, S = same or no change), and the second letter indicates the direction
of change from endodormancy to ecodormancy. For example, a pattern of ‘DS’ indicates that the gene was down-regulated from paradormancy to endodormancy, and
then did not change from endodormancy to ecodormancy. ‘Seq p-value’ is the random probability of finding the observed number of genes with at least one sequence
motif. ‘Motif p-value’ is the random probability of finding the observed mean number of motifs per sequence. PLACE sites are the names of related motifs based on a
search of the Database of Plant Cis-acting Regulatory DNA Elements (http://www.dna.affrc.go.jp/PLACE/index.html). Non-PLACE site names are designated with an
asterisk.

DISCUSSION

Rationale for the Classification of
Dormancy Treatments
We classified the monthly time points into three dormancy
treatments based on previous research on P. trichocarpa and
other cottonwoods, and by grouping the monthly samples
based on patterns of gene expression. The first sample was
classified as ‘paradormant’ because black cottonwood shoots
were still elongating on August 1. Furthermore, in eastern
cottonwood, endodormancy is not evident until 2–3 weeks after
SD-induced bud set, and does not peak until about 7 weeks after
bud set (Howe et al., 1999). The induction of endodormancy
seems to progress in a similar fashion in black cottonwood
(Frewen et al., 2000; Chen et al., 2002). The November and
December samples were classified as ‘endodormant.’ As noted
above, SD-induced endodormancy peaked about 7 weeks after
SD-induced bud set in eastern cottonwood, and was readily
measurable for the next 4 weeks (Howe et al., 1999). This
would place peak endodormancy somewhere between our
November 1 and December 1 collection dates. Information on
the release of endodormancy is also available from experiments
on an F2 population of hybrids between black cottonwood and
eastern cottonwood (Chen et al., 2002). Based on these data
and other research on balsam poplar (Farmer and Reinholt,
1986), we classified the February and March samples as
‘ecodormant.’

Differential Expression among Dormancy
States
During the transition from paradormancy to endodormancy,
most of the differentially expressed genes (n = 913; 67%)
were down-regulated. In contrast, during the transition from
endodormancy to ecodormancy, the two largest groups of genes
(n = 513 and 519; 38% each) were those that were either up-
regulated or did not change. These patterns are consistent with
the lower cell division and metabolic activity that occurs during

endodormancy. Below, we focus on genes that had opposite
changes in expression between the two dormancy transitions
(n= 604; 44%). That is, genes that were clearly expressed at either
higher or lower levels during endodormancy compared to the
other two dormancy states. Finally, the smaller number of genes
whose expression was atypically higher during endodormancy
were of particular interest (n = 225; 17%).

Differential Expression of
Chromatin-associated Genes
Overview
Large-scale changes in chromatin are associated with plant
developmental changes and responses to the environment.
These include (1) covalent modifications to histones or DNA
and (2) non-covalent remodeling of chromatin, including
changes in nucleosome position or stability, and substitution
of one histone type for another (Gentry and Hennig, 2014).
Several transcriptomic, physiological, and genetic studies have
implicated chromatin modifications and remodeling in the
regulation of endodormancy (Ruttink et al., 2007; Horvath
et al., 2008, 2010; Karlberg et al., 2010). We found additional
support for this link, identifying differentially expressed gene
sets associated with ‘histone,’ ‘histone methylation,’ ‘chromatin
remodeling,’ ‘DNA methylation,’ ‘cytosine methylation,’ and
‘maintenance of DNA methylation.’ The expression of other
gene sets and individual genes are discussed in more detail below.

RNA-directed DNA Methylation (RdDM)
We observed many changes in genes and gene sets associated
with transcriptional gene silencing (TGS) via RNA-directed DNA
methylation (RdDM). RdDM is a gene silencing process that
is regulated by the methylation and demethylation of DNA at
target loci. In general, RNA-DEPENDENT RNA POLYMERASE
(RDR) copies single-stranded transcripts into double-stranded
RNAs (dsRNAs) that are then processed by DICER-like (DCL)
proteins into short interfering RNAs (siRNAs). These siRNAs
subsequently associate with ARGONAUT (AGO) proteins to
form RNA-induced silencing complexes (RISCs) that mediate
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DNA methylation and TGS (Matzke and Mosher, 2014). In
Arabidopsis, the ‘canonical’ RdDM pathway involves RDR2,
DCL3, and AGO4 (Matzke and Mosher, 2014). Gene silencing is
complicated because post-transcriptional gene silencing (PTGS)
involves similar machinery, and the two processes (TGS and
PTGS) interact (Matzke and Mosher, 2014). The genes typically
associated with PTGS are RDR6, DCL2, DCL4, and AGO1
(Matzke and Mosher, 2014). After TGS is established, DNA
methylation and gene silencing can be maintained by CMT3
(Matzke and Mosher, 2014). Differentially expressed genes and
gene sets included genes that seem to encode RDR (RDR1,
RDR6), DCL (DCL1, DCL2), ARGONAUT (AGO4, AGO7), and
CHROMOMETHYLASE 3 (CMT3). Because of the complexity
and similarities of the TGS and PTGS pathways, we did not
attempt to link particular Populus genes and gene sets to each
of these two gene silencing pathways (i.e., TGS versus PTGS).
Endodormancy related changes in RdDM pathways have been
observed in other perennial species. For example, a gene similar
to Arabidopsis AGO4 and a gene that may be functionally similar
to DCL4 were also down-regulated during endodormancy in
leafy spurge (Horvath et al., 2008).

