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A collection of 100 wheat varieties representing more than 100 years of wheat-breeding
history in Scandinavia was established in order to identify marker-trait associations for
plant height (PH), grain yield (GY), and biomass potential for bioethanol production. The
field-grown material showed variations in PH from 54 to 122 cm and in GY from 2
to 6.61 t ha−1. The release of monomeric sugars was determined by high-throughput
enzymatic treatment of ligno-cellulosic material and varied between 0.169 and 0.312 g/g
dm for glucose (GLU) and 0.146 and 0.283 g/g dm for xylose (XYL). As expected, PH
and GY showed to be highly influenced by genetic factors with repeatability (R) equal to
0.75 and 0.53, respectively, while this was reduced for GLU and XYL (R = 0.09 for both).
The study of trait correlations showed how old, low-yielding, tall varieties released higher
amounts of monomeric sugars after straw enzymatic hydrolysis, showing reduced
recalcitrance to bioconversion compared to modern varieties. Ninety-three lines from
the collection were genotyped with the DArTseq©R genotypic platform and 5525 markers
were used for genome-wide association mapping. Six quantitative trait loci (QTLs) for
GY, PH, and GLU released from straw were mapped. One QTL for PH was previously
reported, while the remaining QTLs constituted new genomic regions linked to trait
variation. This paper is one of the first studies in wheat to identify QTLs that are important
for bioethanol production based on a genome-wide association approach.

Keywords: QTL, Triticum aestivum L., GWAS, recalcitrance, ligno-cellulosic biomass

INTRODUCTION

Second-generation bioethanol production based on ligno-cellulosic material from agricultural
waste and plant residues is not undertaken specifically for the purposes of bioenergy, and therefore
has the potential to bypass the food–feed–fuel dilemma which is an inherent problem with other
kinds of bioenergy (Oladosu and Msangi, 2013). With an estimated annual production in Europe
of 74 million tons (Kretschmer et al., 2012), wheat (Triticum aestivum L.) straw is the crop residue
with the greatest potential to be a feedstock for second-generation biofuels available in Europe
(Scarlat et al., 2010). If the straw is used for bioenergy, wheat can be regarded as a dual-purpose
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crop, providing grains for food and feed and remaining biomass
for energy. Then, it would be desirable to increase straw
production without compromising grain yield (GY). However, it
is also advantageous to have straw that is easy to convert, as this
is more efficient and requires fewer inputs for transformation.
Therefore, another target would be to develop wheat varieties
with straw that is less recalcitrant for bioconversion. This
could require alterations in the lignin and secondary cell wall
composition. The biosynthesis of monolignols is well known and
several examples of genetic modification by targeting single genes
have been pursued in model and crop plant species (Sibout et al.,
2005; Chen and Dixon, 2007; Fu et al., 2011), but not for wheat
as a crop. For secondary cell wall biosynthesis, knowledge is
more fragmented and crop specific details are scarce or missing.
A meta-analysis of 150 quantitative trait loci (QTLs) for cell wall
composition identified in 11 maize mapping populations resulted
in 42 mQTL, showing many genes influencing the cell wall that
are stable across varieties and environments (Truntzler et al.,
2010).

Plant height (PH) is one of the most studied phenotypes
in wheat due to its involvement in plant architecture and
ultimately in GY. In fact, height is also closely related to
recalcitrance, because shorter straw tends to have a more
easily degradable leaf mass in relation to stem mass (Jensen
et al., 2011). The best-known PH genes are the semi-dwarfing
loci Rht-B1 and Rht-D1 on group 4 chromosomes, conferring
insensitivity to the phytohormone gibberellin (Flintham et al.,
1997). Other major genes conferring reduced height are Rht8 on
2D (Korzun et al., 1998) and the photoperiod regulator Ppd-1
(Shaw et al., 2012). Yet several other QTLs were reported to
affect PH. Griffiths et al. (2012) highlighted 16 mQTLs causing
modification in PH in a meta-QTL study of four double-haploid
populations. Furthermore, a recent study from Zanke et al. (2014)
employing the newly available 90K iSelect wheat chip and 732
SSR markers in a genome wide association study (GWAS) of
358 European winter wheat varieties reported 280 significant
markers spread over the entire wheat genome, suggesting that
a wide range of loci are available to breeders for modulating
PH in wheat. Like PH, GY is a complex trait regulated by a
plethora of interlinked metabolic networks, including heading
date, photoperiod sensitivity, number of tillers, carbohydrate
remobilisation, and nutrient-use efficiency, to mention some of
the traits that have a downstream effect on crop yield. Several
GWA studies highlighted QTLs spread throughout the wheat
genome, including the aforementioned reduced height genes
(Bentley et al., 2014; Bordes et al., 2014). However, trait variation
was relatively small when allele frequencies were considered.

