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Plants, like mammals, rely on their innate immune system to perceive and discriminate

among the majority of their microbial pathogens. Unlike mammals, plants respond to

this molecular dialog by unleashing a complex chemical arsenal of defense metabolites

to resist or evade pathogen infection. In basal or non-host resistance, plants utilize

signal transduction pathways to detect “non-self,” “damaged-self,” and “altered-self”-

associated molecular patterns and translate these “danger” signals into largely inducible

chemical defenses. The WD40 repeat (WDR)-containing proteins Gβ and TTG1 are

constituents of two independent ternary protein complexes functioning at opposite ends

of a plant immune signaling pathway. They are also encoded by single-copy genes that

are ubiquitous in higher plants, implying the limited diversity and functional conservation

of their respective complexes. In this review, we summarize what is currently known about

the evolutionary history of these WDR-containing ternary complexes, their repertoire

and combinatorial interactions, and their downstream effectors and pathways in plant

defense.

Keywords: heterotrimeric G-protein, MYB-bHLH-WDR complex, TTG1, Gβ, plant innate immunity, RACK1,

flavonoid metabolism

INTRODUCTION

WD40 repeat (WDR)-containing proteins are prevalent in eukaryotes, but rarely present in
prokaryotes (Janda et al., 1996; Stirnimann et al., 2010). Plant genomes typically encode more than
200 putative WDR-containing proteins (van Nocker and Ludwig, 2003; Ouyang et al., 2012), which
is slightly less than the human genome (349; Letunic et al., 2014). The basic function of WDR-
containing proteins is to serve as rigid scaffolds for protein–protein and protein-DNA interactions.
WDR-containing proteins are involved in fundamental mechanisms such as signal transduction,
chromatin modification and transcriptional regulation. They are also involved in a wide variety of
plant processes, including cell division, meristem organization, light signaling, floral development,
secondary metabolism, and innate immunity (Smith et al., 1999; van Nocker and Ludwig, 2003;
Perfus-Barbeoch et al., 2004).

Plants, unlike mammals, lack mobile defender cells and an adaptive immune system. Instead,
they rely on the innate immunity of each cell, systemic peptide and chemical signals emanating
from infection sites, and preformed and inducible chemical defenses at infection sites to ward
off invading pathogens (Dixon, 2001; Jones and Dangl, 2006; Zipfel, 2014). Plants, like mammals,
have a multi-tiered pathogen-detection system. The first layer is evolutionarily more ancient and
involves the cell-surface perception of conserved microbial or “non self ” molecular signatures
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known as microbe-/pathogen-associated molecular patterns (or
MAMPs/PAMPs) and pathogen-generated “damaged/altered-
self ” molecular signatures known as damage-associated
molecular patterns (or DAMPs). These “danger” signals are
recognized by pattern recognition receptors (or PRRs), which
in plants are plasma membrane-localized receptor-like proteins
(RLPs) or receptor-like kinases (RLKs). MAMPs, inter alia,
are also thought to be the molecular determinants of induced
systemic resistance (ISR) that is activated by beneficial plant-
microbe interactions in the roots (Van Wees et al., 1997;
Meziane et al., 2005; Bakker et al., 2007). The second layer of
immunity involves the cytosolic perception of pathogen-specific
effector proteins by intracellular nucleotide binding leucine-rich
repeat (or NB-LRR)-containing resistance proteins to trigger
programmed cell death at infection sites and, in many cases,
systemic acquired resistance in the host plant (Jones and Dangl,
2006).

Plant immunity, in particular, boasts two distinct but
structurally similar classes of WDR-containing proteins: Gβ,
and TRANSPARENT TESTA GLABRA1 (TTG1). The Gβ and
TTG1 proteins are constituents of ternary regulatory complexes
(Figures 1A, 2A). While the Gβ is widely conserved across a
diversity of eukaryotes (Adams et al., 2011; Bradford et al., 2013),
TTG1 is only present in higher plants (Figure 1B). The Gβ

and TTG1 proteins are coupled to type-I membrane receptors
and transcription factors, respectively, in a plant innate immune
signaling pathway that convert extracellular signals into a subset
of intracellular chemical defense responses (see below).

Structural Conservation
of WDR-Containing Proteins Gβ and TTG1
The common and defining structural feature of WDR-containing
proteins is the seven-tandem WDR motif sequence, which
adopts a seven-bladed β-propeller-like structure with three
potential surfaces for molecular interactions—the top, bottom
and circumference (Figure 3A; Lambright et al., 1996; Smith
et al., 1999; Ullah et al., 2008; Adams et al., 2011; Ruiz Carrillo
et al., 2012). Each blade of the propeller-like structure consists of
four antiparallel β strands; the first three strands of one blade and
the fourth strand of the next are formed by a single WDR motif;
the overlap between two adjacent propeller blades provides an
interlocking architecture that holds the propeller-like structure
in a closed, rigid ring structure (Smith et al., 1999; Adams
et al., 2011). The seven-bladed β-propeller structure is best
demonstrated for the WDR-containing receptor for activated
C kinase 1 (RACK1) protein, for which there are four known
structures from a diversity of eukaryotes (Figure 3A; Ullah et al.,
2008; Coyle et al., 2009; Rabl et al., 2011; Ruiz Carrillo et al.,
2012).

