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Around one century ago, a rice disease characterized mainly by rotting of sheaths
was reported in Taiwan. The causal agent was identified as Acrocylindrium oryzae,
later known as Sarocladium oryzae. Since then it has become clear that various
other organisms can cause similar disease symptoms, including Fusarium sp. and
fluorescent pseudomonads. These organisms have in common that they produce a
range of phytotoxins that induce necrosis in plants. The same agents also cause
grain discoloration, chaffiness, and sterility and are all seed-transmitted. Rice sheath
rot disease symptoms are found in all rice-growing areas of the world. The disease is
now getting momentum and is considered as an important emerging rice production
threat. The disease can lead to variable yield losses, which can be as high as 85%. This
review aims at improving our understanding of the disease etiology of rice sheath rot
and mainly deals with the three most reported rice sheath rot pathogens: S. oryzae,
the Fusarium fujikuroi complex, and Pseudomonas fuscovaginae. Causal agents,
pathogenicity determinants, interactions among the various pathogens, epidemiology,
geographical distribution, and control options will be discussed.

Keywords: rice, sheath rot, Sarocladium oryzae, Pseudomonas fuscovaginae, Fusarium fujikuroi complex,
fumonisins, grain discoloration, phytotoxins

INTRODUCTION

Rice is an important crop worldwide, serving as the staple food for half of humanity and
additionally being used in industry and for animal feed. Rice is grown in various agro-ecological
zones in tropical and subtropical areas, especially in Asia, the continent accounting for 90% of the
world production (IRRI, 2015a). It facesmany production constraints, including pests and diseases.

The major feature of rice sheath rot disease is rotting and discoloration of the sheath, leading
to chaffiness and sterility of resulting grains. For many years, rice sheath rot was considered as a
minor and geographically limited disease. It is only recently that it gained momentum and became
widespread. Since the green revolution in Asia in the 1960s, there have been substantial changes
in rice farming systems: use of high yielding varieties, increased use of fertilizers, efficient systems
of water use, seeding methods, etc. Crop intensification practices such as increased plant density,
a high rate of nitrogen fertilizers and the use of semi-dwarf and photoperiod-insensitive cultivars,
favor the susceptibility of rice to some diseases and the sheath rot complex is one of them. It is
hypothesized that the new photoperiod-insensitive cultivars have lost the capacity of avoiding
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flowering under conditions of high humidity and high
temperature, conditions that are conducive to effective disease
attacks (Mew et al., 2004b). Additionally, the last decades saw the
boosting of international exchange of planting materials which
may have contributed to the spread of the disease.

Rice sheath rot is a disease complex that can be caused
by various fungal and bacterial pathogens. Major pathogens
associated with rice sheath rot are fungi such as Sarocladium
oryzae and Fusarium sp. belonging to the Fusarium fujikuroi
complex and the bacterial pathogen Pseudomonas fuscovaginae.
A variety of other pathogens have been associatedwith rice sheath
rot. An overview is given inTable 1. The various described sheath
rot agents all cause very similar disease symptoms (Cottyn et al.,
1996a). This explains why there are practically no comprehensive
studies mentioning the link between the presence and quantity
of disease inoculum and yield loss (Mew and Gonzales, 2002).
The unpredictable nature of the factors acting in the pathosystem
explains why losses attributed to S. oryzae can be as variable as in
the range of 20–85% (Sakthivel, 2001).

The context of an increasing world population with shrinking
natural resources imposes to adopt sustainable production
methods, responding to the food demand but also using
efficiently and sustainably key resources (Savary et al., 2000;
Mew et al., 2004b). The development of sound control practices
against rice sheath rot is hampered by the fact that this disease
is poorly understood. This review would like to contribute in
filling the rice sheath rot missing information gap. It explores the
available information on the following aspects: causal agents and
symptoms, host range, physiological and biochemical impact,
virulence factors, synergism and interactions among causal
factors, ecology of causal agents, epidemiology and impact,
geographical distribution and relationships with farming systems
and control methods. In this review, more emphasis will be put
on rice sheath rot symptoms caused by S. oryzae, Fusarium sp.,
and P. fuscovaginae, since they are considered to be the most
important rice sheath rot pathogens (Table 2).

SAROCLADIUM ORYZAE: THE MAJOR
FUNGAL RICE SHEATH ROT PATHOGEN

Pathogen Description and Symptoms
Sarocladium oryzae was originally described as Acrocylindrium
oryzae, the first organism to be associated with rice sheath
rot symptoms isolated in Taiwan in 1922 (Mew and Gonzales,
2002). The genus Sarocladium was established in 1975 (Gams
and Hawksworth, 1975) and currently encompasses 16 species
including plant pathogens, saprobes, mycoparasites, endophytes,
and potential human pathogens (Giraldo et al., 2015). The
genus belongs to the order of the Hypocreales in the Phylum
Ascomycota. S. attenuatum was originally described as a distinct
species causing rice sheath rot, but is nowadays considered as
a synonym of S. oryzae (Bridge et al., 1989). Bills et al. (2004)
showed that also the cerulenin producing fungus Cephalosporium
caerulans is conspecific with S. oryzae.

Sarocladium oryzae grows slowly (about 2.5 mm/day on
potato dextrose agar at 28◦C) and produces a sparsely branched

white mycelium. The colony reverse of isolates obtained from
rice is generally orange (see Figure 1). Conidiophores can be
simple or branched. Conidia are cylindrical, aseptate, and hyaline,
4–7 × 1–2 μm in size, and arranged in slimy heads (Figure 2).

The major symptoms describing rice sheath rot caused by
S. oryzae are the following, according to Ou (1985): the rot occurs
on the uppermost leaf sheaths enclosing the young panicles;
the lesions start as oblong or somewhat irregular spots, 0.5–
1.5 cm long, with brown margins and gray centers, or they may
be grayish brown throughout; they enlarge and often coalesce
and may cover most of the leaf sheath; the young panicles
remain within the sheath or only partially emerge; an abundant
whitish powdery growthmay be found inside affected sheaths and
young panicles are rotted. S. oryzae infection results in chaffy,
discolored grains, and affects the viability and nutritional value
of seeds (Sakthivel, 2001; Gopalakrishnan et al., 2010). The major
symptoms of rice sheath rot incited by S. oryzae are presented in
Figure 3.