A few studies have used GWA mapping to identify genes
involved in secondary cell wall metabolism (Wang et al., 2013;
Rincent et al., 2014; Ramstein et al., 2015), but not in wheat.
However, promising results in terms of genetic variation for
traits such as enzymatic digestibility of straw (Jensen et al., 2011)
and sugar release upon pre-treatment and enzymatic hydrolysis
(Lindedam et al., 2012) in collections of wheat varieties were
reported. This paper presents the results of a GWA study on
a collection of historical Scandinavian winter wheat varieties
released onto the market over a period of more than a century,

allowing a wide range of genetic variations to be explored.
Traits included in the study were GY, PH and monomeric
sugars released after straw enzymatic hydrolysis, relevant for
second-generation bioethanol production. It was possible to
detect previously reported QTLs and highlight additional genetic
regions of interest for the traits investigated.

MATERIALS AND METHODS

Plant Materials and Field Trials
A collection of 100 accessions of hexaploid winter wheat
(T. aestivum L.) – 32 from Denmark, 66 from Sweden and
two from Great Britain – released between 1900 and 2006 was
grown in a field trial in 2008 in Tåstrup (55.67◦N; 12.30◦E),
Denmark (Supplementary Table S1). The collection was intended
to represent the history of more than a century of wheat breeding
in the Scandinavian region. The two accessions originating
from Great Britain were modern commercially available varieties
currently grown in the Scandinavian area. Seeds were obtained
from NordGen (Nordic Genetic Resources Centre, Alnarp,
Sweden). Information regarding the accessions (e.g., pedigree,
year of release, country of origin) was retrieved from the
SESTO database1 developed by NordGen and integrated with
data available from the WheatPedigree database2. The year of
release was not available for six accessions. Except for three
accessions classified as landrace, the rest of the collection
consisted of commercial varieties. The experiment was conducted
in two completely randomized blocks using standard agricultural
practices for the area. All the 100 lines were present in the two
blocks thus each line was tested with two biological replicates.
PH was measured for ten plants from each plot before harvesting
as the distance from the soil to the base of the spike, and the
data recorded averaged. Harvesting was carried out using an
experimental combine harvester that separated and collected
whole plot grain and straw. GYwas recorded on site and reported
as wet matter tons per ha−1. Ligno-cellulosic biomass glucose
(GLU), xylose (XYL) yields and total sugars (TS = GLU + XYL)
were obtained from enzymatic hydrolysis of grain-free plant
material from each plot and quantified using the NREL method,
as previously described in Bekiaris et al. (2015).

Field Trial Statistical Analysis
Initially, the lme4 package (Bates et al., 2014) based on the
statistical platform R (The R Core Team, 2014) was used to
develop a linear mixed model to obtain the genotypes’ best linear
unbiased predictors (BLUPs) for each trait recorded. The model
was expressed as Yij = μ + gi + bj + eij , where μ represents
the grand mean, g the random effect of the ith genotype, b
the random effect of the jth block and eij the residual error ∼
N(0, σ2). Trait repeatability (an estimate of genetic influence
on a trait similar to trait heritability) was then calculated as:
R = σ2g/(σ

2
g + σ2e), where σ2g stands for total genetic variance and

σ2e the residual variance. Subsequently the R package mvngGrAd

1http://www.nordgen.org/index.php/en/content/view/full/2
2http://wheatpedigree.net/

Frontiers in Plant Science | www.frontiersin.org 2 November 2015 | Volume 6 | Article 1046

http://www.nordgen.org/index.php/en/content/view/full/2
http://wheatpedigree.net/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Bellucci et al. GWAS for Quality Traits in Wheat

was employed to correct raw data for spatial field variation
(Technow, 2014). The package uses the spatial position of each
plot in the field, defined by row and column number, to adjust
phenotypic values. When a plot is considered, the package
calculates the mean phenotypic value of the surrounding plots,
with the diagram for the surrounding plots as in Lado et al.
(2013). The calculated value represents the growing conditions
of the plot considered and is used as a covariate to adjust the
observed phenotypic value. The formula describing the spatial

adjustment is defined as pi_adj = pi_obs − b(xi − −
x), where pi_adj

is the adjusted phenotypic entry, pi_obs is the observed phenotypic
data, xi is the mean of the surrounding plots, x is the mean of all
xi, and b is the regression coefficient in the general linear model
pi_obs = a + bxi . TS was recalculated based on the adjusted
values for the two sugars. A second mixed linear model following
the formula Yij_adj = μ + gi + eij expressed above, employing a
field-corrected dataset, was used to recalculate accession BLUPs
and trait R. The model giving better trait repeatability values was
retained for further analyses. BLUPs were also used to calculate
Pearson’s correlation between traits using the cor.prob function
implemented in the R statistical platform.