Histone Modifications
An assortment of gene sets involved in histone modifications
were differentially expressed, including neighbors of ‘histone’ and
‘polycomb complex.’ In Arabidopsis, the Polycomb Repressive
Complex 2 (PRC2) participates in stable gene silencing. PRC2
methylates histone H3, resulting in the repression of gene
expression (Kim et al., 2012). For example, PRC2 controls
flowering via histone methylation of FT chromatin (Jiang
et al., 2008) and represses FLOWERING LOCUS C (FLC)
during vernalization (De Lucia et al., 2008). Other differentially
expressed gene sets included neighbors of ‘SWN,’ ‘FIE,’ and
‘PKL.’ In Arabidopsis, SWN and FIE encode core components
of PRC2 (Deng et al., 2013), whereas PKL encodes a DNA-
binding helicase which seems to associate with PRC2 target loci to
enhance histone modification (Zhang et al., 2012). Interestingly,
aspen genes similar to FIE and PKL were up-regulated during
SD-induced bud set (Ruttink et al., 2007). Although genes that
presumably encode ‘neighbors’ of FIE and PKLwere differentially
expressed in our study, the genes themselves were not. That
is, we did not see differential expression of two PKL-like genes
(Potri.006G262200 and Potri.018G021100) and one FIE-like gene
(Potri.001G417300) in our study.

‘Binding partners of DDB1A’ was another differentially
expressed gene set that seems to be associated with gene
silencing via PRC2. In Arabidopsis, DDB1A is a component
of the CULLIN 4 (CUL4)/DDB1 ubiquitin ligase complex
that functions in a wide array of plant processes, including
flowering, photomorphogenesis, and parental imprinting
(Hou et al., 2014). The CUL4/DDB1 complex seems to
interact with histone tails to repress the transcription of
genes involved in photomorphogenesis (Benvenuto et al.,
2002), and an association between CUL4/DDB1A and
PRC2 seems to regulate flowering time in Arabidopsis
(Dumbliauskas et al., 2011; Pazhouhandeh et al., 2011).
The differential expression of a ‘DET1’ gene set provides a

specific link to endodormancy. The DET1 protein interacts with
CONSTITUTIVE PHOTOMORPHOGENIC 10 (COP10) and
the CUL4/DDB1 complex to regulate responses to light and
temperature (Delker et al., 2014).

Gene activation and silencing also involve histone acetylation
and deacetylation. In general, histone acetylation is associated
with gene activation, whereas deacetylation is associated with
gene silencing. Two differentially expressed gene sets were
associated with histone deacetylases—HDA6 and HDA19 (also
known as HD1). HDA6 is a histone deacetylase that has
been identified as a component of the Arabidopsis RdDM
machinery (To et al., 2011a). In particular, deacetylation
of histone H3 seems to be important for the subsequent
methylation of histone H3 described above (To et al., 2011a).
In Arabidopsis, HDA6 is involved in the regulation of flowering,
senescence, leaf development, the circadian clock, and responses
to salt stress, ABA, and JA (Wu et al., 2008b; Chen et al.,
2010; To et al., 2011b; Liu et al., 2014), whereas HDA19
regulates seed maturation and flower development (Liu et al.,
2014). Other differentially expressed genes and gene sets are
connected to these histone deacetylases. For example, JAZ
proteins recruit HDA6 to inhibit JA signaling (Zhu et al.,
2011).

One of the strongly differentially expressed genes
(Potri.014G189400; DNG5) is a putative homolog of the
vertebrate gene MBD4 (METHYL-CPG-BINDING DOMAIN 4;
Ramiro-Merina et al., 2013). MBD proteins may recruit histone
deacetylases such as HDA6—thereby acting as the ‘bridges’
between DNA methylation and histone deacetylation (Liu et al.,
2012).

Finally, two SPT-like genes had atypical patterns of
expression—being strongly up-regulated from paradormancy to
endodormancy, and then down-regulated from endodormancy
to ecodormancy. Arabidopsis SPT5-2 is part of the SPT4/SPT5
transcript elongation factor that seems to link transcription
elongation, histone modification, and chromatin remodeling in
yeast and Arabidopsis (Hartzog and Fu, 2013; Durr et al., 2014).
Furthermore, anArabidopsis SPT5 homolog (KTF1/RDM3/SPT5-
like) has been linked to AGO4-mediated gene silencing
(Karlowski et al., 2010; Hartzog and Fu, 2013). A Populus gene
similar to Arabidopsis SPT6L was also atypically expressed at
higher levels during endodormancy—and Arabidopsis SPT6L
seems to interact with AGO proteins to regulate embryo
development (Gu et al., 2012). Thus, it is curious that a gene
similar to AGO4 (Potri.001G219700) was down-regulated during
endodormancy in our study and in other plants (Horvath et al.,
2008).

Other Chromatin-associated Genes
Three other genes were clearly expressed at lower levels during
endodormancy. The first gene, Potri.004G087500, is similar to
Arabidopsis HMGA. HMGA proteins interact with A/T-rich
DNA, altering the chromatin structure and transcription of their
target genes (Reeves, 2010). The second gene, Potri.008G155400,
is similar to Arabidopsis SILENCING DEFECTIVE 3 (SDE3),
which is more clearly associated with PTGS. The third gene,
Potri.T029800, is similar to an Arabidopsis gene (ALPHA/BETA
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HYDROLASE F4; ABHF4) that is associated with the alpha/beta-
hydrolase superfamily of proteins with unknown function.