Epidemiology
In general, S. oryzae is present in all rice-growing countries
worldwide, being very common in rainy seasons (Mew and
Gonzales, 2002). It has so far been reported in the following
countries (CABI, 2007): Bangladesh, Brunei Darussalam, China,
India, Indonesia, Japan, Malaysia, Nepal, Pakistan, Philippines,
Saudi Arabia, Sri Lanka, Tajikistan, Thailand, Uzbekistan,
Vietnam, Burundi, Cameroon, Côte d’Ivoire, Gambia, Kenya,
Madagascar, Niger, Nigeria, Senegal, Tanzania, Mexico, USA,
Argentina, Brazil, Venezuela, and Australia. S. oryzae is mostly
found in lowland environments (Pearce et al., 2001), and hot and
humid weather favors the disease (Sakthivel, 2001). Sharma et al.
(1997) stated that S. oryzae infections in Nepal were found below
1250 m. Temperatures of 20–30◦C and relative humidity in the
range of 65–85% favor sheath rot development (Sakthivel, 2001).

The pathogen survives in infected seeds, plant residues (straw,
stubble), but also in soil, water or weeds when environmental
conditions are favorable. Plants at various growth stages can be
affected; the fungus enters through stomata or wounds, and is
most destructive after booting stage but also infects other growth
stages (Pearce et al., 2001). The entry of S. oryzae in the plant is
facilitated mostly by insect and mite damage or the weakening
of the plant by other pathogens (Pearce et al., 2001). Secondary
infections may be wind-borne through injured tissues. Less is
known about the seed-borne disease transmission. Caused yield
losses are variable from 20 to 85%, depending on the pathosystem
conditions (Sakthivel, 2001), (Figure 4).

The main host of S. oryzae is rice but the pathogen has also
been reported as the causal agent of bamboo blight in Bangladesh
and India. Bamboo isolates, however, show less infra-population
variation than rice isolates (Pearce et al., 2001). S. oryzae has also
been isolated from grasses and sedges growing in association with
rice.

Pathogenicity Determinants
Helvolic acid and cerulenin are described as the major secondary
metabolites of S. oryzae (Ghosh et al., 2002; Ayyadurai et al.,
2005), (Table 3, Figure 5). Artificial inoculation of those
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TABLE 1 | Organisms associated with rice sheath rot.

Causal agent Taxonomic
position

Synonyms or other
used names

Occurrence Geographic
distribution

Reference

Fungi

Sarocladium oryzae Ascomycota,
Hypocreales

Acrocylindrium oryzae,
Cephalosporium
caerulans,
Sarocladium attenuatum

Lowland (<1250 m) 32 countries Purkayastha and Ghosal, 1985;
Sakthivel, 2001; Bills et al.,
2004; Giraldo et al., 2015

Gibberella fujikuroi
complex

Ascomycota,
Hypocreales

Fusarium fujikuroi,
F. proliferatum,
F. verticillioides,
F. moniliforme

Ubiquitous Everywhere Desjardins and Plattner, 1997;
Abbas et al., 1998; Kushiro
et al., 2012; Quazi et al., 2013;
Aoki et al., 2014

Fusarium graminearum Ascomycota,
Hypocreales

F. zeae 5–30◦C (optimum around
15◦C), high relative
humidity

Everywhere where
temperatures are
low and humidity is
high

Singh and Devi, 1990; Naeimi
et al., 2003; Goswami and
Kistler, 2004; Leplat et al.,
2012; Aoki et al., 2014;
Backhouse, 2014

Fusarium
incarnatum-equiseti
complex

Ascomycota,
Hypocreales

F. equiseti Found in regions with
cool through to hot and
arid climates

Mainly in
wheat-growing
areas

Fisher and Petrini, 1992;
Wheeler et al., 1999; Marín
et al., 2012

Fusarium oxysporum
complex

Ascomycota,
Hypocreales

– Ubiquitous Nepal, Italy Fisher and Petrini, 1992; Abbas
et al., 1995; Desjardins et al.,
2000; Ruiz-Roldán et al., 2015

Cochliobolus lunatus Ascomycota,
Pleosporales

Curvularia lunata Wide host range and
common in paddy fields

India, Bangladesh,
China

Lakshmanan, 1992, 1993a;
Shamsi et al., 2003; Liu et al.,
2009; Gao et al., 2015

Gaeumannomyces
graminis

Ascomycota,
Incertae sedis

Ophiobolus oryzinus Wind is an important
dissemination factor;
found in tropical,
subtropical and southern
temperate climates

South and North
America, Australia

Walker, 1972; Gnanamanickam
and Mew, 1991; Frederick
et al., 1999; Elliott, 2005;
Peixoto et al., 2013

Sclerotium hydrophilum Basidiomycota,
Cantharellales

Ceratorhiza sp. Infection on aquatic or
semi-aquatic plants of
wet meadows and
marshes

Australia Lanoiselet et al., 2002; Yang
et al., 2007; Hu et al., 2008; Xu
et al., 2010

Sclerotium oryzae Basidiomycota,
Agaricales

Ceratobasidium
oryzae-sativae

Overwintering through
stubbles, plant debris
and paddy soil

USA, Japan Oster, 1992; Lanoiselet et al.,
2002; Kimiharu et al., 2004; Hu
et al., 2008

Rhizoctonia oryzae,
Rhizoctonia
oryzae-sativae

Basidiomycota,
Corticiales

Waitea circinata,
Ceratobasidium
oryzae-sativae

Overwintering through
stubbles, plant debris
and paddy soil

Brazil, Japan Prabhu et al., 2002; Kimiharu
et al., 2004; Lanoiselet et al.,
2007; Chaijuckam and Davis,
2010

Bacteria

Pseudomonas
fuscovaginae

Gamma
proteobacteria

– Highlands 31 countries Miyajima et al., 1983; Zeigler
and Alvarez, 1987; Flamand
et al., 1996; Batoko et al., 1997

Pseudomonas syringae Gamma
proteobacteria

– Ubiquitous epiphytic
plant pathogen originally
linked to aquatic systems

Hungary, Australia Zeigler and Alvarez, 1990;
Morris et al., 2013

Pseudomonas
palleroniana

Gamma
proteobacteria

– – La Réunion
(France), Cameroon
and Madagascar

Gardan et al., 2002

Pseudomonas sp. Gamma
proteobacteria

– Ubiquitous Cambodia,
Philippines

Cottyn et al., 1996a,b; Cother
et al., 2010; Patel et al., 2014

Pantoea ananatis Gamma
proteobacteria

– Facultative pathogen Australia, the
Philippines, South
Korea

Cottyn et al., 2001; Cother
et al., 2004; Sinn et al., 2011;
Choi et al., 2012; Cray et al.,
2013

Burkholderia glumae Beta proteobacteria – Adaptability to various
habitats

USA Sayler et al., 2006;
Nandakumar et al., 2009; Ham
et al., 2011; Paganin et al.,
2011; Kim et al., 2014

(Continued)
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TABLE 1 | Continued

Causal agent Taxonomic
position

Synonyms or other
used names

Occurrence Geographic
distribution

Reference

Burkholderia gladioli Beta proteobacteria - Adaptability to various
habitats

USA Nandakumar et al., 2009;
Paganin et al., 2011

Acidovorax oryzae Beta proteobacteria Pseudomonas avenae,
Acidovorax avenae
subsp. avenae