Genotyping and Marker Selection
Genomic DNA from 93 of the varieties employed in the field trial
was extracted from two leaves of seedlings grown in controlled
conditions using the hexadecyltrimethylammonium bromide
(CTAB) protocol (Rogers and Bendich, 1985), with further
modifications as described by Orabi et al. (2014). DNA samples
were sent to Diversity Array Technology Pty Ltd (Canberra,
Australia3) for genotyping with the wheat DArTseq R© platform
that consists of two different sets of markers: (i) genotyping
by sequencing (GBS) single nucleotide polymorphism (SNP)
markers obtained by sequencing the fragments derived from
genome complexity reduction and subsequent SNP calling, and
(ii) presence/absence variation (PAV) DArT markers referring
to whether or not a defined sequenced DNA fragment was
obtained after genome enzymatic digestion. Genomic sequences
of fragments from both types were also available. A detailed
description of the platform used to genotype the collection can
be found in literature (Kilian et al., 2012). The genotyping
process did not include seven wheat accessions present in the
field trial. Thus all the following analyses described here were
performed on a reduced dataset including 93 lines. For details
on the lines genotyped, see Supplementary Table S1. Since it
was assumed that all the accessions derived from completely
homozygous genotypes, SNPs showing heterozygous alleles due
to the detection of multiple loci were noted as missing and then
markers with >10% missing data were removed. Subsequently
markers were assigned to a genetic location based on the
consensus map developed by Li et al. (2015). It should be noted
that the consensus map contained several recombination deserts
lacking polymorphic markers. Thus chromosomes 1B, 2A, 2D,
3B, 4A, 6A, 7A, and 7B were represented by two linkage groups
in the consensus map (in this study all markers on 2D mapped
to only one of the groups in the consensus map). For these

3http://www.diversityarrays.com/

chromosomes, markers in the two linkage groups physically
located on the same chromosome appeared unlinked, thus it
was not possible to assign relative positions to the two groups.
This was taken into account during further analysis. Markers
were recoded as binary based on minor allele frequency (MAF)
and missing genotype data were imputed using the R package
scrime (Schwender, 2012), based on the five weighted nearest
varieties present in the dataset.Markers withMAFbelow 5%were
eventually removed.

Linkage Disequilibrium Analysis,
Population Structure, and GWAS
Average intra-chromosomal linkage disequilibrium (LD) decay
was calculated using TASSEL v. 3.0.169 (Bradbury et al., 2007).
Given the different nature of the two sets of markers, calculations
were run separately for SNPs and PAVs. As reported by
Li et al. (2015), the consensus map used here was created
based on three crosses sharing the common parent PBW343.
This variety, popular in South Asia, is known to harbor the
1B/1R translocation. According to the WheatPedigree database4,
three varieties in the collection studied here possessed the
translocation. In order to avoid any distortion in results, average
interchromosomal LD decay was not calculated for chromosome
1B. Finally, chromosomes containing a recombination desert,
thus constituted by two different linkage groups, were considered
as separate chromosomes. Pairwise marker r2 estimates of LD
were calculated and results below a significance threshold of
p < 0.05 were discarded. r2-values were subsequently plotted
against the distance in cM between the pairs of markers
considered. To establish a threshold for LD decay, the 95th
percentile of r2-values for unlinked markers (i.e., markers
more than 50 cM apart) was calculated (Zhou et al., 2012),
then a second-degree smoothed curve for the data points was
fitted using the R program (The R Core Team, 2014). The
projection of the interception between the fitted curve and the
LD decay threshold onto the x-axis was assumed to determine the
average chromosomal LD extent in the population considered.
Chromosome 1B was analyzed separately to verify the presence
of additional varieties with the rye translocation. Since the
1B consensus map was constituted by two linkage groups
covering approximately 165 and 65 cM, and in consideration
of long-range LD being expected as a consequence of the
translocation, only markers mapped to the longest linkage group
of 1B were considered. Principal components analysis (PCA)
was performed on 531 PAVs, which constituted 85% of the
total available genotypic information for the linkage group.
Population stratification present in the collection was studied
using principal coordinate analysis (PCoA) implemented in
the R package ape (Popescu et al., 2012). Finally, GWAS was
performed to identify positive marker-trait associations (MTA)
for the five traits included in the study using the R package
GAPIT (Lipka et al., 2012). BLUPs obtained from the field trial
for the 93 genotyped varieties were employed as a phenotypic
data to perform the association mapping study. Three principal
components were employed to control for population structure

4http://wheatpedigree.net/
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and an EMMA uncompressed kinship matrix to account for
cryptic relatedness. For convenience, chromosomes constituted
by markers separated into two linkage groups were considered
to be contiguous since this did not affect the final results.
GWAS was also performed using TASSEL v. 5.2.15 (Bradbury
et al., 2007) using the MLM function. This was done in order
to confirm results obtain with GAPIT. Similar parameters to
correct for population structure were used, i.e., three PCs as fixed
effect and a kinship matrix as random effect calculated with the
scaled Identity by State (IBS) method (Endelman and Jannink,
2012).