Roles of Chromatin-associated Genes in
Endodormancy Induction and Release
Dormancy transitions were accompanied by changes in multiple
genes associated with DNA methylation (e.g., via RdDM)
and histone modifications (e.g., via PRC2). However, although
we expected to see increased expression of TGS components
during endodormancy—the opposite was true—most chromatin-
associated genes and gene sets were expressed at lower levels
during endodormancy. One explanation is that reduced gene
silencing may activate genes that positively induce and maintain
endodormancy. DAM genes, for example, which seem to
participate in the induction and maintenance of endodormancy,
show reduced histone methylation (Horvath et al., 2008; Leida
et al., 2012). Second, reduced expression of chromatin-associated
genes may simply reflect the lower cell division and metabolic
activity that occurs during endodormancy. Most of the other
non-chromatin-associated genes were also expressed at lower
levels during endodormancy. Third, subtle changes in dormancy-
specific TGS may have been swamped by other processes. We
compared paradormant buds (not actively growing meristems)
to endodormant buds, and only subtle differences in the
complement of active and silenced genes may exist between these
two dormant states. Finally, the transition from paradormancy to
endodormancy may involve a transient increase in gene silencing
activity—an increase that we missed with our 1–2 month
sampling interval.

Differential Expression of Transcription
Factor Genes
Ethylene-associated Transcription Factors
We found substantial evidence for the differential expression of
genes associated with ethylene responses, including transcription
factors. Gene sets associated with EIN3 and EIL1 (EIN3-
LIKE 1) were expressed at higher levels during endodormancy.
The EIN3/EIL1 transcription factors act downstream of the
signaling protein EIN2 to positively regulate the ethylene
response pathway, including leaf senescence (Kim et al., 2014).
The induction of ethylene responses during endodormancy
is also supported by the differential expression of gene
sets associated with the ETHYLENE-RESPONSIVE ELEMENT
BINDING PROTEIN (EREBP), EIN2 membrane protein, EIN4
ethylene receptor—as well as individual genes that encode
ETHYLENE RESPONSE FACTOR (ERF) proteins, which belong
to the APETALA 2 (AP2)/EREBP family of transcription factors.
Five of the six ERFs described in Figure 4 seemed to be
expressed at higher levels during endodormancy. Although the
details differ, ERF genes have also been implicated in bud
dormancy in hybrid aspen and Japanese apricot (Rohde et al.,
2007; Zhong et al., 2013). Kim et al. (2014) proposed that
AtNAP and other ‘senescence-associated’ NAC transcription
factors act downstream of EIN2, and genes that seem to encode
AtNAP and other NAC proteins were differentially expressed
(Figure 4). Gene sets associated with EIN2, an ethylene signaling
component, and EIN4, an ethylene receptor, were also expressed

at higher levels during endodormancy. Changes in ethylene-
associated transcription factors and other genes support broader
physiological evidence that ethylene has an important functional
role in bud dormancy (Ruonala et al., 2006; Rohde et al., 2007).
Finally, our results suggest that JA interacts with ethylene to
regulate bud dormancy. This is in agreement with indications
of JA signaling during dormancy transitions observed in leafy
spurge and Japanese apricot (Horvath et al., 2008; Zhong et al.,
2013). In Arabidopsis, EIN3/EIL is a ‘key integration node’ that
integrates signaling by ET and JA (Zhu et al., 2011), and gene
sets associated with CORONATINE INSENSITIVE 1 (COI1)
and JASMONATE ZIM-DOMAIN 10 (JAZ10) were differentially
expressed. COI1 is a JA receptor and JAZ10 is a transcriptional
repressor (Zhu et al., 2011). Furthermore, HDA6, a histone
deacetylase involved in gene silencing (discussed above), interacts
with JAZ proteins and COI1 to repress EIN3/EIL1-mediated
transcription and JA signaling (Zhu et al., 2011).

WRKY DNA-binding Domain Transcription Factors
WRKY transcription factors, which contain the WRKY DNA-
binding domain, have been described as ‘major hubs’ in abiotic
stress signaling (Tripathi et al., 2014). Several genes associated
with WRKY transcription factors were differentially expressed.
These include gene sets associated with Arabidopsis WRKY,
WRKY33, and WRKY70 (Supplementary Tables S5 and S6),
and individual genes similar to Arabidopsis WRKY5, WRKY6,
WRKY27, WRKY40, and WRKY33 (Figure 4; Supplementary
Data File 1). There seem to be about 100 WRKY genes in
P. trichocarpa, many of which are induced by SA, JA, cold,
drought, salinity, or wounding (He et al., 2012; Jiang et al., 2014).
Thus, the WRKY transcription factors provide one potential
link between dormancy-associated gene expression and the
phytohormones JA and SA (discussed below).

Cold-responsive Transcription Factors
Another gene set that was strongly associated with
endodormancy was ‘Neighbors of RHL41’ (ZINC FINGER
PROTEIN 12, ZAT12). ZAT12 is one of the transcription factors
induced very quickly after exposure to cold temperatures (Vogel
et al., 2005; Park et al., 2015). Other genes encoding ‘first wave’
transcription factors were differentially expressed in our study
as well (e.g., WRKY33 and ZAT10/STZ; Figure 4), but others
were not, including genes encoding the C-REPEAT BINDING
FACTORS (CBFs). Induction of ZAT12 leads to the induction
of some cold-responsive (COR) genes, and the repression of
others; and overexpression of ZAT12 leads to enhanced freezing
tolerance (Vogel et al., 2005). A gene that seems to encode
a ZAT10/STZ transcription factor was expressed at higher
levels during endodormancy (Figure 4). In Arabidopsis, the
expression of ZAT10/STZ is regulated by cold, drought, and salt;
and overexpression of ZAT10/STZ enhances drought tolerance
(Sakamoto et al., 2004). Although CBF genes are clearly involved
in acclimation to cold and drought (Thomashow, 2010), CBF-like
genes were not differentially expressed in our study. Nonetheless,
CBF binding motifs were significantly overrepresented in the
promoters of genes that were up-regulated during endodormancy
(discussed below). In a similar study of aspen, none of the four
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CBF-like genes was up-regulated during 5 weeks of SDs (Karlberg
et al., 2010). Although another CBF-like gene was up-regulated
for a short time, it was then down-regulated to almost the
original level during the endodormant period. In our study, we
may have missed transient increases in CBF gene expression
because of the 1–2-month sampling interval we used.