Unlike TTG1, the Gβ protein additionally contains an N-
terminal α-helix (Figure 3A) that forms a coiled-coil structure
with the Gγ protein, as indicated by the crystal structure of the
human Gβ HsGNB1 partially encircled by the Gα HsGNAT1
(Sondek et al., 1996). However, HsGNB1 remains the sole Gβ

with a solved crystal structure, which serves as the foundation
(along with a handful of solved RACK1 structures) for the
predicted Gβ structures generated by structural bioinformatics.

Within these confines, there is some evidence that the Gβ-specific
structure mediating the Gβγ interaction may not be conserved
across eukaryotes. For example, Gβ proteins frommore primitive
eukaryotes (e.g., alveolate Tetrahymena thermophila Gβ and
the green alga Chara braunii Gβ) are predicted to lack
the N-terminal helix (Figure 3A) but still retain the Gβγ

interaction (Hackenberg et al., 2013), presumably through
a novel Gβγ interaction domain(s) within the β-propeller
structure. Additional crystal structures of non-metazoan Gβ

sequences are needed to provide structural details on the Gβγ

interaction across eukaryotes.

HETEROTRIMERIC G-PROTEIN COMPLEX

The most extensively studied WDR-containing protein to date
is the Gβ subunit of the heterotrimeric G-protein complex,
which is one of the most conserved and elaborate receptor-
effector signaling mechanisms in eukaryotes. The Gβ reversibly
interacts with the GDP-bound Gα subunit and forms an obligate
heterodimer (Gβγ) with the Gγ subunit. While the interaction
between the Gα and the Gβγ dimer serves as a molecular switch,
the Gβ serves as a scaffold for effector proteins (Figure 1A).
In animals and fungi, ligand perception by the heptahelical
membrane receptors, G-protein-coupled receptors (GPCRs),
leads to replacement of GDP with GTP in the Gα subunit
and activation of the heterotrimer (Li et al., 2007; Oldham and
Hamm, 2008). Upon activation, the GTP-bound Gα and Gβγ

dimer dissociate from each other and from the receptor complex,
releasing their bound effectors to activate various signaling
cascades. Signaling terminates when the intrinsic GTPase activity
of the Gα hydrolyzes GTP to GDP and the inactive heterotrimer
reforms at the receptor.

Elusive Receptor-Effector Signaling
Mechanism
Although signal transduction through a heterotrimeric G-protein
complex is common to animals and plants, there are some
mechanistic differences between the evolutionary branches. For
example, in plants and basal eukaryotes, the canonical Gα subunit
isoform is self-activating, and thus does not require GPCR-like
proteins for its activation (Jones et al., 2011a,b; Bradford et al.,
2013). Plants also contain non-canonical Gα subunit isoforms,
which have a slower rate of GTP hydrolysis (Heo et al., 2012),
but it is not yet known whether they are also self-activating. In
addition, canonical GPCR-like sequences are absent or rare in
plants (Urano et al., 2013; Taddese et al., 2014). Instead, plants
have several families of non-canonical GPCR-like sequences,
three of which (GCR1, GTG1, and GTG2) have been shown
to interact in planta with the Arabidopsis canonical Gα GPA1
and modulate an ABA-mediated drought response (Pandey and
Assmann, 2004; Pandey et al., 2009). It remains controversial
whether the GPCR-like proteins are bona fide GPCRs, although
a recent structural bioinformatics study has found GCR1 to be
a strong GPCR candidate based on its predicted heptahelical
scaffold and GPCR fold (Taddese et al., 2014). Plants also contain
hundreds of membrane RLP and RLK sequences (Shiu and
Bleecker, 2001, 2003; Fritz-Laylin et al., 2005), two of which (the
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FIGURE 1 | (A) Regulatory network of known Gβ-dependent pathways in Arabidopsis illustrating the interactions between G-protein subunits and between Gβ1 and

its effectors for various regulated plant processes. Growth and development processes include stomatal density and opening, seed germination, hypocotyl elongation,

and organ (i.e., leaf, silique, seed) morphology. Abiotic stress responses include salt stress, chemical-induced endoplasmic reticulum stress, and sugar stress.

DAMP-triggered immune responses include MAP kinase activation and ROS generation. MAMP-triggered immune responses include aforementioned immune

responses as well as modulation of the flavonoid anthocyanin pathway. Unbroken and broken black lines indicate indirect and direct interaction, respectively; red arrow

indicates positive regulation. Shapes: heptagons, WDR-containing proteins Gβ and AtRACK1; circles, Gα proteins; moons, Gγ proteins; rectangles, downstream Gβγ

effectors. For a given shape, different colors denote different classes of G-protein subunit isoforms or WDR-containing proteins. Arabidopsis proteins: Gβ1, AGB1;

Gα1, GPA1; Gα2, XLG1; Gα3, XLG2; Gα4, XLG3; Gγ1, AGG1; Gγ2, AGG2; and Gγ3, AGG3. Note that the expanded diversity of the non-WDR-containing subunits in

the complex likely provides functional specificity within plant innate immune signaling. Also note the paucity of identified effectors downstream of the G-protein

complexes for all known regulated processes. (B) Tree depicting the number of Gβ, RACK1 and TTG1 sequences identified to date for representative species of the

five eukaryote supergroups as well as two major plant evolutionary milestones: plant colonization of land (*) and the first appearance of the bHLH interaction motif

present on constituent MYBs in the MYB-bHLH-TTG1 complex (I). Note that no Gβ or TTG1 sequences were identified in the Rhizaria group.
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FIGURE 2 | (A) Regulatory network of AtTTG1-dependent pathways in Arabidopsis illustrating the potential/indirect (broken black lines) and demonstrated (unbroken

black lines) interactions among proteins/genes. Boxed are regulated processes. Key: green heptagons, WDR-containing protein AtTTG1; red ovals, bHLH

transcription factors from subgroup IIIf; blue ovals, activator-type R2R3-type MYB subfamilies; yellow ovals, repressor-type R2R3-type MYBs; purple ovals,

repressor-type R3-type MYB subfamilies. Note the narrowing of regulatory specificity across the tiers from top to bottom. (B) Schematic representation of