RESULTS

Phenotypic Data
A summary of raw and adjusted-by-field effects on five traits
recorded on the 100 historical winter wheat varieties is reported
in Table 1. A wide range of values was observed for PH
(field-adjusted data: 54–122 cm) and GY (field-adjusted data:
2.06–6.61 t ha−1), while conversion of ligno-cellulosic biomass
into monomeric sugars showed less variation. The effect of spatial
adjustment could be observed in particular for the PH and
GY coefficient of variation %, which was reduced from 18.17
and 24.08 to 16.14 and 18.24, respectively. A comparison of
calculated trait repeatability (R) showed how values improved
when the field spatial variation correction was applied, except
for GLU yield where no effect was observed. Thus, field-
adjusted phenotypic data were used to calculate BLUPs and
correlation coefficients. Repeatability estimates for the five traits
recorded showed that PH and GY had the highest values,
at 0.75 and 0.53, respectively, while traits related to biomass
conversion, GLU, XYL, and TS, showed low repeatability at
0.09, 0.09, and 0.11, respectively. Pearson’s correlation (Table 2)
between traits revealed a negative correlation between PH
and GY (r = –0.36, P < 0.001) and a strong correlation
between GLU and XYL (r = 0.57, P < 0.001). Moreover,
sugar yield was moderately positively correlated with PH. The
values observed were 0.24∗, 0.25∗, and 0.28∗∗ for GLU, XYL
and TS, respectively. GY was also negatively correlated with
GLU and TS (r = –0.40, P < 0.001 and r = –0.27, P < 0.01,
respectively).

TABLE 2 | Pearson’s correlations between genotype best linear unbiased
predictors (BLUPs; n = 100).

PH GY GLU XYL TS

PH 1 –0.36∗∗∗ 0.24∗ 0.25∗ 0.28∗∗

GY 1 –0.40∗∗∗ –0.06 –0.27∗∗

GLU 1 0.57∗∗∗ 0.89∗∗∗

XYL 1 0.88∗∗∗

TS 1

PH, plant height; GY, grain yield; GLU, glucose release upon pre-treatment and
enzymatic hydrolysis; XYL, xylose release upon pre-treatment and enzymatic
hydrolysis and TS, total sugars released (GLU + XYL). ∗p < 0.05; ∗∗p < 0.01;
∗∗∗p < 0.001.

Genotypic Data
Genotyping the historic Scandinavian wheat collection with
the DArTseq platform resulted in an initial dataset comprising
38131 markers (12083 SNPs and 26048 PAVs). After filtering
for markers with >10% missing data points, 18484 markers
(4624 SNPs, 13824 PAVs) remained available. The consensus map
for the DArTseq platform consisted of 28646 markers. Based
on marker ID it was possible to map 6104 markers (21.3%),
including 4675 PAVs and 1429 SNPs. Final filtering for MAF
<5% resulted in 5525 markers used for further analysis. Their
chromosomal distribution can be found inTable 3. The total map
length covered was 3217.02 cM. The D genome was confirmed
to be the least polymorphic, with only 756 markers covering
351.58 cM, while the B genome presented the highest number
of markers. Within the linkage groups, 1D and 7D presented
the biggest gaps between markers at 47.76 and 42.81 cM,
respectively.

Linkage Disequilibrium and Population
Structure
In the present collection of wheat varieties, LD was analyzed
by calculating pairwise marker r2 for each chromosome. A total
of 231033 r2-values (217923 for PAVs and 13110 for SNPs)
were below the significance threshold (p < 0.05) and employed
for the analysis. Of these, 56344 (∼24%) concerned markers
that were considered unlinked, i.e., more than 50 cM apart.
The r2 threshold for considering pairs of markers to be in
LD or not was determined to be 0.27 for PAVs and 0.30 for
SNPs. The second-degree smoothed loess curve calculated fell

TABLE 1 | Summary statistics and trait repeatability estimates for the phenotypes recorded.

Mean Min Max SD CV (%) R

Trait n raw adj raw adj raw adj raw adj raw adj raw adj

PH (cm) 200 96.11 96.08 52 54 127 122 17.46 15.51 18.17 16.14 0.60 0.75

GY (wm t ha–1) 198 4.67 4.67 1.8 2.06 8 6.61 11.25 8.52 24.08 18.24 0.40 0.53

GLU (g/g dm) 200 0.258 0.258 0.175 0.169 0.317 0.312 0.019 0.019 7.69 7.36 0.09 0.09

XYL (g/g dm) 200 0.223 0.223 0.157 0.146 0.292 0.283 0.019 0.018 8.85 8.32 0.02 0.09

TS (g/g dm) 200 0.481 0.481 0.331 0.315 0.593 0.593 0.035 0.033 7.46 7.03 0.06 0.11

PH, plant height; GY, grain yield; GLU, glucose release upon pre-treatment and enzymatic hydrolysis; XYL, xylose release upon pre-treatment and enzymatic hydrolysis;
and TS = GLU + XYL. Wm, wet matter; dm, dry matter; n, number of samples; SD, standard deviation; CV (%) coefficient of variation (SD∗100/mean); R, trait repeatability
estimates; raw, calculated based on data not corrected for field spatial variation; adj, calculated on data adjusted for field spatial variation.
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TABLE 3 | Descriptive data of the 5525 markers used in this study.