Transmission by rain,
wind and seeds

Philippines Cottyn et al., 1996b; Schaad
et al., 2008, Liu et al., 2012

metabolites to host plants reproduced the sheath rot symptoms.
Infiltration of rice tissues with cerulenin and helvolic acid
leads to electrolyte leakage proportional to the susceptibility
to rice sheath rot (Sakthivel et al., 2002). Tschen et al.
(1997) reproduced S. oryzae symptoms on rice seeds, growth
retardation and chlorosis, by dipping them in a solution
of helvolic acid. Helvolic acid is a tetracyclic triterpenoid
that interferes with chlorophyll biosynthesis (Ayyadurai et al.,
2005). This compound is also produced by various other
fungi including the opportunistic human pathogen Aspergillus
fumigatus, the entomopathogenic fungusMetarhizium anisopliae
and by endophytic fungi. Cerulenin is a hexaketide amide that
inhibits polyketide synthesis by inhibiting the malonyl-ACP:acyl-
ACP condensation step as well as fatty acid synthesis (Omura,
1976), (Table 3).

Though the most described virulence factors of S. oryzae
are helvolic acid and cerulenin, the fungus also produces
cellulolytic, proteolytic, pectinolytic, and oxidative enzymes that
play a role in pathogenicity (Joe and Manibhushanrao, 1995;
Pearce et al., 2001). Gopalakrishnan et al. (2010) observed a
pronounced decrease in sugar, starch and protein and an increase
in phenol content in rice seeds infected with S. oryzae. This
probably explains why infected grains are chaffy and germinate
poorly.

Interactions with Other Diseases and
Pests
Experimental tests have shown that S. oryzae, by the production
of toxins, like cerulenin, limits the development of other
fungi and emerges as the major pathogen (Gnanamanickam
and Mew, 1991; Silva-Lobo et al., 2011). Gnanamanickam
and Mew (1991) observed that the antibiotic properties of
cerulenin extracted from S. oryzae block the development
of many rice stem-attacking fungi, like Sclerotium oryzae,
Gaeumannomyces graminis var. graminis, Magnaporthe oryzae,
and Rhizoctonia solani. In this context it is interesting to notice
that cerulenin has been reported to inhibit melanin biosynthesis
in Colletotrichum lagenarium (Kubo et al., 1986). DHN
(=1,8 dihydroxynapthalene)-melanin in fungi is synthesized
by a polyketide pathway which starts from malonyl-CoA
which is converted to the first detectable intermediate of the
melanin pathway 1,3,6,8-tetrahydroxynapthalene via a polyketide
synthase. DHN-melanin is an important virulence factor in
several pathogenic fungi including M. oryzae and G. graminis
var. graminis (Henson et al., 1999). In addition, helvolic acid
has strong antibacterial activities mainly against Gram-positive

bacteria (Tschen et al., 1997). This could explain why in many
situations S. oryzae emerges as the major pathogen.

Initial work on sheath rot was done in India, and Amin
et al. (1974) already realized the disease complexity, as the
causal agent was already thought to be associated with stem
borers. A study on four groups of insects: green leaf hopper,
brown plant hopper, mealy bugs, and earhead bugs showed that
brown plant hoppers and mealy bugs fed on rice infected with
S. oryzae carry the fungus on their body and can transmit it
to healthy plants (Gopalakrishnan et al., 2009). Some of the
S. oryzae effects like sterility result from its synergism with a mite
Steneotarsonemus spinki (Ou, 1985; Karmakar, 2008; Hummel
et al., 2009). It was observed that wounding of plants facilitated
their infection by S. oryzae and most of the infected plants
proved also to be attacked by stem borers and from time to
time by yellow dwarf virus (Ou, 1985). The fact that spraying
a spore suspension of S. oryzae on earhead bug (Leptocorisa
acuta)-infected rice tillers results in the development of rice
sheath rot disease symptoms in 12 days (Lakshmanan et al.,
1992) shows that the entry of S. oryzae in rice plants might be
facilitated. Sakthivel (2001) realized that the infection occurs after
the plant has been weakened by other diseases and stem borer
infestation.

Bacterial sheath brown rot, caused by P. fuscovaginae, may
occur together with sheath rot caused by S. oryzae. Other factors
that have been associated with S. oryzae include rice tungro virus
(Venkataraman et al., 1987) and Fusarium sp. (Sakthivel, 2001).

Control Methods
Sarocladium oryzae is controlled by sanitary, chemical, and
biological measures.

Sanitary control methods involve the following practices
(Sakthivel, 2001): using healthy seeds since the disease is referred
to as being seed-borne; limiting insect population in rice fields
as they are involved in disease transmission; avoiding densely
planting as this predisposes plants to fungal attacks; avoiding
heavy doses of nitrogen fertilizers; increasing potassium content
in the fertilizer formula for reducing the disease impact, as more
potassium causes more phenol production; adopting different
cultural practices for limiting the disease attack impact: field
sanitation, crop residue management, control of weeds, etc.

Various fungicides have been used to control sheath rot
but as they cannot kill the fungus inside the glumes, their
efficacy is limited (Sakthivel, 2001). Other control tests combined
fungicides with insecticides and gave better results (Lakshmanan,
1992). Foliar spray of micronutrients is also said to reduce disease
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FIGURE 1 | Morphology of two different Sarocladium oryzae isolates
from Rwanda on PDA medium after 14 days of growth at 28◦C. Top is
reverse view, bottom is front view.

FIGURE 2 | Microscopy of S. oryzae grown on PDA medium. All
structures were stained with lactophenol blue. (A) Conidia; (B) Conidiogenous
cell; (C) Aerial conidiophores.

incidence and increase grain yield (Sakthivel, 2001). Some plant
extracts are reported to be effective against the disease: neem,
pungam oil, and rubber cakes (Narasimhan et al., 1998; Sakthivel,
2001).

The use of biological control agents may have potential
(Sakthivel and Gnanamanickam, 1987; Mew et al., 2004a). Many
pseudomonads can act efficiently for controlling S. oryzae, by
favoring antagonism, for example through the inhibition of
fungal development as do some P. fluorescens strains, or by
inducing systemic resistance (Saravanakumar et al., 2009).
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FIGURE 3 | Rice sheath rot symptoms caused by S. oryzae (photos
M. Höfte).

Breeding for resistance to sheath rot seems the best option,
but it is limited by its multiple causal agents. High-yielding
nitrogen-responsive rice cultivars are highly susceptible to sheath
rot. Resistance to S. oryzae has been identified in tall rice
varieties (Amin, 1976). Hemalatha et al. (1999) developed a
method of screening for resistance against S. oryzae based
on a crude toxin preparation and Lakshmanan (1993b) went
further by screening for resistance against S. oryzae and
one of its vectors, the rice mealy bug. The screening of
resistance against S. oryzae that was developed by Amin
(1976) does not seem to have been continued. Ayyadurai
et al. (2005) analyzed S. oryzae isolates from North East and
South India and found a high variability in pathogenicity,
phytotoxic metabolite production, and RAPD band patterns.
This variability should be taken into account in breeding
efforts.