Dormancy-associated Transcription Factors
Genes encoding other transcription factors were expected
to be differentially expressed. For example, DORMANCY
ASSOCIATED MADS-BOX (DAM) genes are putative
transcription factors found in perennial plants that have been
directly linked to vegetative endodormancy. They are similar to
two genes, SHORTVEGETATIVE PHASE (SVP) andAGAMOUS-
LIKE 24 (AGL24), that encode transcription factors regulating
flowering time in Arabidopsis. In peach (Prunus persica), a
deletion of DAM genes resulted in trees that were unable to
become endodormant, and DAM expression is enhanced during
endodormancy in several perennial species (Horvath et al., 2010;
Jiménez et al., 2010). In our study, several DAM-like (SVP-
like) genes were differentially expressed (Potri.005G155700,
Potri.017G044500, and Potri.002G105600), but they were down-
regulated during endodormancy, unlike the DAM genes in leafy
spurge and peach (Horvath et al., 2010; Jiménez et al., 2010).
A different DAM-like gene (Potri.007G010800) was up-regulated
during the induction of endodormancy in hybrid aspen (Ruttink
et al., 2007), and strongly down-regulated in early flushing
trees that were overexpressing EARLY BUD-BREAK 1 (EBB1;
Yordanov et al., 2014). However, this gene was not differentially
expressed in our study. Finally, one gene (Potri.001G328400) was
highly up-regulated in our December and February samples—
but these differences were not significant among months or
dormancy states (FDR p-value= 0.07 to 0.11). This gene encodes
an unusual truncated transcript, which is reminiscent of the
truncated splice variant of the endodormancy-induced DAM
transcript in leafy spurge (Horvath et al., 2013). Overall, these
disparate results provide limited insight into the connections
between endodormancy and DAM-like genes in Populus.

Other Transcription Factors
Other gene sets associated with transcription factors were
strongly down-regulated during endodormancy. JLO,
SEU, RPL, and ARF2 seem to have various roles in auxin
signaling, including organization of the shoot apical meristem
and organ development (Franks et al., 2006; Sluis and
Hake, 2015). This suggests they could be involved in the
formation or development of new leaf primordia. If so,
their patterns of expression (i.e., lower expression during
endodormancy) are consistent with the cessation of primordia
initiation and development that occurs during dormancy
induction.

Genes that seem to encode MYB transcription factors were
also common among the genes that were down-regulated from
paradormancy to endodormancy (Figure 4). Given that theMYB
family is very large, and endodormancy is associated with a
general reduction in metabolic activity, the significance of these
changes is uncertain. Nonetheless, MYB14 represses the CBF

regulon in Arabidopsis, (Chen et al., 2013), but we did not see
differential expression of the Populus CBF/DREB genes in our
study (discussed above).

Finally, genes encoding other flowering-associated
transcription factors were also differentially expressed, including
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) and
SUPPRESSOR OFOVEREXPRESSION OF CONSTANS 1 (SOC1).
These and other flowering-associated genes are discussed in
more detail below.

Differential Expression of
Phytohormone-associated Genes
Auxin-associated Gene Expression
Auxin-associated genes were generally down-regulated during
endodormancy, with most changes expected to lead to a
reduction in auxin signaling. This, and other more specific
changes in gene expression, suggests that auxin signaling
undergoes important changes during dormancy transitions. The
first step in auxin signaling involves an interaction between
auxin, an auxin receptor such as TIR1, and AUXIN/INDOLE 3-
ACETIC ACID (Aux/IAA) proteins. This interaction ultimately
leads to the degradation of the Aux/IAA proteins, which
normally repress ARF transcription factors. The reduction in
Aux/IAA leads to enhanced transcription of auxin-inducible
genes by ARF and downstream auxin responses (Korasick
et al., 2014). In our study, genes that encode binding
partners of TIR1 were down-regulated from paradormancy
to endodormancy, and a gene that was strongly up-regulated
(Potri.010G078400) is similar to the Arabidopsis gene that
encodes IAA4. This latter change, in particular, is consistent
with a reduction in auxin signaling and auxin responses
during endodormancy. Furthermore, gene sets associated with
three ARF transcription factors were differentially expressed
between dormancy states. In Arabidopsis, ARFs are also
negatively regulated by miRNAs, including miR160 (Rhoades
et al., 2002; Paponov et al., 2009). In our study, the gene
set associated with miR160A was significantly down-regulated
from paradormancy to endodormancy (Supplementary Table
S5). Likewise, genes that encode neighbors and targets of
miR393A and miR393B were differentially expressed between
paradormancy to endodormancy. This miRNA seems to
negatively regulate the gene encoding TIR1 (Liu et al., 2009).
Corresponding changes in auxin and auxin-associated gene
expression have been found in other species. In silver birch,
auxin declined during SD-induced endodormancy (Li et al.,
2003), and auxin-associated genes were down-regulated during
endodormancy in the cambial meristem of Populus (Baba et al.,
2011) and the buds of leafy spurge (Horvath et al., 2008). Our
results concur, and because of its atypical pattern of expression,
point to a particularly important role for the IAA4-like gene
(Potri.010G078400).

Down-regulation of auxin transport also seems to occur
during endodormancy. For example, genes similar to two
Arabidopsis genes involved in auxin transport were down-
regulated from paradormancy to endodormancy. The first
gene (Potri.002G087000) is similar to a gene that encodes

Frontiers in Plant Science | www.frontiersin.org 19 December 2015 | Volume 6 | Article 989

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Howe et al. Transcriptome Changes Associated with Populus Endodormancy

the auxin influx carrier, LAX3 (LIKE AUX3). The second
(Potri.006G123900) is similar to a gene that encodes an ATP-
BINDINGCASSETTE (ABC) transporter that regulates basipetal
auxin transport. Consistent with these changes, two other genes
(Potri.012G047200 and Potri.016G035300) were up-regulated
from endodormancy to ecodormancy, both of which are similar
to the Arabidopsis PIN1 (PIN-FORMED 1), which encodes a
putative auxin efflux transporter (Sluis and Hake, 2015).