Chr. N. of Markers Length covered (cM) Biggest gap (cM)§

1A 270 202.57 24.14

1B∗ 632 228.15 (164.75 + 63.4) 18.42

1D 22 78.04 47.76

2A∗ 230 159.33 (127.39 + 31.94) 15.85

2B 536 269.48 18.39

2D 465 30.66 4.05

3A 243 250.85 27.55

3B∗ 457 328.43 (222.01 + 106.42) 12.14

3D 96 52.25 12.14

4A∗ 252 150.55 (41.14 + 109.41) 16.57

4B 142 94.29 13.71

4D 25 41.14 9.86

5A 126 130.83 16.06

5B 412 287.15 35.82

5D 34 20.18 13.22

6A∗ 296 158.44 (133.66 + 24.78) 11.43

6B 386 222.71 25.83

6D 75 24.57 6.57

7A∗ 409 190.49 (24.56 + 165.93) 27.71

7B∗ 378 192.17 (135.25 + 56.91) 17.97

7D 39 104.74 42.81

A total 1826 1243.06 27.71

B total 2943 1622.38 35.82

D total 756 351.58 47.76

Total 5525 3217.02 47.76

∗Chromosomes with two linkage groups. Genetic length of each group is indicated
in parenthesis. § Within linkage group.

below the critical r2-value at 20.59 and 9.51 cM for PAVs and
SNPs, respectively (Figure 1). These values were considered
as the average extent of LDs for this wheat collection. PCA
analysis on PAVs mapped on the 1B linkage group revealed
a separation of lines according to PC1 based on the presence
or absence of the 1B/1R translocation from rye (Figure 2).
SNPs were not included given the different LD decay pattern
shown between the two sets of markers. In the collection,
only three varieties (“Sleipner,” “Lone,” and “Tjelvar”) were
previously reported to harbor such translocation. These lines
were characterized by positive values on the first PC, which
represented almost half of the total variance. Based on this
criterion, four additional lines showing a similar clustering
pattern were detected as carrying the rye translocation. These
lines were “Brandt,” “Probat,” “Galicia,” and “Kirsten” for which
rye translocation had not previously been reported. Although
known to carry the translocation, the “Tjelvar” variety was not
located as far from the remaining genotypes on the score plot as
the other six 1B/1R lines.

A study of the population structure using PCoA confirmed
the 1B/1R translocation as a source of stratification (Figure 3).
An analysis of the PCoA plot revealed a second group consisting
of modern wheat varieties and an additional group constituted
by landraces together with some old and modern varieties
without any apparent differentiation according to year of
release.

FIGURE 1 | Intra-chromosomal linkage disequilibrium (LD) decay in the
historical Scandinavian winter wheat collection separated for type of
marker. Markers on chromosome 1B were omitted from calculations.
r2-values of LD are plotted as a function of the distance between pairs of
markers considered. Blue line: r2-values of the 95th percentile for unlinked
(>50 cM) markers. Red line: second-degree smoothed loess curve.

Genome-wide Association Analysis for
Agronomical Traits and Ligno-cellulosic
Sugar Released
A summary of the results of the GWAS obtained using GAPIT is
presented in Table 4 and manhattan plots are given in Figure 4.
None of the associations detected was significant when the false
discovery rate (FDR) adjusted p-values were considered. Thus,
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FIGURE 2 | Principal component analysis for PAVs on 1B linkage
group 1. Red circles: lines presenting 1B/1R translocation; black circles:
remaining lines.

it was decided to arbitrarily consider as significant any MTA
with –log10(p-value) > 3 as in Houston et al. (2014). GWAS
performed with TASSEL v. 5.2.15 confirmed the results from
GAPIT with neglectable differences in significance p values (data
not shown). No additional markers were detected as significant
for the chosen –log10(p-value) threshold. For GY only one PAV
marker was significant, located at 162.6 cM on 2B. For PH,
GWAS detected tenMTAs. Of these, seven seem to detect a single
QTL located on 6A between 1.14 and 4.89 cM. The remaining
MTAs for PH were located on 2A (34.86 cM), 6A (121.14 cM),
and 7B (linkage group 2, 55.61 cM). For sugar release, GWAS
on the GLU trait showed one significant MTA at 52.52 cM on
chromosome 1B (linkage group 1). The other sugar trait studied
(XYL and TS) did not show any significant association with any

FIGURE 3 | Principal coordinate analysis of population structure using
genotypic data. Red circles: lines presenting 1B/1R translocation; green
circles: cluster of modern varieties; black circles: remaining lines not showing
a specific clustering pattern.

marker. For themost significant MTA for PH on 6A at 121.14 cM,
genotypes with the minor allele for PAV-1143111 were on average
25 cm shorter than genotypes with the major allele. Varieties
possessing the height-reducing minor allele were mostly released
onto the market in the 1990s. The remaining trait variation (PY,
PH, and GLU) based on allele frequency for the QTL identified is
reported in Figure 5.