FUSARIUM FUJIKUROI: A SPECIES
COMPLEX ASSOCIATED WITH RICE
SHEATH ROT

Pathogen Description and Symptoms
Sheath rot in rice has also been associated with Fusarium
sp. belonging to the F. fujikuroi complex. The F. fujikuroi
complex largely corresponds to the Section Liseola, established
by Wollenweber and Reinking (1935), in which Nelson et al.
(1983) recognized four species (including F. moniliforme and
F. proliferatum), but also accommodates certain species originally
classified in other Fusarium sections. Progress in molecular
taxonomy has shown that there are around 50 species in the
F. fujikuroi complex and the number keeps increasing (reviewed
in Kvas et al., 2009). The complex is currently divided in
three large clades, the African clade, the Asian clade and the
American clade. The main organisms associated with rice are
F. verticillioides from the African clade and the closely related
species F. proliferatum and F. fujikuroi from the Asian clade.

Abbas et al. (1998) described rice sheath rot symptoms caused
by F. proliferatum as follows: blanked or partially blanked panicle
with reddish-brown to off-white florets or kernels are often

covered with a white to pinkish white powder consisting of
microconidia and conidiophores of F. proliferatum; the flag leaf
sheath develops a rapidly enlarging lesion, first dull to dark brown
and later off-white to tan with a reddish brown border, that
eventually encompasses the entire sheath and may result in the
death of the leaf blade; lower leaf sheaths may eventually develop
lesions as well, but rarely more than two leaf sheaths show
symptoms; and a dense white to pinkish white powder consisting
of microconidia and conidiophores of F. proliferatum covers the
sheath lesions, especially evident during humid periods.

Epidemiology
Rice-pathogenic Fusarium species, because of their high diversity,
are ubiquitous in nature (Park et al., 2005). Symptoms of rice
sheath rot caused by any of the members of the F. fujikuroi
species complex are widespread due to their large variability and
at least one of their members is found in any part of the rice-
growing world. The different species of Fusarium forming the
F. fujikuroi complex (mainly F. fujikuroi, F. verticillioides, and
F. proliferatum) cause various symptoms on different plant parts
and are responsible of yield losses of 40% in Nepal (Desjardins
et al., 2000) and even up to 60% in Korea (Park et al., 2005).

Fusarium proliferatum, which is pathogenic to rice, also
attacks some other plants of the Poaceae family. F. proliferatum is
widespread and its hosts vary from maize to mango (Leslie et al.,
2007), including chestnut (Kushiro et al., 2012), and banana (Li
et al., 2012). As the organisms causing rice sheath rot have many
hosts, they can easily find alternate hosts in the environment,
especially weeds.

Fusarium sp. are seed-transmitted and at maturity, infected
grains contain mycotoxins (Wulff et al., 2010) (Figure 4).
F. fujikuroi was one of a number of microbes isolated from the
surface of rice seeds; highest levels of microbes were recorded at
harvesting. F. fujikuroi survived for up to 26 months in infected
grains and 28 months in dried stubble of certain rice cultivars.
The fungus was detected for up to 10 and 13months, respectively,
in unsterilized and sterilized soils that were infected with fungal
propagules (Sunder and Satyavir, 1998). F. proliferatum can
survive in infected grains even when they are preserved in
stressing conditions. In fact, Kushiro et al. (2012) could recover
F. proliferatum in grains preserved at 4–5◦C for 6 months. In
normal conditions, the survival is longer.

Pathogenicity Determinants
Two categories of metabolites are involved in pathogenicity and
interaction with plants, gibberellins and mycotoxins. According
to Wulff et al. (2010), only strains of F. fujikuroi were able
to produce gibberellin A and these strains cause abnormal
elongation of rice plants, the so-called bakanae disease. Main
species producing mycotoxins, like fumonisin B (Table 3,
Figure 5), have been reported to cause rice sheath rot (Wulff
et al., 2010). Fumonisins are linear, polyketide-derived molecules
that are also known as major mycotoxins that pose health risks
to humans and animals. F. proliferatum is among the largest
producers of fumonisins and is often associated with rice sheath
rot (Abbas et al., 1999; Kushiro et al., 2012; Quazi et al., 2013).
In addition, F. verticillioides strains are notorious fumonisin
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FIGURE 4 | Disease cycle of sheath rot caused by S. oryzae, Fusarium sp. or Pseudomonas fuscovaginae. Sheath rot pathogens are seed-transmitted,
resulting in infected seedlings (1). Infected seedlings can die (2) resulting in infected plant debris (3) or survive. P fuscovaginae can colonize the whole plant as an
endophyte or survive epiphytically and infect the inflorescences at booting stage. The seedling transmission of the fungal pathogens is less well understood (4).
Secondary infections result from conidia or bacterial cells released from infected plants (5). Conidia or bacterial cells are spread by wind or rain to healthy plants.
Plants at booting stage are especially susceptible to infection. In the case of S. oryzae, insects and mites can also spread conidia and facilitate infection by creating
wounds (6). Rot occurs on the sheath enclosing the young panicles; grains on affected tillers become chaffy and discolored. Grains infected with Fusarium sp. can
become contaminated with mycotoxins (7). Pathogens can spread to new field via contaminated grains (8). After harvest, infected plant debris will remain in the field
(9) serving as inoculum for the next growth cycle (10).

producers (Wulff et al., 2010). Isolates belonging to various
other related Fusarium species have been shown to produce
fumonisins (Table 3). Fumonisin biosynthetic genes have also
been found in more distantly related fungi such as Aspergillus
niger and Tolypocladium sp. The evolution of the fumonisin gene
cluster in Fusarium is complex and not adequately represented
by the species phylogeny. It is hypothesized that a combination
of multiple horizontal gene transfer, cluster duplication and
loss has shaped the current distribution of the fumonisin gene
cluster (Proctor et al., 2013). The role of fumonisins in the
ecology and pathology of Fusarium is poorly understood. Abbas
et al. (1998) observed that the concentration of fumonisins
coincides with the intensity of sheath and panicle symptoms
in rice plants showing sheath rot under Fusarium attacks.
Toxins are apparently concentrated in the external grain part
since their concentration in the grain reduced 75–80% after
hulling. One of the major fumonisins, FB1, is conceived as a
virulence factor in Fusarium-induced diseases in plants (Glenn
et al., 2008). FB1 inhibits ceramide synthase (Williams et al.,
2007), an enzyme involved in sphingolipid biosynthesis in both
animals and plants. This has numerous consequences on the
cell physiology and results in increased cell death and inhibition
of plasma membrane ATPases (Gutiérrez-Nájera et al., 2005).