Finally, changes in the expression of genes associated with the
synthesis of phenylpropanoids and flavonoids may affect auxin
responses. As discussed below, these genes were mostly down-
regulated during endodormancy, which could enhance auxin
transport, but also destabilize auxin levels by increasing auxin
oxidation (Brown et al., 2001; Buer and Muday, 2004; Peer et al.,
2013).

Ethylene-associated Gene Expression
The ethylene-associated gene set was up-regulated during
endodormancy, which was opposite from what we observed for
auxin and BR. However, this gene set included a mix of genes
with positive and negative effects on ethylene signaling. For
example, genes that seem to encode negative (CTR1) and positive
(ERF5) regulators of ethylene signaling were both up-regulated
during endodormancy. Although this seems counterintuitive,
genes similar to CRT1 and ERF are induced by exogenous
ethylene, demonstrating some degree of coordinate regulation
(Vahala et al., 2013; Zou et al., 2014). Other related gene
sets were up-regulated during endodormancy, including those
associated with the ethylene receptor EIN4 and the transcription
factors EIN2 and EIN3. Up-regulation was also observed for
multiple genes that seem to encode ERF transcription factors,
at least some of which have been specifically associated with
responses to ethylene. Ethylene has been implicated in bud
endodormancy, perhaps in concert with ABA. Ruttink et al.
(2007), for example, concluded that ethylene and ABA act
sequentially during SD-induced bud dormancy in Populus.
Although they emphasized the transient nature of increases in
ethylene-associated gene expression, we observed up-regulation
of multiple ethylene-associated genes over a two-month period
under natural conditions. Interacting roles for ethylene and ABA
during endodormancy induction and release have also been
reported in birch and grape, which is consistent with our results
(Ruonala et al., 2006; Ophir et al., 2009; Zheng et al., 2015).

GA- and ABA-associated Gene Expression
Perhaps the most consistent associations between bud
endodormancy and phytohormones are the opposing changes
in GA and ABA—GA levels tend to decline and ABA levels
increase early in the induction of endodormancy (reviewed
in Olsen, 2010). For example, SD-induced down-regulation
of GA-20-oxidase reduces the levels of active GAs in Salix
and Populus (reviewed in Olsen, 2010), and up-regulation of
GA-2-oxidases may lead to GA inactivation (Zawaski and Busov,
2014). However, we did not observe differential expression
of any genes that seem to encode GA-20-oxidase or GA-2-
oxidase, and the changes in other genes associated with GA
and ABA were contrary to expectations. It is possible that

transient changes in GA- and ABA-related gene expression were
missed due to our monthly sampling scheme. Most previous
analyses focused on the early stages of dormancy induction,
often focusing on changes in response to SDs. Our results
suggest that GA and ABA have (at most) modest roles in the
maintenance of endodormancy per se. For example, Populus
trees genetically engineered to underexpress or overexpress the
ABA INSENSITIVE 3 (ABI3) transcription factor still became
endodormant under SDs (Ruttink et al., 2007), and other studies
suggest that ABA is primarily involved in the formation of
the dormant bud, not in the maintenance of endodormancy
(reviewed in Olsen, 2010).

Brassinosteroid-associated Gene Expression
Brassinosteroid has non-redundant roles as a “potent” growth-
promoting phytohormone (Schröder et al., 2014). Although clear
involvement in bud endodormancy has not been previously
established, changes in the expression BR-related genes point
in this direction. First, the BR hormone-associated gene
set, ‘Binding partners of BES1,’ was down-regulated during
endodormancy. BES1 is a BR-regulated transcription factor,
and low BES1 signaling helps ensure stem cell quiescence
in plants (Vilarrasa-Blasi et al., 2014). Second, three genes
expected to enhance BR signaling were all down-regulated
during endodormancy (i.e., compared to paradormancy or
ecodormancy). Two of these genes are similar to an Arabidopsis
gene (CBB1) that encodes a sterol reductase involved in the
early steps of BR synthesis (Choe et al., 1999). The third
gene is similar to BRASSINOSTEROID SIGNALING KINASE 2
(BSK2), which belongs to a family of genes that encode positive
regulators of BR signaling (Sreeramulu et al., 2013). Thus, it
appears that down-regulation of BR biosynthetic and signaling
genes may help maintain the reduced cell division associated
with endodormancy. Because of crosstalk between BR and SA
signaling (Divi et al., 2010), there may be a link between the
changes in BR-associated genes described above, and the changes
in SA associated genes described below.

Salicylic-acid-associated Gene Expression
During the transition from paradormancy to endodormancy,
we found clear evidence for changes in the expression SA-
associated genes. Genes with the strongest patterns of differential
expression include three genes similar to Arabidopsis PAL1,
which encodes a key enzyme in SA biosynthesis. All three genes
were down-regulated from paradormancy to endodormancy.
Although connections between SA and bud endodormancy
have not been widely reported, SA promoted endodormancy
release in grape (i.e., as measured by H2O2 production;
Or et al., 2000). Nonetheless, changes in SA-associated genes
may be more closely related to general changes in the
phenylpropanoid pathway, rather than endodormancy per se—
such as changes in gene sets associated with anthocyanin and
flavonoid biosynthesis (Nugroho et al., 2002). Although genes
associated with proanthocyanin production have been associated
with seed dormancy (Debeaujon et al., 2000), corresponding gene
sets were mostly down-regulated in our study, including gene
sets associated with GLABRA 3, ENHANCER OF GLABRA 3,
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TRANSPARENT TESTA 2 (TT2), TT8, TRANSPARENT TESTA
GLABRA 1 (TTG1), and CAPRICE (Supplementary Tables S5
and S6). Although SA may contribute to endodormancy, the
changes in phenylpropanoid and SA gene expression may have
no direct role in endodormancy.

