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Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to
plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on
comprehensive lipid metabolism and plant development were unknown, especially in
crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and
enhanced oil accumulation in both seeds and leaves without leading to a visible growth
inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to
facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and
directly binds to the AW-box at proximal upstream regions of genes involved in fatty
acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted
in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and
flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol
(MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves
of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG
and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in
the siliques of OE plants during the early seed development stage. These results suggest
that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars,
and thus facilitates flowering and oil accumulation in B. napus.

Keywords: Wrinkled1 (WRI1), oil accumulation, flowering, lipid homeostasis, transcriptional regulation, Brassica
napus

INTRODUCTION

Lipids not only serve as storage components of high-density energy, but they also function
as essential components of cell membranes and regulators of various cellular processes during
growth, development, and stress responses (Wang et al., 2006; Hong et al., 2008, 2009; Phillips
et al., 2009; To et al., 2012). Fatty acid (FA) synthesis and lipid assembly involve multiple
steps (Li-Beisson et al., 2010). The initial precursors of lipid biosynthesis include acetyl-CoA
and glycerol-3-phosphate, which are initially derived from glycolysis and the Calvin–Benson
cycle in plants (Kang and Rawsthorne, 1996; Alonso et al., 2007). The acetyl-CoA carboxylase
(ACCase) complex is made of three subunits, namely biotin carboxyl carrier protein (BCCP),
biotin carboxylase (BC), and carboxyltransferase (CT); this complex is encoded by separated
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genes in plants and catalyzes acetyl-CoA and CO2 to produce
malonyl-CoA, the first committed step in de novo FA synthesis
(Slabas and Fawcett, 1992; Ohlrogge and Browse, 1995; Ohlrogge
and Jaworski, 1997; Voelker and Kinney, 2001; Sasaki and
Nagano, 2004). Malonyl-CoA was then transferred to ACP
protein by malonyl-CoA: ACP transferase (MAT) to initiate FA
synthesis, and malonyl-CoA provides a two-carbon unit for acyl
chain elongation as catalyzed by an FA synthase (FAS) complex
(Ohlrogge and Browse, 1995). The synthesized FAs are either
retained in the chloroplast for galactolipid synthesis or exported
to the endoplasmic reticulum (ER) for membrane phospholipid
and storage lipid [triacylglycerol (TAG)] assembly. The final
step of TAG assembly as catalyzed by DAG acyltransferase
(DGAT), which occurs in the Kennedy pathway, is also
regarded as a critical reaction for oil accumulation (Slabas
and Fawcett, 1992; Ohlrogge and Browse, 1995; Zou et al.,
1999; Voelker and Kinney, 2001). The loss of DGAT1 resulted
in reduced seed oil content, whereas DGAT1 overexpression
(OE) enhanced the seed oil content in Arabidopsis (Zou et al.,
1999; Jako et al., 2001). The OE of maize high-oil DGAT1-2
also promoted oil accumulation in maize seeds (Zheng et al.,
2008). Alternatively, phosphatidylcholine (PC) also provides
an acyl chain toward DAG for TAG synthesis, as catalyzed
by phospholipid:diacylglycerol acyltransferase (PDAT; Dahlqvist
et al., 2000; Tarczynski and Shen, 2008; Zhang et al., 2009).

Given the complicated networks that make up the lipid
anabolic process, it would be more efficient to boost oil
accumulation by enhancing multiple routes in a coordinated
fashion including carbon partitioning, FA synthesis, and lipid
assembly. Therefore, the identification of the key enzymes or
master regulators involved in multiple steps simultaneously
becomes an attractive approach for improving oil production
(Ohlrogge and Jaworski, 1997; Ruuska et al., 2002; Cahoon et al.,
2007; Mu et al., 2008). Transcriptomic profiling revealed that
the genes encoding enzymes involved in FA synthesis is co-
regulated to the rate of acyl chain synthesis, suggesting that
transcriptional regulation plays an important role in the lipid
biosynthesis process (Ruuska et al., 2002; Baud and Lepiniec,
2009; Barthole et al., 2012). Recent studies have identified several
transcription factors that are capable of governing multiple oil
accumulation steps (Cernac and Benning, 2004; Shen et al., 2010;
To et al., 2012). Wrinkled1 (WRI1) belongs to the APETALA2
(AP2)-ethylene-responsive element binding protein family of
transcription factors, and it acts as a central regulator in seed
oil accumulation by modulating numerous genes simultaneously
during late glycolysis and FA biosynthesis. A deficiency mutant
of Arabidopsis WRI1 (AtWRI1) leads to wrinkled seeds with 80%
less seed oil content in Arabidopsis (Focks and Benning, 1998;
Cernac and Benning, 2004). The loss of AtWRI1 also leads to
impaired seed germination and seedling establishment, whereas
AtWRI1 OE enhances oil accumulation in Arabidopsis, which
is accompanied by aberrant seedling development (Stone et al.,
2001; Kwong et al., 2003; Cernac and Benning, 2004; Cernac et al.,
2006; Baud et al., 2007). AtWRI1 binds to the AW-box consensus
[CnTnG](n)7[CG] in the proximal promoter of target genes that
are involved in the glycolysis and FA synthesis of Arabidopsis
(Maeo et al., 2009; To et al., 2012).