DISCUSSION

Field Trial
From the analysis of the 100 historical winter wheat varieties,
it was clear that grain production and PH were changing in

TABLE 4 | Summary results of genome wide association study (GWAS).

Trait Marker type – Clone ID Chr. Pos. cM −log10(p) R2 MAF

GY PAV-1218507 2B 162.60 3.36 0.12 0.27

PH SNP-3029249 2A 34.86 3.06 0.05 0.13

SNP-1090816 6A 1.14 3.69 0.07 0.29

PAV-1210312 6A 1.71 3.63 0.07 0.25

PAV-1073294 6A 1.14 3.21 0.06 0.24

PAV-1117272 6A 1.14 3.21 0.06 0.24

PAV-2300007 6A 1.14 3.21 0.06 0.24

PAV-1078008 6A 4.89 3.21 0.06 0.24

PAV-1279296 6A 4.89 3.21 0.06 0.24

PAV-1143111 6A 121.14 3.90 0.07 0.13

SNP-1087854 7B_2 55.61 3.47 0.06 0.08

GLU PAV-1230758 1B_1 52.52 3.43 0.14 0.42
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FIGURE 4 | Manhattan plots for genome wide association study (GWAS) of GY (grain yield), PH (plant height), and GLU (glucose released after
enzymatic hydrolysis of biomass). On the x-axis the A, B, and D genomes are in red, green, and blue, respectively. Different color tones correspond to different
chromosomes within the same genome from 1 to 7. Chromosomes containing two linkage groups are represented by vertical dotted lines separating them. The
dashed horizontal line indicates the significant threshold at –log10(p-value) = 3.

response to the varieties’ year of release, while the amount of
sugars obtained after pre-treatment and enzymatic hydrolysis
of straw was much less affected. Indeed, spatial adjustment for
variation in growth conditions improved the model’s accuracy
and subsequently the repeatability estimates. Lado et al. (2013)
reported similar improved heritability results using the same
R-based package mvngGrAd, based on an extensive hexaploid
wheat field trial study. The necessity of correction for spatial
effects in field trials has been extensively discussed in a

study of sorghum and for plant breeding in general (Piepho
et al., 2008; Leiser et al., 2012). Other approaches have been
suggested to improve output precision from field trial mixed
models. Designing field experiments to control for environmental
effects has always been an issue in breeding programmes for
evaluating genotypes. The advantage of the approach used here
is the possibility of reducing unwanted effects due to field
heterogeneity after the field tests have been performed without
having knowledge a priori of the sources of non-genetic variation.
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FIGURE 5 | Boxplot of trait variation for genotypes showing different alleles at significant markers. For plant height QTL on 6A between 1.14 and
4.89 cM, only the most significant marker out of seven (SNP 1090816) is shown.

As expected, GY and PH were the traits with the highest
values of repeatability, as these traits are known to be highly
influenced by genetic factors. Trait repeatability reported here
for PH (0.60 and 0.75 adj, in Table 1) was comparable with
that reported by Jia et al. (2013) for a population of wheat RIL
(recombinant inbred lines) grown in four environments in China
(H = 0.65) and the heritability estimate of 0.85 obtained by
Wurschum et al. (2015) in the analysis of a collection of European
winter wheat varieties. Similarly, GY repeatability (R = 0.53,
Table 1) was within the range of what reported in analogous
studies (Guo et al., 2015; Sukumaran et al., 2015). As expected,
GY and PH were also negatively correlated as a consequence of
the introduction of semi-dwarf varieties starting from 1970s and
1980s and guaranteeing higher production (Donmez et al., 2001;
Shearman et al., 2005).

With regard to the traits related to second-generation
bioethanol production, the results presented here showed a trend
of general low repeatability estimates. In comparison, Lindedam
et al. (2012) reported relatively higher heritability for wheat straw
conversion of 37, 71, and 57% for C6 and C5 carbohydrates and
total sugars, respectively, in a study of 20 modern wheat varieties
grown in one year at two locations. In another study, Jensen
et al. (2011) found a heritability of 29% for ruminant digestibility,
which is also relatively high. In contrast, Larsen et al. (2012)
found no significant phenotypic variation between modern
cultivars in terms of sugar release upon pre-treatment and
enzymatic hydrolysis. The low repeatability for sugars released
reported here was, however, not completely surprising. Plant cell
wall composition and bioconversion properties are known to be
highly influenced by external factors as growing conditions (Gall
et al., 2015). The study of the correlation between GLU and XYL
released highlighted the presence of a general recalcitrance to
saccharification but the low variance captured as genotypic effect

would discourage the design of breeding programmes to improve
carbohydrate yield for bioethanol production.