MYB-bHLH-TTG1 (MBW) complexes regulating flavonoid defense metabolism and other processes in representative plant species of major clades within flowering

plants (monocot vs. dicot, asterid vs. rosid, different rosid orders). Dotted lines indicate potential genetic/physical interactions. Note the functional conservation of

MBW complexes in the regulation of flavonoid biosynthesis across different plant species.
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FIGURE 3 | (A) Seven-bladed propeller-like structures of WDR-containing proteins Gβ (top row), RACK1 (middle row) and TTG1 (bottom row) proteins from an

alveolate, green algal, plant, fungal, and metazoan species. Homology models were based on known structures of TthRACK1, AtRACK1A, ScRACK1, HsGNB1, and

HsRACK1 (marked by asterisks) as well as predicted structures from multiple sequence templates using the PHYRE2 protein fold recognition server

(www.sbg.bio.ic.ac.uk/phyre2/; Kelley and Sternberg, 2009). Acronyms: Tth, Tetrahymena thermophila; Cbr, Chara braunii; At, Arabidopsis thaliana; Sc,

Saccharomyces cerevisiae; Hs, Homo sapiens. Note the presence of an N-terminal alpha helix on the plant, fungal and metazoan Gβ proteins but not on the alveolate

and green algal Gβ proteins. (B) Maximum likelihood phylogenetic tree of Gβ sequences from representative species in the five eukaryotic supergroups. Tree was

generated using MUSCLE multiple sequence alignment, PhyML phylogeny, and TreeDyn tree viewer programs (http://phylogeny.lirmm.fr; Dereeper et al., 2008).

Bootstrap value (n = 100 replicate trees) is shown in red at the nodes. Note that the plant Gβ sequences cluster as a well-supported monophyletic group.
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maize RLP FEA2 and the Arabidopsis RLK RPK2) have been
shown to interact in planta with the maize canonical Gα CT2
and Arabidopsis canonical Gβ AGB1, respectively, to regulate
stem cell proliferation (meristem organization; Bommert et al.,
2013; Ishida et al., 2014). Finally, while all three constituents
of the mammalian G-protein complex interact with the GPCR
(Taylor et al., 1994, 1996), only the Gα and Gγ subunits of the
Arabidopsis heterotrimer have been shown to interact with the
receptor complex (Aranda-Sicilia et al., 2015). In the absence
of receptor interaction, it remains unclear how the Gβ subunit
participates in the receptor signaling complex.

Downstream, the plant Gβγ dimer has been shown to regulate
the MAPK cascade by interacting directly with a MAPK protein
(Bhardwaj et al., 2011; Xu et al., 2015) or by recruiting RACK1
proteins as MAPK cascade scaffolds (Cheng et al., 2015). By
contrast, mammalian and fungal Gβγ dimers instead recruit the
MAPK scaffolding proteins β-arrestin2 and Ste5, respectively
(Witzel et al., 2012), while mammalian RACK1 proteins serve
as Jun N-terminal kinase (JNK) MAPK cascade scaffolds for
the protein kinase C (PKC) signaling pathway (Ron et al.,
1994; López-Bergami et al., 2005). Although RACK1 is highly
conserved between plants and animals (Figure 1B), β-arrestin2,
Ste5 and second-messenger-regulated PKC proteins are absent in
plants (Stone and Walker, 1995; Witzel et al., 2012). Despite the
diversity of MAPK cascade scaffolds between plants and animals,
the use of scaffolding proteins in signal transduction pathways
appears universal.

Evolutionary History of the Plant Gαβγ

Trimer
Gβ sequences (and those of the other two G-protein subunits)
are present in the genomes of all five eukaryotic supergroups
Archaeplastida, Excavata, Opisthokonta, Amoebozoa, and
Stramenopila/Alveolata/Rhizaria (or SAR), and are absent only
in the Rhizaria subgroup of SAR (Figure 1B). Although each
supergroup consists of a diversity of eukaryotes, most of which
are microbial (e.g., protists and algae; Keeling et al., 2005;
Burki, 2014), the best-characterized Gβ sequences are from
animals/metazoans and fungi in the Opisthokonta supergroup.
The oldest extant Gβ sequence in the Archaeplastida supergroup
(e.g., land plants and green/red algae) is a single-copy gene
found in the green alga Chara braunii (Hackenberg et al., 2013;
Figure 1B). This green algal Gβ sequence is not distinct from
the Gβ sequences present in the genomes of basal plant lineages
(e.g., bryophytes and lycophytes) and the diploid genomes of
higher plant lineages (Figure 3B; Urano et al., 2013), indicating
that they descended from a single ancestral plant Gβ sequence.
In contrast, phylogenetic analysis of metazoan Gβ sequences
identified three distinct Gβ classes (GNB1–4-like, GNB5-like,
and Gbe-like); the first two are found in humans, and the third
is specific for arthropods (de Mendoza et al., 2014; Krishnan
et al., 2015). GNB1–4-like and GNB5-like sequences are likely
present in the last common metazoan ancestor and are confined
within metazoans (de Mendoza et al., 2014; Krishnan et al., 2015;
Figure 3B).