Jasmonic-acid-associated Gene Expression
We found consistent evidence for down-regulation of many
JA-associated genes and gene sets from paradormancy to
endodormancy, including genes involved in JA synthesis and
signaling. Because enhanced JA signaling is associated with
responses to stress and decreased growth, many of these
changes contradict the expected roles that JA might have during
endodormancy. Given that these changes coincide with broader
reductions in gene expression during endodormancy, their
relevance is uncertain. Nonetheless, because JAZ proteins repress
JA signaling, the down-regulation of a gene similar to JAZ12
(Potri.018G047100) could lead to increased JA-repressed growth
during endodormancy. Finally, because JA regulates anthocyanin
accumulation through COI, down-regulation of JA signaling
could contribute to the reduction in in phenylpropanoid and SA-
associated gene expression described above. Additional efforts
are needed to identify the mechanisms underlying the seemingly
contradictory responses in JA signaling and synthesis.

Cytokinin-associated Gene Expression
We found limited evidence to suggest that changes in cytokinin
(CK) gene expression are important during endodormancy
induction and release. Although one gene set, ‘Neighbors of
cytokinin,’ and three individual genes were all down-regulated
from paradormancy to endodormancy, these changes mirror
the broader reductions in gene expression that occurred
during endodormancy. Therefore, their relevance is uncertain.
On balance, however, these changes are consistent with the
hypothesis that cytokinin acts as an antagonist of auxin-mediated
apical dominance by promoting the outgrowth of paradormant
buds (Mueller and Leyser, 2011).

Flowering Genes and Processes are
Associated with Vegetative Bud
Dormancy
We previously presented a general model for endodormancy
involving FT-based regulatory networks analogous to the
networks that regulate flowering (reviewed by Horvath, 2009).
Consistent with this model, our current results suggest an
important role for genes similar to SPL in Populus. In Populus,
FT2 inhibits growth cessation and bud set. Thus, down-
regulation of FT2 seems to be an important early step in the
induction of endodormancy (Bohlenius et al., 2006; Ruonala
et al., 2008; Hsu et al., 2011). In Arabidopsis, photoperiodic
regulation of FT involves a network of miR156, SPL proteins,
miR172, and a set of AP2-like transcription factors, including
AP2, TOE1-3 (TARGET OF EARLY ACTIVATION TAGGED 1-
3), SCHLAFMÜTZE (SMZ), and SCHNARCHZAPFEN (SNZ;
Aukerman and Sakai, 2003; Schmid et al., 2003; Jung et al., 2007).
A model has emerged in which SPLs positively regulate miR172,
which normally represses AP2, TOEs, SMZ, and SNZ (Wellmer

and Riechmann, 2010). Thus, up-regulation of SPLs represses
these AP2-like transcription factors, leading to an increase in
FT expression and the promotion of flowering. In our study,
eight SPL-like genes were down-regulated from paradormancy to
endodormancy. By analogy to the flowering pathway described
above, down-regulation of SPL genes should lead to down-
regulation of miR172, up-regulation of genes similar to AP2,
TOE, SMZ, and SNZ, repression of FT2, and ultimately, growth
cessation, bud set, and endodormancy. However, despite the
consistent down-regulation of SPL-like genes in our study, two
other observations contradict this simple model. First, three
DAM-like (SVP-like) genes were unexpectedly down-regulated
in our study, which is opposite of what has been seen in other
perennial plants (discussed above). Furthermore, because SVP
negatively regulates miR172 in Arabidopsis (Cho et al., 2012),
down-regulation of DAM/SVP genes in Populus is ultimately
expected to increase, rather than decrease, the expression of
FT2. However, SVP is not uniformly up-regulated during flower
development. In Arabidopsis, SVP is repressed in early flower
development to prevent flower reversion, and in late flower
development to allow the activation of SEPALATA3 (Lee and
Lee, 2010). Therefore, our results may indicate that the timing
of DAM/SVP expression is important in Populus as well. Second,
FT2 itself was not differentially expressed. However, this was
not surprising because FT2 expression decreases dramatically
after only a few SD (Resman et al., 2010). Therefore, the longer-
term changes in SPL gene expression that we observed may help
keep the expression of FT2 and other flowering-related genes at
already low levels, rather than being the direct, early cause of FT2
down-regulation.

Like FT, SOC1 (also known as AGL20) is considered a major
integrator of flowering signals in Arabidopsis. In our study, two
SOC1-like genes and the gene set “Binding partners of AGL20”
were down-regulated from paradormancy to endodormancy,
and similar results were observed in other studies of Populus
(Ruttink et al., 2007) and leafy spurge (Horvath et al., 2008;
data not shown). SOC1 expression generally promotes flowering
in Arabidopsis. More specifically, studies in Arabidopsis (Tao
et al., 2012) show that SOC1 directly down-regulates AP2, TOE1,
and SMZ, which are downstream targets of SPLs and miR172
(described above). Finally, allelic variation in a SOC1 homolog
has been linked to dormancy in apricot (Trainin et al., 2013).
Given the functional and regulatory similarities between DAM
and FLC, a repressor of SOC1, a similar mechanism involving
SOC1-like genes might regulate vegetative bud endodormancy.