Members of the F. fujikuroi complex also produce a variety of
other mycotoxins, including moniliformin. It has been shown
that F. proliferatum isolates from field samples of rice with
Fusarium sheath rot disease are capable of producing both
fumonisins and moniliformin in culture. Both mycotoxins were
also detected in naturally contaminated rice samples (Abbas et al.,
1999). The phytotoxicity of moniliformin is well documented
(Abbas et al., 1995). Moniliformin was shown to arrest mitosis
of maize root meristematic cells at the metaphase stage (Styer
and Cutler, 1984). The factors triggering the infection of
F. proliferatum to rice plants still need to be further investigated
(Kushiro et al., 2012). Genome sequencing revealed the presence
of a wide variety of secondary metabolite gene clusters in
F. fujikuroi and F. verticillioides, including clusters for bikaverin,
fusarubins, fusarins, fumonisins, and fusaric acid. Beauvericin
and gibberellin gene clusters, however, were only present in
F. fujikuroi (Wiemann et al., 2013).

Interactions with Other Diseases and
Pests
There are reports of association of Fusarium sp. with S. oryzae in
the rice sheath rot disease (Sakthivel, 2001). Islam et al. (2000)
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TABLE 3 | Main toxins involved in rice sheath rot disease.

Microbial toxin Producing sheath
rot pathogen

Other producing
organisms

Class Mode of action Symptom on
plants

Other activities

Helvolic acid Sarocladium oryzae Metarhizium
anisopliae,
Aspergillus sp.,
Pichia
guilliermondii,
Alternaria sp.

Steroid Interference with
chlorophyll
biosynthesis

Chlorosis Antibacterial activity

Cerulenin Sarocladium oryzae Not known Hexaketide amide Inhibitor of fatty
acid synthetases,
interference with
flavonoid
biosynthesis

Necrosis, growth
inhibition

Antibacterial and
antifungal activity

Fumonisin B Fusarium
proliferatum,
F. verticillioides,
F. fujikuroi

Other Fusarium sp.,
Aspergillus niger,
Tolypocladium sp.,
Alternaria alternata

Polyketide Inhibitor of
sphingolipid
biosynthesis

Necrosis, growth
inhibition

Human and animal
toxin

Syringotoxin Pseudomonas
fuscovaginae

Pseudomonas
syringae pv.
syringae

Cyclic lipopeptide Interference with
ATPase pumps in
plasma membrane

Necrosis Antifungal activity

Fuscopeptins Pseudomonas
fuscovaginae

Not known Cyclic lipopeptide Form channels in
plasma membranes

Necrosis Antimicrobial
activity

realized that in many seeds, numerous organisms are detected
at the same time as Fusarium, including Alternaria padwickii,
Curvularia sp., S. oryzae, Magnaporthe oryzae, Bipolaris oryzae,
andMicrodochium oryzae.

Control Methods
Cultural and sanitary methods to control of rice sheath rot
caused by Fusarium sp. include the use of clean seeds and
water to separate light weight seeds (IRRI, 2015b). In chemical
control, some fungicides are very effective against the fungus:
thiophanate-methyl, benomyl, difenoconazole, penconazole
(Ilyas and Iftikhar, 1997), and seed treatment is also advised.
Seed dressing with antagonistic yeasts in combination with
thermotherapy appears to be a promising strategy to control
F. fujikuroi on rice seeds (Matić et al., 2014). Soil inoculation
with the fungus Talaromyces sp. isolate KNB422 controlled
seed-borne diseases on rice seedlings including F. fujikuroi as
effectively as chemical pesticides (Miyake et al., 2012).

OTHER FUSARIUM SP. ASSOCIATED
WITH RICE SHEATH ROT

Fusarium graminearum is grouped in the F. graminearum
sambucinum complex (Aoki et al., 2014) and is pathogenic to
many plants, mainly causing wheat head blight (Goswami and
Kistler, 2004; Leplat et al., 2012). It has also been reported to
cause sheath rot on rice (Singh and Devi, 1990; Naeimi et al.,
2003).

Fusarium equiseti belongs to the Fusarium incarnatum-
equiseti species complex (Aoki et al., 2014) and has been mainly
reported as a pathogen for barley (Marín et al., 2012) and wheat
(Castellá and Cabañes, 2014). It was also isolated from rice stem
tissues (Fisher and Petrini, 1992).

Fusarium oxysporum forms its own group according to the
phylogenetic relationships of key Fusarium species (Aoki et al.,
2014). Though most of the time it has been associated only to
vascular diseases and not to Poaceae plants (Agrios, 2005), it has
been isolated from rice plant tissues (Fisher and Petrini, 1992;
Abbas et al., 1995; Desjardins et al., 2000) and is pathogenic
on young rice plants (Prabhu and Bedendo, 1983; Fisher and
Petrini, 1992). Some F. oxysporum isolates are known to produce
fumonisins (Proctor et al., 2008), but whether isolates associated
with rice sheath rot symptoms produce these mycotoxins has not
been tested.

RELATED FUNGAL DISEASES

Cochliobolus lunatus causes black kernel disease on rice and
has been identified as the causal agent of rice sheath rot in
India and Bangladesh (Lakshmanan, 1992, 1993a; Shamsi et al.,
2003). There are no extensive studies on its pathogenesis on rice,
but its virulence is attributed to the methyl 5-(hydroxymethyl)
furan-2-carboxylate (M5HF2C) toxin (Liu et al., 2009; Gao et al.,
2015).

Gaeumannomyces graminis var. graminis (Syn.: Ophiobolus
oryzinus) causes crown sheath rot or black sheath rot on rice
(Walker, 1972; Frederick et al., 1999; Peixoto et al., 2013) and its
virulence is linked to the production of DHN-melanin (Frederick
et al., 1999).

Sclerotium hydrophilum was recognized as an agent of sheath
leaf necrosis by Lanoiselet et al. (2002). The fungus was isolated
from infected rice sheaths and was shown to cause rice leaf sheath
disease. But Sclerotium hydrophilum is not the only sclerotial
disease of rice. Rhizoctonia fumigata, R. oryzae-sativae, R. oryzae,
and R. solani are reported to induce the same symptoms as
Sclerotium hydrophilum leaf sheath disease (Kimiharu et al.,
2004). The damage caused by all these diseases is high when
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FIGURE 5 | Structures of toxins produced by rice sheath rot causing agents. Helvolic acid and cerulenin are produced by S. oryzae; Fumonisin B1 is
produced by Fusarium sp., Fuscopeptin B and syringotoxin B are produced by P. fuscovaginae.

they reach the top leaf sheath of the plant. The symptoms
of all these diseases are pronounced at the heading stage and
increase as the plant matures. Most of the time, the rice sclerotial
diseases cause overlapping symptoms in places where sheath
blight caused by R. oryzae frequently occurs, although their
pathogenesis is different (Prabhu et al., 2002). These diseases
have in common with S. oryzae, the most reported rice sheath
rot pathogen, and other sheath rot agents that their symptoms
are more pronounced in the reproductive stage and around
physiological maturity (Oster, 1992). Also, in the description of
the symptoms of R. oryzae-sativae (Syn: Ceratobasidium oryzae-
sativae), Lanoiselet et al. (2007) mentioned classical sheath rot
disease associated symptoms like the rotting of the culm and
grain sterility.