The biological significance of WRI1 has been extensively
studied in relation to oil accumulation in Arabidopsis. The role of
WRI1 in comprehensive lipid regulation in other plant species,
particularly in crop plants, remains to be elucidated. A recent
study showed that the WRI1 homolog from maize is able to
compensate for the impaired oil accumulation and seedling
establishment of the Atwri1 mutant in Arabidopsis (Cernac
et al., 2006; Pouvreau et al., 2011). The OE of ZmWRI1 in
maize increased the levels of FAs and some amino acid residues
(Pouvreau et al., 2011), suggesting that the role of WRI1 in
oil accumulation is highly conserved between monocot and
dicot plants. Arabidopsis that overexpresses AtWRI1 exhibits
undesirable agronomic traits, with retarded growth and reduced
biomass (Lotan et al., 1998; Stone et al., 2001; Cernac and
Benning, 2004; Wang et al., 2007; Mu et al., 2008), whereas
ZmWRI1OE in maize promotes oil accumulation without visible
side effects on growth and development (Shen et al., 2010). The
results suggest that the role of WRI1 in oil synthesis is conserved
but distinguishable in different plant species. The WRI1 in
different plant species may exhibit a unique role in addition to
its effect on oil accumulation. Furthermore, most WRI1 studies
have been focused on oil accumulation, and the effects of WRI1
on membrane phospholipids and galactolipids have remained
unknown. In the present study, we characterized BnWRI1
(BnaA09g34250D) from Brassica napus (B. napus). BnWRI1 OE
in B. napus resulted in enhanced lipid anabolism by binding
to the cis-element CnTnG (n)7CG in the promoter regions of
genes involved in FA synthesis and lipid assembly to up-regulate
these target genes. BnWRI1 promotes oil accumulation and
thylakoid membrane monogalactosyldiacylglycerol (MGDG),
digalactosyldiacylglycerol (DGDG), and PC biosynthesis
to regulate homeostasis among membrane lipids, oils, and
carbohydrates. Therefore, BnWRI1 OE facilitates flowering,
reproduction, and oil production without visible side effects on
the growth of B. napus.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The Westar cultivar of canola (B. napus L.) was used in this
study. Seeds were germinated in either Murashige and Skoog
(MS) plates or soil in pots. Three-week-old seedlings were then
transferred to pots containing soil. The plants were raised in
a growth room under 16 h light (25◦C)/8 h dark (20◦C), a
photosynthetic photon flux density of 200–300 mmol m−2 s−1,
and 60% relative humidity, or natural conditions during winter-
spring seasons in Wuhan, China. For the field growth test,
3-week-old seedlings were transferred to the field at suitable
spacing (33 cm × 50 cm) that were arranged in a one-way
randomized block designwith 30 plants/lines per block, and three
replications.

Gene Cloning, Vector Construction, and
B. napus Plant Transformation
To obtain the full-length BnWRI1 cDNA, total RNA was
extracted from the leaves of 4-week-old B. napus plants, and it
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was subjected to reverse transcription to obtain first strand
cDNA according to the manufacturer’s instructions (Trans-
Gene Biotech, Beijing, China). The full-length BnWRI1
cDNA was amplified by PCR with primers BnWRI1F 5′-
GGATCCATGAAGAGACCCTTAACCACT-3′ and BnWRI1R
5′-GAGCTCTCAGACAGAATAGTTCCAAGAA-3′, and then it
was ligated into binary vector pBI121, which had been digested by
SacI and BamHI. The resulting construct was transformed into
B. napus by Agrobacterium GV3101 mediation with hypocotyls
used as explants for regeneration. The transgenic shoots were
first selected on kanamycin (50 μg/ml), and then the kanamycin
resistant shoots were transferred to MS medium containing
1-naphthaleneacetic acid for rooting. The transgenic plants were
further confirmed by PCR with a pBI121 vector and BnWRI1
sequence specific primers (Supplemental Table S1).

Subcellular Localization
The full-length cDNA of BnWRI1 was ligated into pCAMB-
IA1301 vector that had been digested by the restriction enzymes
SacI and BamHI. The construct containing BnWRI1-GFP was
introduced into Agrobacterium GV3101 and infiltrated into
tobacco leaves for 24 h to obtain transient protein expression
under the control of the 35S promoter. Subcellular localization
was visualized under a confocal laser scanning microscope
(Leica, Biberach, Germany) with the exciter filter HFT488 and
the transmitting optical filter BP505–530 to observe the green
fluorescence. The nuclei were labeled with 4′,6-diamidine-2-
phenylindole dihydrochloride (DAPI) staining.

RNA Extraction and Quantitative
Real-time PCR
Total RNA was extracted from various tissues at different stages
using TransZol reagent (TransGen Biotech, Beijing, China), and
it was then treated with RNase-free DNaseI (NEW ENGLAND
Biolabs, Ipswitch, MA, USA) to remove any contaminating DNA.
The resulting RNA was used for first strand synthesis by reverse
transcriptase with an oligo-d (T) 18 primer (TransGen Biotech,
Beijing, China) to obtain cDNA according the manufacturer’s
protocol. Quantitative real-time PCR was performed with SYBR
Green PCR Master Mix (TransGen Biotech, Beijing, China)
on a single-color Real-time PCR Detection System (Bio-Rad,
Hercules, CA, USA). A BnActin gene was used as the standard
control. The quantitative real-time PCR conditions were as
follows: 95◦C for 1 min; 40 cycles of 95◦C for 30 s, 55◦C for
30 s, 72◦C for 30 s; and 72◦C for 10 min for the final extension.
The primers used for real-time PCR are listed in Supplemental
Table S2.

Lipid Extraction and Analyses
Lipids were extracted from the leaves, developing siliques,
and mature seeds. The lipids were separated on a thin layer
chromatography (TLC) plate with developing solvent consisting
of petroleum ether, ethyl ether, and acetic acid (80:20:1, v/v).
The separated lipids were visualized with iodine vapor and the
spots were scraped for measurement by GC analysis (Agilent
7890A, Santa Clara, CA, USA) after a methyl ester reaction with

methanol and toluene containing 5% H2SO4 at 80◦C for 3–4 h.
To measure the seed oil contents, oil was extracted from the
seeds and tested by GC analysis after the methyl ester reaction as
detailed above. The GC running conditions were as follows: the
injection port temperature was 180◦C, and the oven temperature
was set at 180◦C for 2 min and was increased by 10◦C/min up to
220◦C for 5min. The temperature of the flame ionization detector
was 280◦Cwith flow rates of 30, 300, and 25ml/min for hydrogen,
air, and helium, respectively.