Previous phylogenetic analysis for ancestral plant Gβ

sequences suggested that plant Gβ sequences are more closely

related to Gβ sequences from the SAR (e.g., diatom) and
Amoebozoa (e.g., entamoeba) supergroups than those of
Excavata (Friedman et al., 2009). Although it is still not clear
how the eukaryotic supergroups relate to one another, the
most popular hypothesis (Amorphea-bikont rooting) places the
root of the eukaryotic tree between the last common ancestor
of the amoebozoans and opisthokonts and the remaining
eukaryotes (Keeling et al., 2005; Burki, 2014). The Amorphea-
bikont rooting positions the Gβ sequences in the Excavata
supergroup between the plant Gβ sequences and those of
the amoebozoans and opisthokonts (Figure 1B). Phylogenetic
analysis of a representative sampling of Gβ sequences from all
five supergroups supports this hypothesis by sandwiching the
Gβ sequences in the Excavata supergroup between the plant Gβ

sequences and the animal GNB1-4-like sequences (Figure 3B).

Combinatorial Diversity of Plant G-Proteins
Although the heterotrimeric G-protein complex consists of three
subunits, subunit isoforms can give rise to many heterotrimeric
combinations, limited in part by amino acid sequence differences
in the contact regions that lead to selective interactions.
Given the large number of known G-protein-mediated signaling
pathways, a diversity of G-protein isoforms is needed for
signaling specificity (Wettschureck and Offermanns, 2005). For
example, the human genome encodes 16 Gα, 5 Gβ, and 12
Gγ subunit isoforms, allowing for approximately 700 potential
Gαβγ combinations (Hillenbrand et al., 2015; Figure 1B). By
contrast, Arabidopsis thaliana, like most diploid plants, contains
4 Gα (GPA1, XLG1–3), one Gβ (AGB1), and 3 Gγ (AGG1–3)
subunit isoforms, allowing for 12 potential Gαβγ combinations
(Figure 1; Ma et al., 1990; Weiss et al., 1994; Mason and Botella,
2000, 2001; Zhu et al., 2009; Thung et al., 2012; Chakravorty
et al., 2015; Maruta et al., 2015). This number falls short of the
specificity needed for the large number of known G-protein-
mediated signaling pathways regulating fundamental processes
in plants, and remains a bottleneck issue in plant G-protein
signaling (Urano et al., 2013).

The sole Gβ subunit isoform is a limiting factor for plant
G-protein combinatorial diversity. There are different complex
models on how one Gβ subunit isoform is able to transduce so
many diverse signals (Urano and Jones, 2014). In addition, the
ubiquitous presence of Gβ-like sequences across plant genomes
has led to a hypothesis on the existence of additional non-
canonical classes of plant Gβ subunits that have yet to be
discovered, a situation analogous to the recent discoveries of
new classes of plant Gα sequences (XLG1–3-like) and plant Gγ

subunits (AGG3-like; Lee and Assmann, 1999; Thung et al.,
2012). The XLG1–3-like Gα subunit differs from the canonical
Gα subunit in its possession of a long N-terminal extension
of unknown function and its nuclear- and plasma membrane-
localization (Ding et al., 2008; Chakravorty et al., 2015; Maruta
et al., 2015). Similarly, the AGG3-like Gγ subunit differs from the
canonical Gγ subunit in its possession of a C-terminal extension
that is cysteine-rich and of unknown function (Chakravorty et al.,
2011; Trusov et al., 2012).

Aside from genetic interaction data, there is physical
interaction evidence from yeast three-hybrid studies supporting
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interaction specificity within the heterotrimer and its putative
coupled receptor/adaptor. For example, the Arabidopsis Gα

subunit isoforms, XLG1 and XLG2 have been shown to strongly
interact with the Gβγ heterodimers AGB1-AGG1/2, while the
Gα subunit isoform GPA1 strongly interacts with the Gβγ

heterodimer AGB1-AGG3 and XLG3 strongly interacts with
all three Gβγ heterodimers AGB1-AGG1/2/3 (Chakravorty
et al., 2015; Maruta et al., 2015), suggesting that all three Gγ

isoforms are somewhat selective of their interaction partners,
each preferring two of the four Gα isoforms. In addition, yeast
split-ubiquitin and Bimolecular Fluorescence Complementation
(BIFC) studies indicate that the other two Gγ isoforms AGG1/2
mediate the interaction between the plant heterotrimer and the
co-receptor proteins BAK1 and CERK1 (Aranda-Sicilia et al.,
2015). These reports are consistent with similar reports of animal
Gγ isoforms conferring specificity to the G-protein complex-
GPCR interaction (Im et al., 1988; Kisselev and Gautam, 1993).