The diseases caused by Cochliobolus lunatus,
Gaeumannomyces graminis, Sclerotium hydrophilum, R.
fumigata, R. oryzae-sativae, R. oryzae, R. solani, though they are
closer to rice sheath rot agents in terms of symptomatology, will
not be extensively covered in this review, considering that they
have been primarily described based on plant parts different
from the rice sheath.

PSEUDOMONAS FUSCOVAGINAE: THE
MOST IMPORTANT BACTERIAL
PATHOGEN ASSOCIATED WITH RICE
SHEATH ROT

Pathogen Description and Symptoms
Since its isolation in association with rice sheath rot in Japan
(Tanii et al., 1976; Miyajima et al., 1983) and its identification

as the causal agent of discoloration of rice sheaths, leaves
and grains in Latin America (Zeigler and Alvarez, 1987),
P. fuscovaginae is considered as the main bacterium causing
rice sheath brown rot. It has been found on both the sheath
and the glume (Cother et al., 2009). Zeigler and Alvarez (1987)
stated that rice sheath brown rot, caused by P. fuscovaginae
in Latin America, is characterized by the following features:
longitudinal brown to reddish brown necrosis 2–5 mm wide
extending the entire length of the leaf sheath and blade;
affected sheaths enclosing the panicle may show extensive water-
soaking and necrosis with poorly defined margins; glumes
discolor before emerging from such panicles; grains on affected
tillers may be completely discolored and sterile to nearly
symptomless with only small brown spots. To these symptoms,
the description by Cottyn et al. (1996a) adds the following
features: a wide range of sheath and/or grain symptoms, varying
from translucent to brown dots to brown blotches to brown
streaks to a completely brown sheath, and/or clear to brown
spots to brown blotches to completely dark discolored seeds. An
illustration of bacteria-induced rice sheath rot is presented in
Figure 6.

The genus Pseudomonas belongs to the subclass
Gammaproteobacteria of the Gram-negative bacteria and
currently comprises 144 species. Based on multilocus sequence
analysis, P. fuscovaginae belongs together with P. asplenii
to the P. asplenii subgroup as defined by Gomila et al.
(2015). These two species are closely related and some
authors consider them to be synonymous (Vancanneyt
et al., 1996). The original description of P. fuscovaginae in
Miyajima et al. (1983) is the following: the cells are aerobic,
gram negative, non-spore-forming, rod-shaped with round
ends, 0.5–0.8 × 2.0–3.5 μm. Cells occur singly or in pairs

Frontiers in Plant Science | www.frontiersin.org 9 December 2015 | Volume 6 | Article 1066

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Bigirimana et al. Rice Sheath Rot

FIGURE 6 | Symptoms caused by P. fuscovaginae and morphology on
King’s Medium B plates after 48 h of growth at 28◦C (top is reverse
side, bottom is front side).

and are motile by means of one to four polar flagella.
They oxidize glucose in oxidation–fermentation medium,
and they produce a green fluorescent pigment, oxidase
and arginine dihydrolase. Denitrification, β-glucosidase,
pit formation on polypectate gel and growth at 37◦C are
negative. Characteristics that distinguish this species from
other fluorescent pseudomonads which are positive for arginine
dihydrolase and oxidase are its inability to utilize 2-ketogluconate
or inositol.

Whole genome sequence analysis of various P. fuscovaginae
strains has revealed that these pathogens do not form a single
monophyletic group. At least two subgroups have been identified
and strains from Madagascar, Japan, China, and Australia
clustered separately from P. fuscovaginae-like strains from the
Philippines (Quibod et al., 2015).

Epidemiology
Pseudomonas fuscovaginae was first reported in literature as
the pathogen responsible for rice sheath rot disease in cold
and humid tropical highlands in Japan (Miyajima et al., 1983),
Burundi (Duveiller et al., 1988), Madagascar (Rott et al., 1989),
and Nepal (Sharma et al., 1997), but it was later found
even in lowlands (Cottyn et al., 1996a). P. fuscovaginae is
also associated with high rainfall (Sharma et al., 1997). The
bacterium causes quantitative and qualitative losses (Zeigler
and Alvarez, 1987). For losses in quality, symptomatic grains
cannot be accepted in seed certification chains, mills accept
them with a discount and they have a poor marketing
value.

CABI (2007) reports the presence of P. fuscovaginae in
31 countries: Former Yugoslavia, Russian Federation, China,
Indonesia, Japan, Nepal, Philippines, Burundi, Democratic
Republic of Congo, Madagascar, Rwanda, Tanzania, Costa Rica,
Cuba, Dominican Republic, El Salvador, Guatemala, Jamaica,
Nicaragua, Panama, Trinidad and Tobago, Mexico, Argentina,
Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Suriname, and
Uruguay. Recently, the disease has been diagnosed in Australia
(Cother et al., 2009).

The host range of P. fuscovaginae seems to be restricted to
wild and cultivated Gramineae (Tanii et al., 1976; Miyajima et al.,
1983).

Pseudomonas fuscovaginae is seed-transmitted and infected
seedlings often die. When infection occurs at a later stage,
the lower part of the sheath becomes brown and later on,
the whole sheath becomes necrotic. The pathogenicity of
P. fuscovaginae is expressed at grain, seedling and booting stage
levels. P. fuscovaginae is able to colonize the whole plant as
an endophyte (Adorada et al., 2015). If the seedling survives,
P. fuscovaginae has an epiphytic life until the booting stage when
it infects inflorescences, resulting in the formation of infected
grains or the panicle abortion. The population of the bacterium
is maintained at a low level from early growth stages up to the
booting stage. The bacterium can survive epiphytically on the
host plant with low pathogen population in the tissue and this
explains how the disease can be seed-borne, but only express
symptoms at the booting stage (Batoko et al., 1997) (Figure 4).
This can also be linked to the fact that the booting stage and the
reproductive phase in general, is the most stress-sensitive stage in
the rice plant development (Fageria, 2007).