Despite the potential connections between endodormancy
and flowering-like genes, the genes described above have
been implicated in diverse processes, including endodormancy
induction (e.g., photoperiodism), endodormancy release (e.g.,
chilling), cold acclimation, flowering, and fruit development
(Preston and Sandve, 2013). For example, in Arabidopsis, there
seems to be a feedback loop between cold responses and
flowering-time that involves interactions between CBF, SOC1,
and FLC (Seo et al., 2009). Therefore, it will be challenging
to dissect the functional significance of dormancy-associated
changes in expression, particularly for genes that serve as key
regulatory hubs.
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Differential Expression of Genes
Associated with Bud Set QTL
Rohde et al. (2011b) identified six robust QTL associated
with various components of bud set, and then compared the
QTL locations to the locations of differentially expressed genes
(Ruttink et al., 2007). We conducted a similar analysis using
a larger number of genes and updated gene models (Populus
v3.0). Although hundreds of genes were associated with each
QTL, the number of differentially expressed genes ranged from
9 to 24. We then examined relationships between the QTL
and the various classes of genes described above (chromatin-
associated, transcription factor, and hormone-associated) to
identify promising QTL candidates.

We found 14 differentially expressed genes that are reasonable
QTL candidates based on their differential expression and
putative functions. These include four genes that seem to
be involved in chromatin remodeling (e.g., DCL4). Other
differentially expressed genes seem to be involved in BR
synthesis (CBB1) or phytohormone signaling via ABA (PYL), JA
(JAZ12), or auxin (IAA13). Additional genes are more generally
associated with responses to far-red light (FAR-RED IMPAIRED
RESPONSIVE 1), organization of lateral organ boundaries (LOB
DOMAIN-CONTAINING PROTEIN 21), and mitotic arrest
(MAD2). Finally, we also found genes that seem to encode a
NAC domain transcription factor associated with leaf senescence,
and other PHD and bHLH transcription factors that are not as
well characterized. In addition to these candidates, a few other
differentially expressed genes with unknown functions should be
considered.

Overall, these results suggest that differential expression can
be used to reduce a large number of positional candidate genes
(>2,000) to a much smaller set of plausible QTL candidate genes.
Nonetheless, it would still be challenging to investigate all of these
candidates in detail using functional genomics. For example, the
genes underlying these QTL may not be differentially expressed,
or the changes in expression may be transient. Furthermore,
transgenic functional approaches often cause major, poorly
timed perturbations that may lead to responses that do not
accurately reflect natural gene functions. A combination of
approaches including fine-scale mapping, association genetics,
analyses of gene expression, and subtle gene perturbations will
be needed to understand the roles of the numerous genes that
appear to regulate dormancy transitions.

Upstream Sequence Motifs are
Associated with Specific Patterns of
Gene Expression
Motifs associated with photoperiodic responses and circadian
patterns of gene expression were highly enriched in some
gene expression pattern groups. For example, two of the top-
ranked motifs match binding sites for two central transcription
factors that regulate the circadian clock, LATE ELONGATED
HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED
1 (CCA1). The first motif matches the EVENING ELEMENT-
LIKE (EEL) motif (AATATCT). The EEL and the EVENING
ELEMENT itself (EE, AAAATATCT) are important regulators

of circadian clock and cold-responsive genes (Mikkelsen and
Thomashow, 2009). The EEL motif was our top-ranked
motif, being significantly overrepresented in genes that were
up-regulated during endodormancy. As summarized by Hsu
and Harmer (2014), most clock components regulate the
transcription of genes that contain EE, or are regulated by other
clock components through EE in their own promoters. The
second motif matches a binding site (AAAAATCA) that is found
in the target genes of CCA1 (Maxwell et al., 2003), being enriched
in genes that were down-regulated during endodormancy.

Other motifs previously associated with circadian patterns of
gene expression were also found, including G-box (CACGTG),
I-box core (GATAA), PIF-binding E-box (PBE-box; CACATG),
and the CAB2 DET1-ASSOCIATED FACTOR 1 binding site
motif (CDA-1; CAAAA). Both the G-box and PBE-box elements
are binding sites for PIF3, a transcription factor that interacts
with phytochromes A and B (Zhang et al., 2013). Furthermore,
the HORMONE UP AT DAWN (HUD) element, which has
the same sequence as the PBE-box, is overrepresented in the
promoters of phytohormone genes (Michael et al., 2008). We
also found many motifs that matched the circadian elements
described in Table 1 of Smieszek et al. (2014), only some of
which were identified using the PLACE database. Photoperiodic
and circadian regulation of endodormancy has been well
documented (Howe et al., 1996; Rohde and Bhalerao, 2007;
Horvath et al., 2010), and was also highlighted by our GSEA.
Gene sets associated with two components of the circadian clock,
ZEITLUPE (ZTL) and LIGHT-REGULATED WD 2 (LWD2),
were up-regulated during endodormancy. ZTL is a blue light
photoreceptor that regulates photoperiodic responses (Kim et al.,
2007), and LWD2 encodes a WD (tryptophan and aspartate)
protein that contributes to clock function (Wu et al., 2008a).

A second class of overrepresented motifs was broadly
associated with responses to cold, dehydration, and ABA. The
most prominent of these is the RCCGAC motif, which is the
core of the C-repeat (CRT) element, also known as the
dehydration responsive element (DRE). The CRT/DRE element
is the binding site for CBFs (C-REPEAT BINDING FACTORS),
some of the most important transcription factors involved in
cold-induced gene expression (Benedict et al., 2006). CBFs
regulate gene expression in response to cold and dehydration.
Other transcription factors, such as the ABA RESPONSIVE
ELEMENT BINDING PROTEIN (AREB), regulate gene
expression in response to cold and dehydration in an ABA-
dependent manner. These transcription factors bind to ABA
responsive elements (ABRE; ACGT core), ABRE-like elements
(ABREL; AGCTG), and G-box elements (Mikkelsen and
Thomashow, 2009). We found many enriched motifs that
contain these core sequences.