G-Protein Complexes in Defense
One of the best-characterized functions of the Arabidopsis
heterotrimeric G-protein complex is in plant innate immunity,
where it participates in multiple immune signaling pathways
and defense responses (e.g., reactive oxygen species (ROS)
production, mitogen-activated protein kinase (MAPK)
activation, defense gene activation, callose deposition,
and programmed cell death) against a variety of fungal
(Llorente et al., 2005; Trusov et al., 2006, 2007, 2009; Delgado-
Cerezo et al., 2012; Torres et al., 2013) and bacterial pathogens
(Zhang et al., 2008; Ishikawa, 2009; Zeng and He, 2010; Lee et al.,
2013; Liu et al., 2013; Torres et al., 2013). Evidence of a physical
interaction between a plant heterotrimer and a ligand-binding
innate immune receptor (e.g., FLS2, EFR, LYK4/5) is still elusive,
although a recent report showed a direct interaction between the
canonical Gα GPA1 and the Gγ isoforms AGG1/2 (but not the
Gβ AGB1) with the co-receptor proteins BAK1 and CERK1 by
yeast split-ubiquitin assay and BiFC studies (Aranda-Sicilia et al.,
2015). If validated, this is the first report of a novel plant-specific
interaction between a heterotrimer and a receptor complex
via co-receptor adaptors. If the plant heterotrimer is coupled
directly to the receptor complex, then further research is needed
to understand how the plant heterotrimer converts MAMP
and/or DAMP signals from the receptors into intracellular
defense responses, especially if the heterotrimer is self-activating.

Nearly all of the Arabidopsis G-protein subunit isoforms
(save two—XLG1 and AGG3) participate in plant defense
(Figure 1A; Maruta et al., 2015) and an even smaller subset of G-
protein subunit isoforms in a bacterial DAMP-triggered immune
pathway involving RACK1 proteins as MAPK cascade scaffolds
(Figure 1A; Cheng et al., 2015). The sole Gβ AGB1 participates
in all G-protein-mediated processes, and positively contribute
to all tested immune responses, including ROS production,
callose deposition, MAPK activation, defense gene activation and
programmed cell death (Llorente et al., 2005; Maeda et al., 2009;
Liu et al., 2013; Torres et al., 2013). Among the Gα subunit
isoforms, XLG2 is the major contributor to resistance against the
hemibiotrophic bacterium Pseudomonas syringae, necrotrophic
fungi Alternaria brassicicola and Plectosphaerella cucumerina,

and the hemibiotrophic fungus Fusarium oxysporum. The
loss-of-function xlg2 mutant most closely recapitulates the
phenotypes of the loss-of-function agb1 mutant in its pathogen
susceptibility (Llorente et al., 2005; Trusov et al., 2006; Zhu
et al., 2009; Torres et al., 2013; Maruta et al., 2015), and the
XLG2 protein was shown to interact with the AGB1 protein
in planta by co-immunoprecipitation of overexpressed proteins
(Zhu et al., 2009). In addition, the Gα isoform GPA1 contributes
to bacterial resistance by mediating stomatal closure, a MAMP-
triggered immune response that retards pathogen entry through
the stomata (natural openings in the plant surface; Zhang
et al., 2008), while the Gα isoform XLG3 contributes partly
to resistance against Fusarium oxysporum (Maruta et al., 2015)
through an unknown mechanism. Among the Gγ subunit
isoforms, AGG1 and AGG2 are mostly redundant in their
contribution to plant immunity (Trusov et al., 2007; Thung
et al., 2013). The loss-of-function agg1/agg2 double mutant
recapitulates the phenotypes of the agb1 mutant in pathogen
susceptibility (Trusov et al., 2007; Liu et al., 2013; Torres et al.,
2013; Maruta et al., 2015). These results suggest that multiple
G-protein combinations are required for a successful plant
defense response against a majority of pathogens, with the Gβ

playing a central but undefined role in immune signaling.

Search for G-Protein Complexes
in Pathogenesis
Although compatibility between plants and their pathogens leads
to disease and symptom development, it is rarely found in nature
due to the effectiveness of the plant innate immune system.
One exceptional case is the small family of GPCR-like mildew
resistance locus O (MLO) receptor proteins, which are found
throughout flowering plants. A subset of MLO proteins has
been shown to be a conserved requirement for the compatibility
of monocots and dicots with their adapted powdery mildew
pathogens (Devoto et al., 2003; Consonni et al., 2006; Humphry
et al., 2006). While it remains controversial whether GPCR-
like proteins are bona fide GPCRs, some Arabidopsis MLO
proteins have predicted heptahelical scaffolds, GPCR folds, and
G-protein coupling (Taddese et al., 2014). However, the three
MLO proteins involved in fungal pathogenesis (AtMLO2/6/12)
do not contain these GPCR hallmarks and thus are unlikely to
function as canonical GPCRs (Taddese et al., 2014). In addition,
attempts to couple the two plant heterotrimers (GPA1-AGB1-
AGG1/2) to the MLO receptor were not successful (Lorek
et al., 2013). Still, further research is needed to discern whether
other heterotrimeric combinations are involved in regulating the
compatibility between plants and their pathogens.

TERNARY MYB-bHLH-TTG1 COMPLEXES

Flavonoids in Defense
Plant secondary (or defense) metabolites are essential for
plant survival in complex environments, and are the primary
means of defense against microbial pathogens as well as insect
herbivores and competitor plants (Dixon, 2001; Kliebenstein,
2013). The phenylpropanoids represent one of the largest and
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FIGURE 4 | Simplified phenylpropanoid pathway depicting the flavonoid (in purple) and lignin branch pathways, major flavonoid classes and basic

flavonoid structures. Multiple arrows indicate multiple enzymatic steps. Key flavonoid steps: CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone

3-hydroxylase; FLS, flavonol synthase, DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; ANR, anthocyanidin reductase; UFGT, UDP-glucose

flavonoid 3-O-glucosyltransferase.