Pathogenicity Determinants
Different phytotoxins are involved in the disease development.
Batoko et al. (1997) could reproduce sheath brown rot
symptoms by inoculating seedlings with toxins from bacteria.
They concluded that toxins are an integral part of the plant-
pathogen interactions in rice bacterial sheath rot. Flamand
et al. (1996) found that a cell-free extract from P. fuscovaginae
that could induce the same symptoms as P. fuscovaginae
contained five peptidic compounds (A, B, C, D, and E) and
two others (fuscopeptins A and B). Peptidic compound D is
identical to syringotoxin, a lipodepsinonapeptide containing nine
amino acids acylated by 3-hydroxytetradecanoic acid (Table 3,
Figure 5) that is also produced by P. syringae pv. syringae
pathogenic on citrus (Ballio et al., 1990). The structure of
fuscopeptins was elucidated by Ballio et al. (1996). Fuscopeptins
are lipodepsipeptides containing 19 amino acids. Fuscopeptin
A is acylated by 3-hydroxyoctanoate while fuscopeptin B is
acylated by 3-hydroxydecanoate (Table 3, Figure 5). Both
compounds target the plasma membrane and inhibit H+-
ATPase and act synergistically with syringotoxin (Batoko et al.,
1998).

Toxins from P. fuscovaginae are non-host specific, the
pathogen inducing disease symptoms on many plants of the
Poaceae family in addition to rice (Miyajima et al., 1983), and
have more detrimental effect on culm elongation (Batoko et al.,
1997). The non-host specificity may also be justified by the
symptoms induction by P. fuscovaginae on Chenopodium quinoa
(Mattiuzzo et al., 2011), a plant belonging to the Amaranthaceae
family. Toxins are immediately dissolved in the plant thus
become difficult to recover (Batoko et al., 1997). Phytotoxin
concentration increases at the booting stage of rice, which
stimulate their large production by the bacterium. The capacity
of the plant to detoxify the toxins plays a pivotal role and could
constitute a starting point in breeding for resistance against
P. fuscovaginae.

Patel et al. (2014) were able to isolate nine mutants of
P. fuscovaginae via random Tn5 mutagenesis which showed
altered virulence on rice. Besides mutants affected in phytotoxin
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production, also mutants in type IV pili biosynthesis, type VI
secretion, arginine biosynthesis and sulfur metabolism were
obtained indicating that these processes are also involved in
pathogenicity on rice.

Interactions with Other Diseases and
Pests
Most of the time P. fuscovaginae was found together with
S. oryzae in sheath rot diseased plants (Zeigler and Alvarez, 1987;
Cottyn et al., 1996a).

Control Methods
Some cultural and sanitation practices against P. fuscovaginae are
indicated like burning farm remains: stubbles, ratoons; treatment
of seeds by dipping them in water at 65◦C before sowing (Zeigler
and Alvarez, 1987); introducing rotation; checking the quality of
seeds and as it is a seed-borne disease, using healthy seeds. Host
plant resistance is also considered as an option. There are limited
sources of resistance to rice sheath rot (Adorada et al., 2013),
while this is a must in developing a control strategy against the
disease. There are various methods that can be used for screening
resistance and Adorada et al. (2013) suggested using the pin-
prick method. About the chemical control, streptomycin, alone or
in combination with oxytetracycline, can effectively control rice
sheath rot (CABI, 2007).

OTHER PSEUDOMONAS SP.
ASSOCIATED WITH RICE SHEATH ROT

Besides P. fuscovaginae, a variety of other poorly characterized
fluorescent pseudomonads have been associated with rice sheath
rot since the 1950s. The first characterized sheath rot associated
Pseudomonas was P. oryzicola (Klement, 1955). Later on it was
decided that this pathogen is equivalent to P. syringae pv. syringae
(Young et al., 1978). Besides P. syringae and P. fuscovaginae,
various other pseudomonads have been consistently found in rice
sheath rot related studies (Zeigler and Alvarez, 1987; Cottyn et al.,
1996a,b; Cother et al., 2010; Saberi et al., 2013). Only a few of
those other pseudomonads have been fully identified except by
biochemical tests.

Zeigler and Alvarez (1987) attempted to put rice sheath rot-
associated pseudomonads into groups, which were continued and
named, based on BIOLOG features, by Cottyn et al. (1996a).
In their work, they defined, based on the guidelines for the
taxonomy of Proteobacteria, originally called purple bacteria
(Woese, 1987), four main groups of Gammaproteobacteria
associated with rice sheath rot and grain discoloration named
after the representative species: P. putida, P. aeruginosa, P.
fuscovaginae, and a composite group related to P. marginalis,
P. corrugata, P. fluorescens, P. aureofaciens, and P. syringae.
Also Saberi et al. (2013) concluded, based on biochemical tests,
that sheath rot and grain discoloration caused by Pseudomonas
sp. in Iran are related to P. marginalis, P. putida, and
P. syringae.

The question whether these associated Pseudomonas sp.
are really pathogenic on rice remains posed for many years.

From the start, few species emerged as the most pathogenic
compared to others which were causing some low levels of
the disease. Zeigler and Alvarez (1987) already mentioning
minor sheath and grain disorders caused by fluorescent
pseudomonads, P. fuscovaginae being the principal causal
agent. Gardan et al. (2002) isolated P. palleroniana from La
Réunion (France), Cameroon, and Madagascar from healthy
or necrotic rice seeds and from diseased tissue of leaf
sheaths. The P. palleroniana isolates inoculated to rice seedlings
were either non-pathogenic or weakly pathogenic. On the
contrary, typical symptoms of bacterial sheath brown rot were
induced by P. fuscovaginae strain CFBP3078, introduced in
the experiment for comparison. This shows that among the
pseudomonads found with rice sheath rot, there are differences
in virulence and P. palleroniana is among the weakly pathogenic
organisms.

However, caution is needed in the interpretation of the
pathogenicity level for the different species of the pseudomonads
associated with rice sheath rot. Cother et al. (2010) isolated a
pseudomonad causing a widespread disease similar to sheath
brown rot in Cambodia. This bacterium was related to
P. parafulva and P. fulva, which belong to the P. putida group
as defined by Gomila et al. (2015), and was clearly pathogenic on
rice.

In the meantime, the taxonomy of pseudomonads has made
important progress especially thanks to molecular identification
method development. In a recently published classification of
Pseudomonas genus, based on the Multilocus Sequence Analysis
technique (MLSA), Gomila et al. (2015) defined 19 groups and
subgroups. Most of the sheath rot associated pseudomonads
probably belong to the P. chlororaphis, P. fluorescens, P. asplenii
(=P. fusovaginae) subgroup or the P. putida group, though the
groupings are difficult to define currently as many isolates have
not yet been fully analyzed.