Electrophoretic Mobility-shift Assay
The full-length cDNA of Bn WRI1 was amplified by using the
forward primer 5′-CCCGGGTATGAAGAGACCCTTAACCAC-
3′ coupled with the reverse primer 5′-GGATCCCGACAG
AATAGTTCCAAGAA-3′, and then it was ligated to pET28a
vectors that were digested by BamHI and SacI. This construct
was transformed into Escherichia coli strain Rosetta (DE3), and
the BnWRI1 protein was expressed by induction with 0.6 mM
isopropyl-β-D-thiogalactopyranoside (IPTG) while the strain
was grown in Luria Bertani (LB) medium overnight at 20◦C.
The cells were harvested and lysed by sonication in a buffer
(300 mM NaCl, 20 mM Tris-HCl, pH 8.0, 10 mM imidazole, 5%
glycerol, and 50 mM NaH2PO4). The cell lysate was centrifuged
at 12,000 r/min for 20 min. The supernatant was incubated
with Ni-NTA resin (Shanghai Sangon, http://www.sangon.com)
for 3 h at 4◦C. The BnWRI1 protein was eluted from the
resin after three washes with wash buffer (50 mM NaH2PO4,
300 mM NaCl, and 20 mM imidazole, pH 8). Protein from
E. coli cells containing only the pET28a vector was used as
a negative control. The DNA sequences that were 300 and
250 bp upstream from the start codon of KASI and GPAT9,
respectively, were amplified from Arabidopsis with the KASI
forward primer 5′-GAATTCTGTTGAGTTACGAATTGGAG-
3′, coupled with the KASI reverse primer 5′-GAGCTCATTGAG
AGAGGTATTGAGAG-3′, and the GPAT9 forward primer
5′-GAATTCACATAATATGTCCAAGATCATT-3′ coupled with
the GPAT9 reverse primer 5′-GAGCTCCTATTATACTTATA
CCACAT-3′. The substitutive nucleotide (C→T, T→C, G→A)
mutant at the AW-box [CnTnG](n)7[CG] was amplified by using
a similar approach. The amplified DNA fragments containing
native or mutant AW-box were incubated with purified BnWRI1
protein in binding buffer (20 mM Tris-HCl, pH 8.0, 250 mM
NaCl, 2 mM MgCl2, 1% glycerol, 1 mg/ml BSA, 1 mM DTT) for
1 h at 4◦C. The resulting mixture was separated on native PAGE
(6%) by electrophoresis and was visualized under UV light. The
binding activity of BnWRI1 to the AW-box was also determined
with biotin labeled DNA probes using a chemiluminescent
electrophoretic mobility-shift assays (EMSA) kit (Beyotime,
China) according to the manufacturer’s instructions.

Measurements of Protein, Starch, and
Soluble Sugar
Proteins were extracted from leaves and seeds by homogenizing
in buffer containing 50 mM Tris-HCl, pH 8.0, 250 mM NaCl,
1 mM EDTA, and 1% (w/v) SDS, and incubating the mixture
for 2 h at 25◦C. The homogenate was centrifuged at 16,000 g for
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FIGURE 1 | BnWRI1 expression pattern and overexpression (OE) of
BnWRI1 in Brassica napus. (A) Transcript level of BnWRI1 in different
B. napus tissues at seedling, bolting, flowering and seed developing stages.
The expression level was quantified by real-time PCR normalized to the
expression of BnActin. Values are mean ± SD (n = 3). R, root; St, stem; L,
leaf; Bu, flower bud; F, flower; and Si15, Si30, and Si45, siliques at 15, 30,
and 45 days, respectively, after anthesis. (B) The construct containing
BnWRI1 in the binary vector pBI121. (C,D) The transcript level of BnWRI1 in
BnWRI1-OE plants according to semi-quantitative RT-PCR (C) and
quantitative real-time PCR (D). Total RNA was extracted from the leaves of
6-week-old plants, and the expression level was detected by using
BnWRI1-specific primers. The expression levels were normalized to BnActin.
OE2, OE16, and OE16 represent BnWRI1-OE lines. Values are mean ± SD
(n = 3). ∗∗ Indicates significant difference at P < 0.01 compared with the WT
based on Student’s t-test.

10 min, the supernatant was diluted 200 times and the protein
concentration wasmeasured by Lowry D protein assay (Bio-Rad).
Soluble sugars were measured using phenol-sulfuric acid method
(DuBois et al., 1956; Chow and Landhausser, 2004). In brief, leaf
samples (1 g fresh weight) were homogenized with deionized
water and filtered. The extract (50 μl) was mixed with 450 μl of
sulfuric acid containing anthrone (2mg/ml) at 95◦C, and then the
absorbance at 625 nm was monitored by spectrometer (Infinite
M200 PRD, Untersbergstr, Austria). For starch extraction, the
remaining sedimentwas suspended in a solution containing 0.2 N
KOH and incubated at 95◦C for 1 h, followed by the addition of
1 N acetic acid and incubation for 15 min. After centrifugation at
16,000 g for 5 min, the starch in the supernatant was measured by
using a method similar to that of soluble sugars.