most ancient families of defense metabolites in land plants.
The two largest subfamilies within the phenylpropanoids are
the flavonoids and the lignins, whose partially overlapping,
competing branch pathways share the first three steps in
the phenylpropanoid biosynthetic pathway (Figure 4). Among
the flavonoid classes, the anthocyanins, proanthocyanidins and
3-deoxyanthocyanidins have been shown to be critical for disease
resistance in a number of plant species. For example, the
3-deoxyanthocyanidin phytoalexins in Sorghum contribute to
localized resistance against the Sorghum anthracnose disease
fungus Colletotrichum sublineolum, the southern leaf blight
fungus Cochliobolus heterostrophus and head smut fungus
Sporisorium reilianum (Nicholson et al., 1987; Snyder and
Nicholson, 1990; Lo et al., 1999; Zuther et al., 2012).
In grapevine, proanthocyanidins (also known as condensed
tannins) contribute to resistance against the gray mold fungus
Botrytis cinerea by competitively inhibiting fungal laccases
involved in plant cell wall degradation and phytoalexin

detoxification (Pezet et al., 1992; van Baarlen et al., 2007). In
Arabidopsis, the colorful anthocyanins may be the molecular
basis of the ISR that is induced by the biocontrol fungus
Trichoderma hamatum against Botrytis cinerea (Mathys et al.,
2012; Kottb et al., 2015). Additionally, the Trichoderma-
synthesized volatile 6-pentyl-α-pyrone may be the MAMP signal
responsible for triggering ISR (Kottb et al., 2015). Although the
identities of the flavonoid metabolite(s) involved in ISR remain
unknown, mutant analysis confirmed that flavonoid biosynthesis
is required for ISR (Mathys et al., 2012).

Anthocyanins, proanthocyanidins and 3-deoxyanthocyanidins
represent partially overlapping, competing pathways within the
flavonoid biosynthetic pathway (Figure 4; Hipskind et al.,
1996; Winkel-Shirley, 2001). In addition, the flavonoid pathway
itself competes with the lignin pathway for shared resources
(Figure 4). The immediate biochemical and physiological
needs for the defense response are best illustrated during the
de novo synthesis of defense metabolites critical to disease
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resistance, where the synthesis of more common/less essential
phenylpropanoids are repressed in order to maintain metabolic
balance between the competing pathways (Kombrink and
Hahlbrock, 1990). For example, in Arabidopsis, the bacterial
MAMP flg22 transcriptionally upregulates the synthesis of
lignins, while repressing the light-dependent production of
anthocyanins (Saijo et al., 2009; Adams-Phillips et al., 2010;
Schenke et al., 2011). Similarly, in Sorghum, unknown fungal-
derived signals transcriptionally upregulate the synthesis of
the 3-deoxyanthocyanidins, while repressing light-dependent
production of anthocyanins (Weiergang et al., 1996; Lo and
Nicholson, 1998; Wharton and Nicholson, 2000; Shih et al.,
2006). Defense metabolites can also be synthesized from two or
more overlapping pathways, requiring more complex pathway
regulation. For example, most monocots, including maize,
rice, and wheat, incorporate the flavonoid tricin into the lignin
polymer (Lan et al., 2015), although it is not yet known whether
the flavonoid content contributes to the defense function of
lignins.

Elusive Transcription Factor-Regulon
Mechanism
In plants, the majority of the non-homologous gene constituents
of well-characterizedmulti-gene pathways in defensemetabolism
and cell differentiation are not genetically clustered as they are
in fungi and bacteria, but are distributed throughout the plant
genome (Lappin et al., 2006; Kliebenstein and Osbourn, 2012).
Instead, to facilitate their common regulation, co-regulated genes
along a pathway or sections within typically share common or
overlapping sets of promoter elements that are bound by specific
transcription factor, and thus are transcriptionally clustered into
an operon- like gene module known as a regulon. This functional
gene organization allows for a limited set of transcriptional
regulators to combinatorially control a regulon for pathway
function. The best-studied transcriptional regulator of pathways
in defense metabolism in higher plants is the MYB-bHLH-
WDR (MBW) complex, wherein the sole constituent WDR-
containing protein is known as TTG1 and the MYB and bHLH
constituents are paralogous transcription factors from small
subfamilies (analogous to classes of G-protein subunit isoforms;
Figure 2A). MYB constituents of the MBW complexes are either
R2R3-type or R3-type MYBs, where R stands for the number
of adjacent repeats of the MYB DNA-binding, helix-turn-helix
domain; plant MYBs lack the first repeat (Kranz et al., 1998;
Stracke et al., 2001; Dubos et al., 2010).

The pathway specificity of the MBW complex is determined
by the diversity of the MYB constituent, limited in part by the
overlapping functions of paralogous members within a MYB
subfamily (Stracke et al., 2001). However, in vitro promoter
binding studies to date indicate that R2R3-type MYBs from
different subfamilies appear to bind to the same or very
similar cis-regulatory elements, which are described generally
as “AC-like” sequences (e.g., TACC(T/A)A(C/A)C (MBSIIG1–
4 motif), CACC(T/A)A(C/A)C (MBSIIG5–8 motif), ACCTACC
(AC-I or SMRE-8 motif), ACCAACC (AC-II or SMRE-4
motif), ACCTAAC (AC-III or SMRE-7 motif), ACC(T/A)ACC
(AC-I/SMRE-8 or AC-II/SMRE-4 motif), and ACCCGCC)

(Grotewold et al., 1994; Williams and Grotewold, 1997; Romero
et al., 1998; Zhao et al., 2007; Zhou et al., 2009; Fornalé
et al., 2010; Prouse and Campbell, 2013). However, in vitro-
defined consensus motifs may not be sufficient and/or present
in the majority of their in vivo DNA target sequences, as was
demonstrated for several animal transcription factors (Carr and
Biggin, 1999; Yang et al., 2006; Rabinovich et al., 2008) and
the maize R2R3-type MYB ZmMYBP1 from subgroup 7, which
was found to preferentially bind to sequences containing 6 to 8
repeats of CxxC (where X corresponds to any nucleotide) with
no preference for A or T between the C base pairs (Morohashi
et al., 2012). Currently, it remains unclear how the different MYB
subfamilies confer pathway specificity to the MBW complex.