The positive correlation observed between GLU and XYL
with PH as well as the negative correlation between GLU and
GY led to speculation that an increase in recalcitrance occurred
in modern winter wheat varieties compared to old ones. In
contrast a recent study of 106 winter wheat varieties from two
growing sites in Denmark, reported straw digestibility as being
negatively correlated with PH (–0.36 and –0.22 for the two sites,
respectively; Jensen et al., 2011). This was explained by the fact
that leaves, that are more digestible, constitute a larger fraction
of the straw of short-stem phenotypes. Lindedam et al. (2012)
instead observed a positive correlation between PH and straw
conversion as reported here and concluded that the quality of
the stem, leaf and ears was more relevant for conversion than
the ratio between plant anatomical parts. In those studies the
varieties investigated were all relatively modern varieties. In the
wheat collection analyzed in the present study a larger variation
in PH was observed and therefore clear correlations between PH
and sugar conversion should be expected. Additional studies,
including multiple growing conditions should allow a better
determination of genotype influence on cell wall related traits
and shed light on the relationship between PH and plant cell wall
recalcitrance.

Genotypic Platform, LD, and Population
Structure
The DArTSeq R© platform employed here to genotype the winter
wheat collection was confirmed as an efficient tool for GWA
scans and QTL mapping studies. Given the availability of a dense
consensus map (Li et al., 2015), it was possible to map 5525
markers with a total map length of 3217 cM, comparable to
the POPSEQ map develop by the International Wheat Genome
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Sequencing Consortium (Mayer et al., 2014). Despite the recent
introduction of new genotypic platforms for wheat, e.g., the 90 k
and the 9 k SNPs chip (Cavanagh et al., 2013; Wang et al.,
2014), the DArTseq platform still maintains some advantages for
genetic profiling: it is cheap, does not require prior information
of the target genome and, after the recent establishment of
next-generation sequencing (NGS) techniques, the platform has
become an extremely high-throughput technology.

Study of LD is a prerequisite for evaluating a collection
of genotypes, determining marker density needed for GWA
study and defining genomic regions in the search for candidate
genes related to the trait studied once marker-trait associations
have been identified. Average inter-chromosomal LD decay was
determined to be ∼20 cM for PAVs, which is in agreement with
the report by Nielsen et al. (2014) using the previous version of
the DArT platform to study a collection of European bread wheat
genotypes. The values of LD decay reported here showed how
the dominant PAV exhibited approximately twice the LD extent
compared to the co-dominant SNPmarkers. This confirmed how
a relatively smaller number of PAVmarkers are required to cover
the entire wheat genome compared to SNP markers, known
to exhibit more rapid LD decay, although both were equally
distributed over the entire genome.

The study of population structure prior to GWA mapping
revealed a moderate level of stratification in the collection,
partly due to the presence of a group of lines carrying the rye
translocation on chromosome 1B and partly due to a cluster
of modern varieties. Similar results of moderate population
stratification were reported elsewhere (Lopes et al., 2015;
Naruoka et al., 2015) studying different collections of winter
wheat.

QTLs for Plant Height and Grain Yield
To identify QTLs involved in the regulation of the phenotypic
traits analyzed here, a genome-wide association approach was
employed. It was, however, not possible to identify significant
associations when FDR correction was applied. This was probably
due to the reduced number of varieties considered for the GWAS.
Subsequently we choose an arbitrary significant threshold
at –log10(p) > 3 (Gurung et al., 2014; Houston et al., 2014;
Shu and Rasmussen, 2014). This resulted in the identification
of a total of 12 significant MTAs involved in three out of the
five traits considered. PH was the one producing the majority
of positive results, with 10 MTAs on chromosomes 2A, 6A,
and 7B. PH is one of the most studied phenotypes in wheat
due to its involvement in plant architecture and ultimately in
GY. Along with semi-dwarfing genes several other QTLs are
reported to affect PH. Among the many significant markers
associated with PH reported by Zanke et al. (2014) studying a
collection of European winter wheat varieties, a significant MTA
was detected using SSR on 6A at a similar position to that found
here (∼93.5 cM). Additionally, in a recently published study,
Wurschum et al. (2015) examined the genetic control of PH
in a European winter collection, including genotypes from the
Scandinavian area, employing the DArTseq R© platform also used
here. A major QTL was detected on 6A (clone ID 1066954),
reported to be located at 94.8 cM. In the consensus map utilized

for the current study, the same clone was mapped at 121.14
and although that particular marker was not present here, a
different marker (clone ID 1143111) was reported mapping at
the same position, leading to the conclusion that the two major
QTLs coincided. Interestingly no QTLs were highlighted on
chromosomes known to harbor the dwarfing genes Rht-D1, Rht-
B1, Rht8, and the Ppd-D1. This could be due to the limited
number of accessions considered, which may have influenced
the results from GWAS, or the lack of markers covering the
genomic regions of interest, in particular for the D genome
which was poorly covered. Moreover, since to some extent
population structure was related to the year of release and PH
was significantly correlated with the year of release, a correction
for population structure during GWAS could have reduced the
effect of markers in LD with major dwarfing genes, as observed
in a study of maize (Larsson et al., 2013). Wurschum et al.
(2015) reported the almost complete absence of the Rht-B1
dwarfing allele for 42 varieties from Denmark, while the majority
carried the short allele for Rht-D1. Indeed, the lack of major
dwarfing genes in the collection cannot be excluded, nor their
limited presence, which could have remained undetected given
the parameters applied for marker filtering and the reduced
number of lines included in the study.