FIGURE 2 | Accelerated flowering in BnWRI1-OE plants. (A) BnWRI1-OE
and WT plants at the vegetative growth stage. The pictures were taken of
plants that were grown in pots at 30 days after germination. (B) Accelerated
flowering in BnWRI1-OE plants. The picture was taken of 145-day-old plants
grown in the field. (C) Days to bolting based on a flowering rate of 50%
(n = 20, r = 3). (D) The flowering rate of OE and WT plants grown under the
same conditions. Values are mean ± SD (n = 20, r = 3). (E) Inflorescent
branch number of BnWRI1-OE and WT. The data were collected from mature
plants (175-day-old) grown in the field (n = 12, r = 3). (F) The fresh weights of
aerial part from 175-day-old plants grown in the field. Values are mean ± SD
(n = 12, r = 3). ∗,∗∗ Indicate significant differences at P < 0.05 and P < 0.01,
respectively, compared with the WT based on Student’s t-test.
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FIGURE 3 | Enhanced seed oil accumulation in BnWRI1-OE plants. Total TAG content (A) and fatty acid (FA) composition (B) in the seeds of BnWRI1-OE and
WT. Total TAG content (C) and FA composition (D) in the leaves of BnWRI1-OE and WT. Lipids were extracted from the leaves of 8-week-old plants and were
separated by using a thin layer chromatography (TLC) plate. TAG spots were scraped and extracted for methylation and GC measurement. Values are mean ± SD
(n = 4); ∗∗P < 0.01.

RESULTS

Expression Pattern and the Effect of
BnWRI1 on Flowering in B. napus
To investigate the temporal and spatial distribution of BnWRI1
mRNA in B. napus, total RNA was extracted from various tissues
at different stages and used for analysis by quantitative real-
time PCR. During the seedling and bolting stages, the BnWRI1
transcript level was higher in leaves and flower buds than it was
in roots and stems (Figure 1A). During the flowering stage, the
BnWRI1 expression was higher in flowers than in leaves and
stems. The transcript level was rapidly up-regulated in siliques
and was highest at 30 days after anthesis (Figure 1A).

To explore the biological function of BnWRI1 in B. napus, full-
length BnWRI1 cDNA was cloned by reverse transcription PCR
by using mRNA that was extracted from leaves as a template,
and the cDNA was ligated into binary vector pBI121. The
resulting construct containing BnWRI1 was transformed into
B. napus under the control of the 35S promoter (Figure 1B).
More than 30 independent transgenic lines were obtained, and
the BnWRI1 transcript level in transgenic plants was much
higher than that of the wild-type (WT; Figures 1C,D). Three

representative, independent BnWRI1 OE lines, OE2, OE16, and
OE17, were selected randomly from 30 transgenic lines, and
they were used for further characterization. These plants were
grown under natural conditions either in the field or in pots,
and no visual growth change was observed between OE and WT
plants, which showed a similar leaf size, leaf number, and growth
rate during the vegetative growth stage (Figure 2A). However,
BnWRI1 accelerated flowering; OE plants bolted and flowered
4 to 6 days earlier than WT plants (Figures 2B,C). At 136 days
after germination, 60% of the OE plants were flowering, whereas
only 23% of the WT plants were flowering (Figure 2D). The
earlier flowering in OE plants did not cause changes in the total
number of inflorescent branches and biomass at the mature stage
compared with the results for the WT plants (Figures 2E,F).

Overexpression of BnWRI1 Enhances Oil
Accumulation in Seeds and Leaves
without Undesirable Agronomic Traits
To investigate the role of BnWRI1 in oil (TAG) synthesis, the oil
content was measured in both the seeds and leaves of OE and
WTplants. The oil content of BnWRI1-OE seedswas significantly
higher than that of the WT, and it was increased by 31, 38,
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FIGURE 4 | The effect of BnWRI1 on partitioning among lipids, sugars, and proteins in B. napus. (A) Total FA contents in leaves from BnWRI1-OE and WT
plants. (B,C) The soluble sugars, starch, total sugars, and proteins in the leaves of 2-month-old plants. (D,E) The soluble sugar, starch, total sugar, and protein
contents in mature seeds. Values are mean ± SD (n = 3). DW, dry weight; ∗P < 0.05, ∗∗P < 0.01.

and 18% in OE2, OE16, and OE17, respectively (Figure 3A).
FA profiling revealed that oleic acid (18:1) contributed mostly
to oil accumulation in OE plants. Other FA species such as 16:0
and 18:2 also increased in OE seeds (Figure 3B). The OE of
BnWRI1 also increased the oil contents of vegetative tissues. The
oils in the leaves were primarily composed of 16:0, 18:1, and
18:0 FA species, which account for ∼90% of the total FA species.
The total TAG contents of the leaves from OE2, OE16, and
OE17 increased by 28, 67, and 63%, respectively, in comparison
with the WT plants (Figure 3C). The enhanced TAG in the
OE leaves resulted from the increase of 16:0, 18:0, 18:1, and
18:2 FA species (Figure 3D). The relative increase in leaf oil
content from BnWRI1 OE was greater than that of the seed oil
content.

The Effect of BnWRI1 on Total Lipids,
Sugar, and Protein Accumulation
Carbohydrates are photosynthesized in green tissues,
predominantly in leaves, which are the major source tissue,
providing precursors for lipid and protein synthesis. Carbon
partitioning among these metabolites is a major factor that
influences lipid accumulation. To determine whether enhanced
oil accumulation resulted from alterations in carbon partitioning,
the contents of the total lipids, soluble sugars, starch, and
proteins were measured in the leaves of 3-month-old plants
at the flowering stage. The total lipid content of OE leaves
was significantly higher than that of WT, and it was increased

by 24, 47, and 25% for OE2, OE16, and OE17, respectively
(Figure 4A). BnWRI1-OE leaves exhibited increased soluble
sugars with reduced starch contents compared with WT plants
(Figures 4B,C). However, the total sugars and total protein
content in OE leaves were not substantially different from those
of WT plants (Figures 4B,C). In comparison with those in the
leaves, the contents of soluble sugars, starch, total sugars, and
proteins in mature seeds were less altered between the OE and
WT (Figures 4D,E). The starch contents of OE2 and OE16 seeds
were lower than that of the WT, whereas the soluble sugar, total
sugar, and protein contents in OE seeds were not significantly
different from that of the WT (Figures 4D,E). These results
indicate that enhancing the lipid content by overexpressing
BnWRI1 without reducing sugars and proteins, but enhanced
leaf sugar moves from storage starch to soluble sugars for lipid
accumulation.