We found a number of dehydrin-like genes that were up-
regulated from paradormancy to endodormancy, and these
genes provide good models for how different combinations
of cis-regulatory elements can lead to different patterns of
gene expression. For example, Zolotarov and Stromvik (2015)
identified 14 conserved motifs in 350 dehydrin promoters from
51 plant genomes, many of which were similar to motifs that
were overrepresented in our differentially expressed genes, as well
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as in genes that have been associated with responses to cold,
dehydration, ABA, and light.

We also found motifs associated with other phytohormones,
including ethylene, auxin, SA, and JA. Among the top-ranked
motifs, we found four with the GCC-box core motif (GCCGCC),
which serves as a binding site for ethylene-responsive genes
(Ohme-Takagi and Shinshi, 1995). These motifs were highly
enriched in genes that were up-regulated from paradormancy to
endodormancy. This coincides with our GSEA results indicating
that ethylene is an important regulator of endodormancy. We
also found five motifs that matched two auxin responsive
elements (NTBBF1ARROLB and TGA-element; Table 1), and
all five motifs were enriched in genes that were down-regulated
from paradormancy to endodormancy. Again, this supports
our GSEA results indicating that auxin related genes were
mostly down-regulated from paradormancy to endodormancy.
We found a large number of motifs that are associated with
responses to cytokinin, but their significance is unclear; we
saw no strong trends in cytokinin-related gene expression. The
longest matching PLACE motif was CPBCSPOR (TATTAG),
which exhibits cytokinin-enhanced protein binding, but the other
two PLACE motifs, ARR1AT (NGATT) and RHERPATEXPA7
(KCACGW), are much less specific. We also found a small
number of motifs that have been non-specifically associated with
JA and SA.

In sum, our analyses of promoter motifs showed clear
associations between patterns of endodormancy-related gene
expression and two broad classes of genes—those associated
the circadian clock and photoperiodic responses, and those
associated with phytohormone-mediated responses to cold and
dehydration. An understanding of the finer details of gene
regulation are complicated by the fact that many of the
consensus motifs are short and widely distributed among plant
promoters involved in responses to light, biotic and abiotic
stresses, and phytohormones. Furthermore, about 45% of the
enriched motifs had no assigned functions, suggesting that
more work is needed to understand the functions of these
motifs and their potential roles in the regulation endodormancy-
associated processes. Further insights could be gained by analyses
that focus on understanding how the numbers, distributions,
and combinations of motifs are associated with genes known
to have specific patterns of gene expression across Populus
species.

CONCLUSION

Our work highlights both the conserved nature and the
extraordinary complexity of transcriptome changes associated
with vegetative dormancy. For example, we confirmed and
elaborated upon earlier evidence from studies of chromatin
remodeling. We found multiple genes associated with DNA
methylation (e.g., via RdDM) and histone modifications (e.g., via
PRC2) that were differentially expressed during the induction and
release of endodormancy. We identified 19 chromatin-associated
genes that were down-regulated during endodormancy, and
two genes that were strongly and atypically up-regulated. These

latter two genes are similar to Arabidopsis SPT5-2 and SPT6L,
which encode proteins described as ‘global’ transcription factors.
We also identified links to genes that regulate the onset of
flowering, pointing to potentially important roles for genes
similar to SPL, DAM/SVP, and SOC1. Differential expression
of SPL genes corroborates earlier observations and implicates
miRNA-associated regulatory pathways in the repression of FT2
during endodormancy.

A number of surprises emerged from our analyses of
phytohormone-related genes. Changes in genes encoding GA-
20-oxidase and GA-2-oxidase were not observed, and changes
in genes associated with ABA were contrary to expectations.
Although we may have missed transient changes associated
with short-day-induced bud set, these results suggest that these
phytohormones have relatively narrow windows of action. In
contrast, we saw clearer evidence for changes in the expression
of genes associated with ethylene, auxin, BR, SA, and JA. For
example, genes and gene sets that were atypically up-regulated
during endodormancy included those associated with responses
to ethylene (EIN3, EBP, ERFs), and a gene similar to Arabidopsis
IAA4. However, genes associated with auxin, BR, SA, and JA
were mostly down-regulated during endodormancy. Because
of the general down-regulation of metabolic activity and gene
expression during endodormancy, the biological significance of
these changes warrants further study.

Other genes that were atypically up-regulated during
endodormancy included those encoding transcription factors
associated with responses to cold and other abiotic stresses
(ZAT10/STZ, ZAT12/RHL41, WRKY), and a gene that seems
to encode a trihelix transcription factor. The down-regulation
of other transcription factor genes was consistent with changes
known to accompany endodormancy. These include genes with
various roles in auxin signaling, organization of the shoot apical
meristem, and organ development.

We identified many novel and previously identified promoter
motifs that appear to regulate these dormancy-associated changes
in gene expression. The most common motifs were those
associated with the circadian clock and others associated with
responses to photoperiod, cold, dehydration, and ABA. Among
the most common motifs were the EVENING ELEMENT-LIKE
motif, a binding site found in genes targeted by CCA1, CBF-
binding sites, and various ABA responsive elements.

Finally, we found many differentially expressed genes that
were located near bud set QTL, some of which are clear
candidates for having functional roles in the induction of
endodormancy. These latter genes are potential targets for basic
research and for manipulating dormancy-associated processes
using molecular breeding and transgenic approaches. Additional
gene expression, fine-scale mapping, functional, and population
genetic studies should help elucidate the roles of the many genes
and biological processes we identified.
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FIGURE S1 | Average monthly temperature and precipitation in Corvallis,
OR, USA during the sample collection period.

FIGURE S2 | Bud morphology and histology during the sample collection
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