Because AC-like sequences are also typically present in the
promoters of activator- and repressor-type R2R3-type MYB
genes, constituent MYBs not only participate inMBW complexes
but also can transcriptionally regulate other components in
the complexes and/or competing MYBs via autoregulatory,
feedback or feedforward loops (Baudry et al., 2006; Zhao et al.,
2007). In addition, the expression of repressor-type MYBs is
typically development-specific or stress-responsive and thus can
serve to fine-tune pathway regulation (Jin et al., 2000; Preston
et al., 2004; Fornalé et al., 2014). For example, chromatin
immunoprecipitation experiments in Arabidopsis have shown
that the WDR-containing TTG1 and the bHLH constituent
GL3 are associated with the promoters of pathway genes in
anthocyanin and proanthocyanidin metabolism as well as the
promoters of repressor- and R3-typeMYBs CPC, TRY, and ETC1
(Morohashi et al., 2007; Zhao et al., 2008).

Role of TTG1 in Defense
The WDR-containing TTG1 has both direct and indirect
roles in plant defense. For example, heterologous expression
of the Sorghum R2R3-type MYB SbY1 in maize induced
3-deoxyanthocyanidin synthesis and enhanced resistance
against leaf blights (Ibraheem et al., 2010, 2015). Although
maize contains the SbY1 ortholog ZmP1 (Grotewold et al.,
1994) and the necessary flavonoid biosynthetic genes,
ZmP1 does not participate in MBW complexes nor induce
3-deoxyanthocyanidin synthesis in response to fungal
attack (Ibraheem et al., 2015). These observations suggest
that SbY1 requires additional regulatory factors to induce
3-deoxyanthocyanidin synthesis in Sorghum (and in maize).
One of these factors may be the Sorghum TTG1 ortholog
Tan1 (Mizuno et al., 2014). QTL analysis identified Tan1
gene as a major determinant of the relative proportions of
3-deoxyanthocyanidins responsible for the pathogen-induced
color variation in Sorghum (Mizuno et al., 2014). TTG1 has
also been found to play a direct role in plant defense in dicots.
For example, in tobacco, TTG1 physically interacts with the
oomycete-specific effector ParA1 to activate plant immune
responses, such as ROS generation and programmed cell death
(Wang et al., 2009).

Combinatorial MYB-bHLH Interactions
TTG1 serves as a scaffold for the combinatorial interactions
between the MYB and bHLH constituent isoforms, which are
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essential for regulating the binding specificity and transcriptional
activity of the MBW complex. Both the MYB and bHLH
constituents can be sequestered by other bHLH and MYB
proteins, respectively, to form non-functional MYB-bHLH
complexes and thus disrupt the MBW complex (Burr et al.,
1996; Sawa, 2002; Esch et al., 2003; Kirik et al., 2004; Simon
et al., 2007; Tominaga et al., 2007; Dubos et al., 2008; Matsui
et al., 2008). In addition, the bHLH constituent can form
functional homo- or heterodimers with other bHLH proteins
through their hydrophobic helix-loop-helix regions and/or ACT
domains (Feller et al., 2006; Kong et al., 2012), whereas the MYB
constituent is functionally dependent on their its bHLH partners
(Lee and Schiefelbein, 1999; Zhang et al., 2003; Hernandez et al.,
2007).

The MYB constituent determines the transcriptional activity
of the complex (i.e., activating or repressing). There are
two repressor-type MYB subfamilies: R2R3-type MYBs from
subgroup 4 (e.g., Arabidopsis AtMYB4, petunia PhMYB27,
grapevine VvMYBC2-L1–3) and a single group of R3-type MYBs
(e.g., Arabidopsis CPC, TRY, ETC1, AtMYBL2). Members of both
subfamilies contain bHLH interaction motifs as well as one or
more repressor motifs, including the ethylene response factor
(ERF)-associated amphiphilic repressor (EAR) motif LNLxL
(Kranz et al., 1998; Jin et al., 2000; Cavallini et al., 2015).
Genetic and in vitro physical interaction studies in Arabidopsis,
petunia and grapevine suggest that MBW complexes may be able
to switch between activating and repressive modes through a
modular exchange of MYB components between activator- and
repressor-type MYB subfamilies (Jin et al., 2000; Zimmermann
et al., 2004; Albert et al., 2014; Cavallini et al., 2015). It remains to
be seen whether repressor-type MBW complexes exist in planta.