BnWRI1 Binds to the Proximal Upstream
Regions of Genes Involved in Lipid
Anabolism
To get insight into the molecular mechanism of BnWRI1
in lipid metabolism and carbon partitioning, the subcellular
localization of BnWRI1 and its putative target genes involved
in lipid metabolism were investigated. The full-length cDNA
of BnWRI1 was fused with GFP at the C-terminus and then
transiently expressed in the epidermal cells of tobacco leaves by
Agrobacterium infiltration. Green fluorescent BnWRI1-GFP was
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FIGURE 5 | Nuclear localization of BnWRI1. (A) Green fluorescence of BnWRI1-GFP. (B) Nucleus stained with DAPI. (C) Bright image. (D) Merged image of the
same cells observed in (A). BnWRI1-GFP was transiently expressed in Nicotiana benthamiana epidermal cells and visualized under by confocal laser scanning
microscopy. The nuclear localization of BnWRI1 was indicated by green fluorescence that was overlaid with the nucleus indicated by DAPI staining.

visualized by confocal laser scanning microscopy (Figure 5A),
and the resulting image was overlaid with a nucleus marked by
4′,6-diamidine-2-phenylindole dihydrochloride (DAPI) staining,
confirming that the introduced BnWRI1 is localized to the
nucleus (Figures 5B–D). The proximal upstream regions of
Arabidopsis genes such as pyruvate kinase (PKp), BCCP2,
KASI, LPAT2, and GPAT9 that are involved in glycolysis, FA
synthesis, and lipid assembly contain the AW-box featured
with [CnTnG](n)7[CG] (Figure 6A). To test whether BnWRI1
binds to the target DNA fragments containing the AW-box,
the BnWRI1 protein was expressed in E. coli and purified for
binding assays (Figure 6C). The DNA fragments of 250–300 bp
that contained the AW-box [CnTnG](n)7[CG] in the promoter
region of two representative genes known as KASI and GPAT9
were amplified and used for EMSA. When BnWRI1 protein
was incubated with the DNA fragment amplified from the KASI
promoter containing the AW-box [CnTnG](n)7[CG], the target
DNA was bound to BnWRI1, as indicated by the shifted bands at
the top of gel when it was visualized under UV light (Figure 6D).
However, when the DNA fragment with a mutant AW box
[TnCnA](n)7[CG] was explored, the binding between the

BnWRI1 and the DNA fragment was abolished, as shown by the
observation that the DNA band position remaining unchanged
in the gel (Figures 6B,D). A similar gel shift was observed
when BnWRI1 protein was incubated with the DNA fragment
containing an AW box [CnTnG](n)7[CG] from the promoter
region ofGAPT9 (Figure 6D). The binding was diminished when
the consensus was mutated to [CnTnG](n)7[TA] for the GPAT9
promoter (Figures 6B,D). A similar result was found when the
DNA probes were labeled with biotin (Figure 6E). These results
suggest that BnWRI1 specifically binds to the promoter region
containing the AW-box, which is conserved with Arabidopsis
WRI1, and the AW-box is essential for the interaction between
BnWRI1 and the target gene promoters.

Overexpression of BnWRI1 Up-regulates
the Transcript Level of Genes in
Glycolysis, Fatty Acid Synthesis, Lipid
Assembly, and Flowering
To investigate whether BnWRI1 OE up-regulated the transcript
level of genes involved in the lipid anabolism process, RNA
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FIGURE 6 | BnWRI1 binding to proximal upstream regions of genes involved in lipid anabolism. (A) The AW-box [CnTnG](n)7 [CG] in the proximal upstream
regions of genes involved in glycolysis, FA synthesis, and lipid assembly. (B) Consensus [CnTnG](n)7 [CG] of the AW-box and its mutant AW-box [TnCnA](n)7[CG] of
the KASI promoter or [CnTnG](n)7 [TA] of GPAT9 promoter. (C) Recombinant BnWRI1 protein (50 kD) expressed in E. coli cells. (D) BnWRI1 specifically binds to the
promoter region of KASI and GPAT9 containing the AW-box as assayed by EMSA. The binding was abolished when the conserved sequence was mutated into the
[TnCnA](n)7[CG] of the KASI promoter or the [CnTnG](n)7[TA] of the GPAT9 promoter. The purified BnWRI1 protein (0.4 μg) was incubated with the target DNA
fragment for 1 h. The resulting complex was visualized under UV light. The lanes from left to right: M, DNA ladder; KASI promoter only; BnWRI1 (0.4 μg) + KASI
promoter; KASI mutant promoter only; BnWRI1 (0.4 μg) + KASI mutant promoter; GPAT9 promoter only; BnWRI1 (0.4 μg) + GPAT9 promoter; GPAT9 mutant
promoter only; BnWRI1 (0.4 μg) + GPAT9 mutant promoter; BnWRI1 only. (E) The binding activity of BnWRI1 to the AW-box or its mutant AW-box (mAW) in the
promoter regions of KASI and GPAT9 by EMSA using the DNA probes labeled with biotin. The shifted band is indicated by the arrow.