RELATED BACTERIAL DISEASES

Pantoea ananatis, considered globally as a facultative pathogen
(Cray et al., 2013), was demonstrated as a sheath rot pathogen
with typical symptoms of necrotic spots and discoloration
on glumes and stems, indistinct chlorosis but with no
water-soaking and its pathogenicity testing satisfied Koch’s
postulates (Choi et al., 2012). The disease had previously
been reported in the Philippines (Cottyn et al., 2001) and
in Australia (Cother et al., 2004), but its importance, though
it is reported to reduce the grain quality when it infects
the glumes, was never assessed. It was only presumed to
be low. Furthermore, in pathogenicity tests, Cother et al.
(2004) recovered the pathogen from the plants that had not
been inoculated, which prompted the hypothesis that the
organism lives as an epiphyte and triggers disease symptoms
when the plant is under physiological stress. Also Choi et al.
(2012) linked the disease appearance to favorable environmental
conditions.

Burkholderia glumae and B. gladioli are becoming important
rice pathogens (Nandakumar et al., 2007). B. glumae (formerly
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P. glumae) was reported as the agent of rice grain discoloration
in Latin America (Zeigler and Alvarez, 1989) after it had been
reported as a grain rotter in Asia. It was later detected in North
America, in association with B. gladioli, causing bacterial panicle
blight (Nandakumar et al., 2009). The two pathogens, in addition
to being seed-borne, can also be soil-borne (Nandakumar et al.,
2008). Disease symptoms are observed at the sheath and grain
levels. Though the disease is seed-borne, the presence of the
bacteria in the sheath plays a capital role in the infection of the
emerging panicle. Toxoflavin, a toxin produced by both species,
is considered to be the main pathogenicity determining factor
(Suzuki et al., 2004; Ura et al., 2006), while a lipase produced
by B. glumae (Pauwels et al., 2012) and tropolone produced
by B. gladioli (Wang et al., 2013) have also been implicated in
pathogenicity.

Acidovorax oryzae (Schaad et al., 2008), formerly called
Pseudomonas avenae and Acidovorax avenae subsp. avenae
(Willems et al., 1992), causes bacterial brown stripe on rice
(Shakya et al., 1985; Kadota et al., 1991; Song et al., 2004).
Symptoms start as brown stripes at the bottom of the stems
and frequently extend into the sheaths (Liu et al., 2012). This
bacterium has consistently been detected in rice sheath rot related
studies (Cottyn et al., 1996a,b; Cortesi et al., 2005; Cother et al.,
2010). Recently the type IV pili assembly protein PilP has been
implicated in the pathogenicity of A. oryzae on rice (Liu et al.,
2012).

CONCLUSION AND PERSPECTIVES

Since rice sheath rot symptoms were first described
in Taiwan in 1922 and attributed to S. oryzae, various
reports of similar or related disease symptoms have been
produced in different parts of the world. Rice sheath rot
is now getting momentum as an emerging destructive rice
disease but on which the scientific understanding is still
limited.

There are three main species or complexes of organisms
that can cause rice sheath rot: S. oryzae, the F. fujikuroi
complex, and P. fuscovaginae, but there are many others that
are reported to induce symptoms close to those of rice sheath
rot. Interestingly, all three groups of major sheath rot causing
pathogens produce phytotoxins that cause necrosis and can
mimic the disease symptoms, which is probably the reason
why they all cause similar looking disease symptoms. The
principle that “everything is everywhere, but, the environment
selects” (De Wit and Bouvier, 2006) applies to rice sheath
rot; organisms that can potentially cause rice sheath rot
are many and can be found everywhere nowadays, but the
environment probably selects the ones that can adapt to the
prevailing environmental conditions in a given area. This
situation results in the overlapping of symptoms in the
rice sheath rot disease complex (Johanson et al., 1998; Hu
et al., 2008) especially at the rice reproductive stage, the
most stress-sensitive phase in rice development (Fageria, 2007).
There can be even synergism among the rice sheath rot-
associated organisms or with arthropods or other groups of

organisms. Due to changes in agriculture and in the society
in general, like the developments in the farming systems and
increased mobility in general, there are also changes in plant
health problems, some diseases becoming more important
than before, like rice sheath rot, which is now becoming
a serious threat to rice production in many parts of the
world.

It is proven that most sheath rot associated pathogens have
an endophytic (latent) phase in their lifecycle, waiting for the
plant to become stressed so that they can attack it (Fisher
and Petrini, 1992). This phenomenon is not recent, it was
observed since many years. Hsieh et al. (1977) attested the
presence of F. moniliforme (now known as the F. fujikuroi
complex) on plants without causing visible disease symptoms.
New empirical data are needed about most of the organisms
thought to be endophytic as some of them have pathogenic
potential and are waiting for conducive conditions for attacking
the plant. Factors governing the expression of the virulence
are not yet clearly understood (Andrews and Harris, 2000).
There is an urgent need of associating molecular, genetic and
pathogenicity data for elucidating the role and interactions
with endophytes given that at the plant level, the answer to
pathogens and endophytes is the same (Andrews and Harris,
2000).

The large variability observed in rice sheath rot associated
Pseudomonas and Fusarium genera is intriguing. It would be
interesting to investigate whether the isolates in these two groups
that can cause sheath rot have obtained phytotoxin-encoding
gene clusters by horizontal gene transfer. At least in the case of
fumonisins, it has been shown that the fumonisin gene cluster has
spread among Fusarium sp. and related genera by a combination
of horizontal gene transfer, cluster duplication and loss (Proctor
et al., 2013). It should be tested whether the sheath rot causing
Fusarium isolates all contain the fumonisin gene cluster or other
phytotoxin encoding gene clusters. Horizontal gene transfer is
also a widespread phenomenon in fluorescent pseudomonads
(Silby et al., 2011) and it is known that many gene clusters
for secondary metabolites, including cyclic lipopeptides, are
located on genomic islands. Again, this could be systematically
tested for Pseudomonas isolates associated with rice sheath
rot.

Rice sheath rot has become a highly destructive rice disease
with a high variability in yield loss levels varying from 20 to 85%.
It is caused by many pathogenic agents varying depending on
the area, grown varieties, prevailing environmental conditions,
the farming system, other pests, etc. Not much progress has
been achieved in the control of the disease, partly because
the etiology of the disease is difficult to establish. For facing
the disease, a better understanding about it is needed and
this review is contributing in that aim. As rice sheath rot
disease is complex by nature, its control strategy must be
inspired by the Integrated Pest Management (IPM) approach.
The solution remains site-specific. Limiting the number of
potential pathogens harbored by the plant, making the plant
environment less conducive to pathogen development, etc.
should be the central elements in the control approach, which
can be complemented by other methods, indicated according
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to the context. The IPM approach is particularly relevant now
that there is a need for feeding and responding to the other
needs of a constantly increasing population while the production
must be conducted in a sustainable way, meaning that the
overreliance on pesticide must leave the room to scientifically
proven environmentally friendly crop protection practices.
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