Like PH, GY is an extremely complex trait regulated
by a number of metabolic networks. Many traits have
a downstream effect on crop yield. Several GWA studies
highlighted QTLs spread throughout the whole genome,
including the aforementioned reduced height genes (Bentley
et al., 2014; Bordes et al., 2014). However, trait variation was
relatively small when allele frequencies were considered. Wheat
chromosome 2B is known to harbor the photoperiod insensitivity
gene Ppd-B1 (Beales et al., 2007), influencing heading time,
tiller number, PH, and spikelet number, although the effects
appeared less pronounced compared to Ppd-D1 on chromosome
2D (Kamran et al., 2014). The genomic sequence of Ppd-B1 was
retrieved from the NCBI database5 (ID: DQ885757) and a BLAST
program was run on the wheat genome assembly in the Ensembl
database6. The best hit was located on 2B at ∼17.8 Mbp (ID:
100%; E-val:0.0). Subsequently a BLAST program was run on the
DNA sequence of the significant marker identified for GY, PAV-
1218507, provided by Li et al. (2015). The best hit was located
on 2B, but at ∼293 Mbp (ID: 100, E-val: 4.4E-24), making the
presence of strong LD between Ppd-B1 and the significant marker
identified highly unlikely. Despite the high trait repeatability
observed here for GY, it is possible that the reduced number
of genotypes considered hampered the possibilities of QTL
detection.

GWAS for Biomass Conversion to
Bioethanol
One of the main objectives of the present study was to verify
the viability of a GWA scan to identify QTLs involved in
the production of second-generation biofuel. To do this, a
collection of winter wheat varieties was tested in the field and the

5http://www.ncbi.nlm.nih.gov/
6http://plants.ensembl.org/Triticum_aestivum/

Frontiers in Plant Science | www.frontiersin.org 9 November 2015 | Volume 6 | Article 1046

http://www.ncbi.nlm.nih.gov/
http://plants.ensembl.org/Triticum_aestivum/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Bellucci et al. GWAS for Quality Traits in Wheat

harvested ligno-cellulosic biomass phenotyped for monomeric
sugars released after enzymatic hydrolysis. Repeatability for these
traits was low, suggesting difficulties in identifying genetic effects
given the high influence of environmental factors. In fact, a
single marker trait association was reported for GLU released
after biomass enzymatic hydrolysis. No MTAs were detected
for XYL or total sugars released. For the GLU released, the
low level of significance and low difference in trait values
observed between the two allele classes necessitate further
studies to confirm their validity. Furthermore, as pointed out
by Oakey et al. (2013), large-scale phenotyping experiments on
such traits would need advanced statistical data modeling to
remove errors due to variables such as environmental factors
and laboratory batch effects. In the aforementioned paper,
trait heritability increased from values comparable to those
reported here to up to h2 = 0.50, when the optimal model
was tested. A higher number of varieties as well as a multi-
environment field trial could have improved the overall detected
genotypic effect and subsequent GWAS results. However, this
study is one of the first on plants aimed at identifying QTLs
involved in biofuel production. Given the limited number of
scientific publications using GWA mapping to identify genes
involved in secondary cell wall metabolism (Wang et al., 2013;
Rincent et al., 2014; Ramstein et al., 2015), it is clear that
different approaches have so far been taken to identify such
major genes. Up to now, bioinformatic techniques coupled with
comparative genomics, gene silencing and plant transformation
have yielded most of the knowledge about plant cell wall
biosynthesis toward the production of crops with reduced
biomass recalcitrance (Chen and Dixon, 2007; Sumiyoshi et al.,
2013; Sundin et al., 2014). However, given the complexity of
plant cell wall structures, it is necessary to study cereal crops
at field scale (Alexandersson et al., 2014). Thus, field trials and
genome-wide association mapping are important strategies when
aiming to improve sugar yield for biofuel production. Temperate
cereals such as wheat and barley are characterized by complex
large genomes and draft sequences have only been released in

recent years (Mayer et al., 2011, 2014). With constant advances
in genotypic platforms and statistical tools for data analysis,
an increased amount of knowledge regarding the complex
gene networks involved in plant cell wall deposition can be
anticipated.

CONCLUSION

In this study, a collection of winter wheat representing more
than a century of breeding efforts in the Scandinavian area
was analyzed. The genetic material was tested in a single
field trial, recording agronomically relevant traits such as yield
and PH as well as traits related to second-generation biofuel
production. The results showed reduced biomass recalcitrance
to enzymatic hydrolysis of old varieties compared to new ones,
and overall the possible difficulties of implementing breeding
programmes aimed at improving second-generation biofuel
production. However, it was possible to identify QTLs and
genomic regions related to GY, PH, and GLU released from straw.
In light of the fast-paced growing genomic resources available
for wheat, these QTLs constitute a starting point for future
investigations into the underlying causal genes responsible for
trait variation.
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