was extracted from the leaves and analyzed by quantitative real-
time PCR. These genes include PKp2 in glycolysis, BCCP2,
MAT, KASI, ENR1, and acyl-ACP thioesterase (FATA) in the
FA biosynthetic process, and GPAT9, LPAT2, and DGAT1 in
lipid assembly. The transcript levels of the tested genes were all
significantly higher in OE plants than in the WT. Despite the
significant elevation of genes in multiple pathways by BnWRI1,
the regulation of BnWRI1 in specific routes differs to variable
extents. The transcript level of genes involved in glycolysis and
FA synthesis including PKp2, MAT, KASI, ENR1, and FATA was
up-regulated the most, and the expression levels in OE plants
were more than twofold that of the WT (Figures 7A,B). The
BnWRI1 enhanced expression of genes involved in FA synthesis
was most prominent among the tested genes (Figure 7B).
Moreover, RNA accumulation for the genes involved in lipid
assembly was also strongly induced in OE plants. The mRNA
level of GPAT9 in OE plants accumulated more than twofold
that of the WT (Figure 7C). The LPAT2 and DGAT1 transcript
levels were also substantially higher in OE than in WT plants
(Figures 7C,D). In addition, the FLOWERING LOCUS T
(FT) is a key regulator in the control of flowering time in
several plant species, and the FT expression level in OE plants
was threefold higher than that of the WT (Figure 7E). The
results suggest that BnWRI1 synchronously promotes multiple
pathways in transcriptional regulation to enhance the plant
reproductive process, seed development, and oil accumulation in
B. napus.

The Effect of BnWRI1 on the Membrane
Lipid Composition
Most studies have focused on the effect of WRI1 on oil
accumulation, but the effect of WRI1 on the membrane
lipid composition remains elusive. The OE of BnWRI1 in
B. napus leads to the involvement of numerous genes in
glycolysis, FA biosynthesis, and the lipid assembly process,
indicating its significance in lipid anabolism. To investigate
the effect of BnWRI1 on various lipid metabolisms further,
phospholipids and galactolipids from leaves or siliques during
flowering stages were analyzed. The phosphatidylethanol (PE)
and phosphatidylglycerol (PG) in leaves remained comparable
between OE and WT plants (Figure 8A). However, BnWRI1
OE resulted in a significant increase in MGDG, DGDG, and
PC in leaves relative to their levels in WT plants (Figure 8A).
The increased DGDG resulted from the increase in 16:0, 18:1,
18:2, and 18:3 FA species, and the elevated MGDG primarily
came from an increased 16:0 FA, whereas the enhanced PC level
was mostly contributed by increased 16:0, 16:1, and 18:2 FAs
(Figures 8B–D).

Lipid profiling from developing siliques revealed that the lipid
content and composition of siliques were significantly different
from those of leaves. The contents of galactolipids such as
DGDG and MGDG in siliques, the predominant components
of chloroplast membranes, were much lower than the contents
in leaves (Figures 8 and 9), suggesting that photosynthesis
predominantly occurs in leaves rather than siliques during
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FIGURE 7 | Transcript levels of genes involved in lipid anabolism in BnWRI1-OE and WT plants. (A,B) The expression levels of genes involved in glycolysis
and FA synthesis. (C,D) The expression levels of genes involved in lipid assembly. (E) The expression level of FT involved in flowering. Total RNA was extracted from
the leaves of 7-weeks-old plants and the transcript levels of genes were analyzed by quantitative real-time PCR. PKp2, pyruvate kinase, homolog At5g52920;
BCCP2, biotin carboxyl carrier protein, homolog At5g16390; MAT, malonyl-CoA:ACP malonyltransferase, homolog At2g30200; KASI, ketoacyl-ACP synthases,
homolog At5g46290; ENR1, enoyl-ACP reductase, homolog At2g05990; FATA, acyl-ACP thioesterase, homolog At3g25110; GPAT9, glycerol-3-P acyltransferase,
homolog At5g60620; LPAT2, lysophosphatidic acid acyltransferase, homolog At3g57650; and DGAT1, DAG acyltransferase, homolog At2g19450. The expression
level was normalized to that of BnActin. Values are mean ± SD (n = 3); ∗∗P < 0.01.

the flowering and early seed development stages. BnWRI1
OE resulted in increased phospholipids and a corresponding
reduction in galactolipids (Figure 9A). OE siliques contain less
DGDG with decreased 16:0, 18:2 FAs and increased 20:1 FA in
OE siliques (Figure 9C). MGDGwas also reduced with decreased
16:0, 22:1 FA and increased 18:3 FA in OE siliques, and the
magnitude was smaller than that of DGDG (Figures 9A–C). By
comparison, phospholipids PC, PE, and PG in OE siliques were
higher than the levels in the WT (Figure 9A). The increased PC
and PE in OE siliques were contributed mostly by increased 16:0
FA, whereas elevated PG resulted from increased 16:0 and 18:0
FAs in OE siliques. (Figures 9D–F). The TAG in OE siliques
was significantly higher than that of the WT, and increased TAG
comes primarily from elevated 16:0 FA. The 18:2 and 18:3 FA
contents in both OE2 and OE17 were also higher than those in
WT siliques (Figures 9G,H).

DISCUSSION

Fatty acids are major, basic components of lipid assembly,
and their destinations include membrane lipids, storage lipids,
lipid messengers, and other derivatives. The FA synthesis
enzyme complex consists of multiple subunits including

malonyl-CoA: ACP transferase (MAT), acyl-ACP transferase
(AT), β-ketoacyl-ACP synthase (KAS), β-ketoacyl-ACP reductase
(KAR), hydroxyacyl-ACP dehydrogenase (HAD), and enoyl-
ACP reductase (ENR) as encoded by individual genes in
plants (Slabas and Fawcett, 1992; Ohlrogge and Browse, 1995;
Ohlrogge and Jaworski, 1997). WRI1 is a central regulator that
modulates numerous genes and multiple steps in oil synthesis
simultaneously, and it is unique to plants (Cernac and Benning,
2004; Shen et al., 2010). However, most studies are focused
on WRI1 involvement in oil accumulation in Arabidopsis. The
effect of WRI1 on lipid synthesis and its consequence on plant
development were unknown, especially in crop plants. This
study unraveled the novel roles of BnWRI1 in flowering time
control and lipid homeostasis in relation to oil accumulation,
membrane phospholipids, galactolipids, and sugars. Enhanced
lipid anabolism and accelerated flowering from BnWRI1 OE did
not result in the inhibition of protein synthesis and total sugar
accumulation. Unlike the results found in Arabidopsis (Cernac
and Benning, 2004), BnWRI1OE in B. napus plants did not cause
visible undesirable growth or development traits. These results
suggest that the roles of BnWRI1 in B. napus is conserved and
yet distinguishable from that of other species such as Arabidopsis
and maize (Focks and Benning, 1998; Baud et al., 2007; Pouvreau
et al., 2011; To et al., 2012).
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FIGURE 8 | Effect of BnWRI1-OE on membrane lipid compositions in leaves. (A) Lipid compositions in the leaves of BnWRI1-OE and WT plants. Fatty acid
species of MGDG (B), DGDG (C), and PC (D) in the leaves. Lipids were extracted from 5-month-old plants during the early flowering stage. The extracted lipids were
separated by TLC plates and the spot corresponding to a specific lipid was quantitatively analyzed by GC measurement. Values are mean ± SE (n = 4); ∗P < 0.05,
∗∗P < 0.01.