Evolutionary History of the
MYB-bHLH-TTG1 Complex
Not all MYB and bHLH subfamilies participate in MBW
complexes. To date, only bHLHs from subgroup IIIf and MYBs
containing the bHLH interaction motif [DE]Lx2[RK]x3Lx6Lx3R
(Zimmermann et al., 2004) have been shown to directly interact
with TTG1 and participate in MBW complexes (Payne et al.,
2000; Stracke et al., 2001; Heim et al., 2003; Zhang et al., 2003;
Baudry et al., 2004; Zimmermann et al., 2004). bHLHs from
subgroup IIIf are the best-studied bHLH proteins in plants and
function only in complex with R2R3-type MYBs from subgroups
4, 5, 6, and 15 as well as R3-type MYBs. Although the bHLH
interaction motif arose early in land plant evolution and is
conserved between angiosperms and gymnosperms (Figure 1B;
Bedon et al., 2007), the bHLHs from subgroup IIIf themselves
are evolutionarily older, arising before the origin of the mosses
approximately 400 million years ago (Carretero-Paulet et al.,
2010; Pires and Dolan, 2010). In contrast, TTG1 sequences
are present in angiosperms, but not in gymnosperms or more
ancient plant lineages (Figure 1B; Humphries et al., 2005;
Brueggemann et al., 2010; Ben-Simhon et al., 2011). This suggests
that the bHLHs from subgroup IIIf functioned as dimers in
transcriptional regulation long before the MBW complex, and
that ancestral MBW complexes may have originated as MYB-
bHLH dimers that then recruited the WDR-containing protein

TTG1 to aid in complex stability and/or subnuclear localization
(Zhao et al., 2008).

The role of MBW complexes in mediating the synthesis of
anthocyanins and proanthocyanidins appears to be conserved
in diverse species of flowering plants, including Arabidopsis
and related species, Medicago, strawberry, petunia and maize
(Figure 2B; Grotewold et al., 2000; Carey et al., 2004; Dressel and
Hemleben, 2009; Pang et al., 2009; Zhang et al., 2009; Schaart
et al., 2013; Albert et al., 2014; Chopra et al., 2014). For example,
maize uses the MBW complexes ZmC1/PL1-ZmR/B-ZmPAC1
to regulate the anthocyanin pathway (Goff et al., 1990; Tuerck
and Fromm, 1994; Selinger and Chandler, 1999; Walker et al.,
1999; Carey et al., 2004). In addition, Arabidopsis and other
dicots have evolved two different classes of MBW complexes
to separately regulate the anthocyanin and proanthocyanidin
pathways (Figure 2A). Arabidopsis MBW complexes PAP1/2/3-
EGL3/GL3/TT8-AtTTG1 activate anthocyanin biosynthesis
genes (e.g.,DFR; Figures 2A, 4; Walker et al., 1999; Borevitz et al.,
2000; Nesi et al., 2000, 2001; Zhang et al., 2003; Zimmermann
et al., 2004; Teng et al., 2005; Gonzalez et al., 2008); whereas,
MBW complexes AtMYB5/TT2-GL3/EGL3/TT8-AtTTG1
activate genes specific for proanthocyanidin biosynthesis (e.g.,
BAN/ANR; Figures 2A, 4). Both classes of MBW complexes
share the same bHLH and WDR constituents, leaving their MYB
constituents to determine the promoter target activation and
pathway specificity of the MBW complex. In addition, the MYB
constituents AtMYB5/TT2 from subgroup 5 and PAP1-3 from
subgroup 6 are closely related. They are in fact so close that the
sequence variation at the R/G39 motif in their R2 motifs and
at the A/SNDV or DNEI90–93 motif in their R3 motifs (also
known as the A2 box; Cavallini et al., 2015) has been shown
to be sufficient to confer pathway specificity (Heppel et al.,
2013). The same A2 box also confers pathway specificity for the
repressor-type MYBs (Cavallini et al., 2015).

CONCLUSION

Plants are the basis for human nutrition and a renewable source
for fuel and chemical feedstocks. Diminishing food security
from plant disease/pests, climate instability and population
growth, concomitant with rising energy costs and dwindling
petrochemical-based fossil fuel supplies, have placed high
demands on the productivity of food crops and other crops of
economic importance (Krattiger, 1997; Lobell et al., 2011; Lobell
and Gourdji, 2012; UN-DESA, 2013). Because WDR-containing
trimeric complexes are at the heart of immune signaling and
transcriptional regulation of chemical defenses, continued basic
and translational research on these complexes in plant immunity
will certainly improve agriculture and food security as well as our
understanding of fundamental processes of signal transduction
and gene regulation.

Plant Gβ sequences are ubiquitous across all five eukaryotic
supergroups, with only a handful of species having more than
two Gβ sequences (Figure 1B). Its signaling mechanism
has evolved very slowly and yet pervasively so that it
cannot be easily extricated from multiple immune signaling
pathways (Figure 1A). In contrast, TTG1 is plant-specific
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and arose after the functional dimerization of its MYB-bHLH
partners (Figure 2A). Evolution has added several layers
of specialization to its regulatory mechanism, including
multiple partially redundant bHLH and MYB partners,
regulatory loops, and repressor-type MYBs to fine-tune
the activation of its target pathways (Figure 2B). While its
regulatory mechanism has evolved more quickly, TTG1
and its complex are more dispensable and limited in reach,
affecting only a handful of pathways in the most evolved plants
(Figure 2B).

Despite differences in evolutionary history, mechanism and
target pathways, the plant Gβ and TTG1 proteins represent the
apex of the hierarchy of network interactions in their respective
pathways (Figures 1A, 2A), and are the sole constituents of
their respective complexes to preside over all signaling and
regulatory pathways in plant immunity that are mediated by
WDR-containing ternary complexes. While there are still many

open questions concerning the dynamics of these complexes and
the specificity of their interactions with other protein partners
and their downstream effectors or target DNA sequences, the
large and still-growing body of research on these proteins and
their complexes underscores the importance of these signaling
and regulatory complexes.
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