A previous study showed that the AP2-type transcription
factors play important roles in regulating meristem growth
and organ development. AP2-type transcription factors are also
involved in ovule development, floral organ growth, and seed
size (Jofuku et al., 1994; Elliott et al., 1996; Okamuro et al.,
1997; Mizukami and Fischer, 2000; Ohto et al., 2005). WRI1
belongs to the AP2-type transcription factor family, but its
role in the flowering time had not been reported. Our result
showed that BnWRI1-OE plants flowered 4–6 days earlier than
the WT, suggesting that BnWRI1 plays a role in flowering time
control. WRI1 from Arabidopsis or maize is not involved in
flowering time control (Cernac and Benning, 2004; Pouvreau
et al., 2011). Early flowering is an important trait because
seeds can be matured within a given time to make field space
available for the next crop’s growth. In addition to its role
in oil accumulation, a mild earlier flowering by BnWRI1-OE
did not lead to a visible inhibition in vegetative growth and
biomass, which provides a possibility for oil crop breeding. Gene
expression profiling showed that BnWRI1-OE plants enhanced
FT expression, suggesting that BnWRI1 modulates flowering in
a transcriptional manner. However, the promoter region of FT
does not contain a typical AW-box, suggesting that other cis
elements in the FT promoter are recognized and regulated by
BnWRI1. Alternatively, the early flowering may have resulted
from PC elevation as shown by the increased PC level in OE
plants. Recent studies showed that PC plays a positive role

in Arabidopsis flowering (Nakamura et al., 2014; Wang et al.,
2015).

An oil component in the form of TAG is primarily derived
from sugars through photosynthesis in plants. In oil seed plants
such as B. napus and Arabidopsis, starch was accumulated at
the early phase of seed development and converted to TAG
and proteins at the later phase of seed maturation (Baud et al.,
2002; Ruuska et al., 2002; Hills, 2004). Our study showed that
BnWRI1 OE in B. napus resulted in significant oil accumulation
in both seeds and leaves, which was accompanied by up-regulated
genes involved in glycolysis, FA biosynthesis, and lipid assembly,
whereas the AtWRI1 in Arabidopsis was not involved in lipid
assembly (Cernac and Benning, 2004; Baud et al., 2007; To
et al., 2012). The seed-specific OE of BnWRI1 in B. napus or
in Arabidopsis resulted in enhanced seed oil content and seed
size (Liu et al., 2010; Wu et al., 2014). The OE of Arabidopsis
WRI1 in Camelinasativa also led to increased oil content and
seed size (An and Suh, 2015). AtWRI1 binds to the AW-box
[CnTnG](n)7[CG] located at the proximal upstream regions of
genes involved in glycolysis and FA synthesis (Maeo et al., 2009).
BnWRI1 contains two AP2 domains involved in DNA binding.
Our results showed that BnWRI1was localized to the nucleus. An
EMSA assay showed that BnWRI1 was capable of binding to the
AW-box [CnTnG](n)7[CG] at the proximal promoter region of
genes involved in FA synthesis and lipid assembly, and the AW-
box is essential for binding because the nucleotide substitutive
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FIGURE 9 | Effect of BnWRI1-OE on membrane lipids and TAG levels in siliques. (A) Lipid composition in the siliques of BnWRI1-OE and WT plants. Lipids
were extracted from the siliques at 20 days after anthesis (DAA). The extracted lipids were separated by TLC and the spot corresponding to a specific lipid was
quantitatively analyzed by GC. (B–F) FA species of MGDG, DGDG, PG, PC, and PE in the siliques of 20 DAA. Oil (TAG) content (G) and FA species of TAG (H) in the
siliques of 20 DAA. Values are mean ± SE (n = 4); ∗P < 0.05, ∗∗P < 0.01.
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FIGURE 10 | A proposed model for BnWRI1 in regulating lipid anabolism and flowering in B. napus. BnWRI1 up-regulates transcript levels of genes
involved in glycolysis, FA synthesis, and lipid assembly to enhance accumulation of oil (TAG), galactolipids, and phospholipids. The increased MGDG and DGDG by
BnWRI1 promote source/sink capacity, thus BnWRI1 plays a positive role in homeostasis among sugars, TAG, and membrane lipids in B. napus. Moreover, BnWRI1
also enhances FT expression, and PC level to accelerate flowering.

mutant abolished the binding. Moreover, lipid assembly is also
important for oil synthesis as demonstrated by overexpressing
the genes encoding yeast glycerol-3-phosphate dehydrogenase
and yeast LPAT in B. napus leading to a modest increase in oil
content (Zou et al., 1997; Vigeolas et al., 2007). Likewise, an
elevated DGAT transcript level in soybeans and maize resulted
in enhanced seed oil content (Zheng et al., 2008). The current
study showed that BnWRI1 also binds to the promoter region
of GPAT9 that is responsible for lipid assembly, which is not
found inArabidopsis and other plant species (Baud et al., 2007; To
et al., 2012). These observations suggest that the transcriptional
regulation of BnWRI1 and its effect on the lipid anabolic process
is more comprehensive in B. napus than in other plant species.

As fossil energy becomes limited, it is attractive to enhance oil
accumulation in vegetative tissues to supply renewable biofuel
and feed stock for industry and animal foods. The current
results showed that BnWRI1-OE in B. napus led to increased
oil contents in the leaves without growth retardation, suggesting
a potential application in crop plant breeding. However, the
increased amount of leaf oil content is moderate at 1.4% of the dry
weight, which is similar to that of tobacco leaves that transiently
expressedWRI1 from other plant species (Grimberg et al., 2015).
A transcriptional analysis showed that WRI1 up-regulated genes
in both FA synthesis and degradation, indicating a futile cycle of
FA metabolism, which may be responsible for the limitation in
leaf oil accumulation (Grimberg et al., 2015). The results suggest
that achieving high oil contents in the leaves through single gene
manipulation could be challenging. A recent study showed that
the co-expression of three genes,WRI1, DGAT and oleosin, led to
15% TAG dry weight in tobacco leaves (Vanhercke et al., 2014).

Carbon allocation by WRI1 occurred in Arabidopsis and
cotton plants. The constitutive expression of AtWRI1 in
Arabidopsis led to a significant increase in the oil content,
which was accompanied by defective seed germination and
plant growth (Cernac and Benning, 2004). Suppressing WRI1
in cotton led to increased fiber length and reduced seed
oil content (Qu et al., 2012). Our results showed that the
total sugars and proteins remained constant between OE and
WT, but OE plants displayed reduced carbohydrate storage
with a corresponding increase in soluble sugars in the leaves
and seeds. In addition to oil accumulation, BnWRI1 OE
also increased phospholipids and galactolipids significantly in
leaves. Higher levels in BnWRI1-OE leaves of the galactolipids
MGDG and DGDG, the important components of chloroplast
thylakoid membranes that are essential for photosynthesis, may
be responsible for enhanced source capacity. A recent study
showed that the seed-specific expression of BnWRI1 promoted
the expression of the photosynthesis gene (Wu et al., 2014).
The results suggest that the enhanced lipid anabolic process
in leaves by BnWRI1 is not a result of a reduction in other
organic components but a consequence of enhanced source/sink
strength by enhanced galactolipids and carbon flux to lipid
accumulation. This finding may explain, at least in part, how
BnWRI1-OE enhances oil accumulation and flowering without
growth inhibition in B. napus. However, the lipid metabolism
regulated by BnWRI1 in siliques is quite different from that
of leaves. A lipid analysis of the siliques revealed reduced
galactolipids MGDG and DGDG, and corresponding increases
in the phospholipids PC, PE, PG, and storage lipid TAG in
OE siliques during flowering and early seed developing stages.
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These results indicate that enhanced PC and PE may facilitate
lipid mobilization to oil accumulation in seeds because TAG
can be directly derived from PC by PDAT activation (Dahlqvist
et al., 2000; Fan et al., 2013, 2014). Our data support the facts
that BnWRI1 regulates homeostasis among sugars, membrane
lipids, and storage lipids, and its consequences for enhancing
reproduction, seed development and oil accumulation. Our
results shed light on the roles of BnWRI1 in lipid regulatory
networks and its application in oil crop plant breeding.

In summary, the results from this study identified several
novel roles of BnWRI1 in B. napus that have not been
characterized before. First, the OE of BnWRI1 led to accelerated
plant flowering 4–6 days earlier without reduced vegetative
growth, which is a good agronomic trait to open up field
space for the next crop’s planting. Second, BnWRI1 enhanced
oil accumulation in both seeds and leaves without visible side
effects on growth. BnWRI1 decreased storage carbohydrates
and increased soluble sugars to facilitate carbon flux to lipid
anabolism. Third, BnWRI1 is localized in the nucleus and binds
to the AW-box at the proximal promoter region of genes involved
in FA synthesis as well as in the lipid assembly process that is not
found in Arabidopsis. The OE of BnWRI1 led to the up-regulated
transcription of genes in the lipid anabolic pathway, and of FT
in flowering control. Finally, BnWRI1 not only enhances oil
accumulation, but it also affects membrane lipid metabolism and
turnover in both leaves and developing siliques. BnWRI1 OE
caused increased galactolipid MGDG, DGDG, and phospholipid
PC in leaves, but it led to reduced DGDG and MGDG and
increased PC, PE, and TAG in siliques during the early seed
development stage. Enhanced galactolipid synthesis by BnWRI1
is beneficial for photosynthesis to enhance the source/sink
capacity, and thus facilitates the sugar flux to oil accumulation
without the expense of sugar and protein in both leaves and
seeds. Therefore, BnWRI1 plays a positive role in homeostasis
among sugars, membrane lipids, and oil accumulation by
modulating the coordination of multiple metabolism pathways,
thus enhancing flowering and oil accumulation without growth
inhibition. Based on the results from this study, we proposed

a work model for BnWRI1 in lipid anabolic process, plant
growth and development (Figure 10). The early flowering led
by BnWRI1 may be caused by its transcriptional regulation
through binding to the promoter region of FT or other flowering-
related genes. It would be interesting to identify new targets
of BnWRI1 that are involved in flowering control in future
studies. In addition, BnWRI1 OE led to an elevated PC level
in both leaves and siliques. PC functions not only as an
essential component of the membrane structure, but it also plays
important roles in flowering regulation and providing acyl chains
for TAG accumulation (Dahlqvist et al., 2000; Zhang et al., 2009;
Nakamura et al., 2014; Wang et al., 2015). It would be interesting
to explore how PC synthesis is regulated by BnWRI1 in future
work.
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